Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Evolution of sex

Resolving the paradox of sex and recombination

Key Points

  • One of the most enduring puzzles in evolutionary biology is why sexual reproduction, whereby the genomes of different individuals are mixed together, is so widespread.

  • Theoretical analyses have shown that genome mixing is a risky endeavour, and the conditions that favour the evolution of high rates of sex and recombination are often quite restrictive.

  • Most previous mathematical models have, however, focused on populations that are infinite in size, unstructured and isolated from other species.

  • By incorporating realistic complexities, including species interactions, spatial structure and genetic drift, recent studies have broadened the conditions under which high rates of sex and recombination are expected to evolve.

Abstract

Sexual reproduction and recombination are ubiquitous. However, a large body of theoretical work has shown that these processes should only evolve under a restricted set of conditions. New studies indicate that this discrepancy might result from the fact that previous models have ignored important complexities that face natural populations, such as genetic drift and the spatial structure of populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The percentage change in recombination after a period of strong selection.
Figure 2: Conditions under which an allele that modifies the probability of sexual reproduction will spread by increasing the segregation of alleles at a selected locus.
Figure 3: The proportional change in the frequency of sex as a function of population size after 50 generations of selection in a three-locus haploid model.

Similar content being viewed by others

References

  1. Chapman, T., Liddle, L. F., Kalb, J. M., Wolfner, M. F. & Partridge, L. Cost of mating in Drosophila melanogaster females is mediated by male accessory gland products. Nature 373, 241–244 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Redfield, R. J. Do bacteria have sex? Nature Rev. Genet. 2, 634–639 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Karlin, S. Detecting anomalous gene clusters and pathogenicity islands in diverse bacterial genomes. Trends Microbiol. 9, 335–343 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Kidwell, M. G. Lateral transfer in natural populations of eukaryotes. Annu. Rev. Genet. 27, 235–256 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. de Koning, A. P., Brinkman, F. S., Jones, S. J. & Keeling, P. J. Lateral gene transfer and metabolic adaptation in the human parasite Trichomonas vaginalis. Mol. Biol. Evol. 17, 1769–1773 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Wolf, Y. I., Kondrashov, A. S. & Koonin, E. V. Interkingdom gene fusions. Genome Biol. 1, research0013.1–0013.13 (2000).

    Article  Google Scholar 

  7. Bell, G. The Masterpiece of Nature: The Evolution and Genetics of Sexuality (Univ. California Press, Berkeley, 1982).A classic text that explores the vast array of ways in which organisms reproduce and the reasons for this diversity.

    Google Scholar 

  8. Vrijenhoek, R., Dawley, R., Cole, C. & Bogart, J. in Evolution and Cytology of Unisexual Vertebrates (eds Dawley, R. & Bogart, J.) 19–23 (Univ. State New York, New York, 1989).

    Google Scholar 

  9. Wilson, E. O. The Diversity of Life (W. W. Norton, New York, 1992).

    Google Scholar 

  10. Judson, O. P. & Normark, B. B. Ancient asexual scandals. Trends Ecol. Evol. 11, 41–46 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Mark Welch, D. & Meselson, M. Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange. Science 288, 1211–1215 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Sogin, M. L. & Silberman, J. D. Evolution of the protists and protistan parasites from the perspective of molecular systematics. Int. J. Parasitol. 28, 11–20 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Morin, L. Long branch attraction effects and the status of 'basal eukaryotes': phylogeny and structural analysis of the ribosomal RNA gene cluster of the free-living diplomonad Trepomonas agilis. J. Eukaryot. Microbiol. 47, 167–177 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Hurst, L. D., Hamilton, W. D. & Ladle, R. J. Covert sex. Trends Ecol. Evol. 7, 144–145 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Burt, A., Carter, D. A., Koenig, G. L., White, T. J. & Taylor, J. W. Molecular markers reveal cryptic sex in the human pathogen Coccidioides immitis. Proc. Natl Acad. Sci. USA 93, 770–773 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Michod, R. E. & Levin, B. R. The Evolution of Sex (Sinauer Press, Sunderland, Massachusetts, 1988).An excellent review and source book for theoretical and empirical studies of the evolution of sex, with chapters written by authors from a variety of perspectives.

    Google Scholar 

  17. Kondrashov, A. S. Classification of hypotheses on the advantage of amphimixis. J. Hered. 84, 372–387 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Feldman, M. W., Otto, S. P. & Christiansen, F. B. Population genetic perspectives on the evolution of recombination. Annu. Rev. Genet. 30, 261–295 (1997).

    Article  Google Scholar 

  19. Hickey, D. A. Selfish DNA: a sexually-transmitted nuclear parasite. Genetics 101, 519–531 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Reinke, V. et al. A global profile of germline gene expression in C. elegans. Mol. Cell 6, 605–616 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Bernstein, H., Byers, G. S. & Michod, R. E. Evolution of sexual reproduction: importance of DNA repair, complementation, and variation. Am. Nat. 117, 537–549 (1981).

    Article  CAS  Google Scholar 

  22. Redfield, R. J. Evolution of natural transformation: testing the DNA repair hypothesis in Bacillus subtilis and Haemophilus influenzae. Genetics 133, 755–761 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Thuriaux, P. Is recombination confined to structural genes on the eukaryotic genome? Nature 268, 460–462 (1977).

    Article  CAS  PubMed  Google Scholar 

  24. Baker, B. S., Carpenter, A. T. C., Esposito, M. S., Esposito, R. E. & Sandler, L. The genetic control of meiosis. Annu. Rev. Genet. 10, 53–134 (1976).

    Article  CAS  PubMed  Google Scholar 

  25. Hawley, R. S. & Theurkauf, W. E. Requiem for distributive segregation: achiasmate segregation in Drosophila females. Trends Genet. 9, 310–317 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Merriam, J. R. & Frost, J. N. Exchange and nondisjunction of the X chromosomes in female Drosophila melanogaster. Genetics 49, 109–122 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Villeneuve, A. M. A cis-acting locus that promotes crossing over between X chromosomes in Caenorhabditis elegans. Genetics 136, 887–902 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Koehler, K. E., Hawley, R. S., Sherman, S. & Hassold, T. Recombination and nondisjunction in humans and flies. Hum. Mol. Genet. 5, 1495–1504 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Burt, A., Bell, G. & Harvey, P. H. Sex differences in recombination. J. Evol. Biol. 4, 259–277 (1991).

    Article  Google Scholar 

  30. Otto, S. P. & Barton, N. H. Selection for recombination in small populations. Evolution 55, 1921–1931 (2001).An investigation of the relative importance of drift and epistasis to the evolution of sex and recombination with the use of a modifier model with directional selection.

    Article  CAS  PubMed  Google Scholar 

  31. Rice, W. R. Experimental tests of the adaptive significance of sexual reproduction. Nature Rev. Genet. 3, 241–251 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Altenberg, L. & Feldman, M. W. Selection, generalized transmission and the evolution of modifier genes. I. The reduction principle. Genetics 117, 559–572 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Feldman, M. W. Selection for linkage modification. I. Random mating populations. Theor. Popul. Biol. 21, 430–439 (1972).

    Google Scholar 

  34. Feldman, M. W., Christiansen, F. B. & Brooks, L. D. Evolution of recombination in a constant environment. Proc. Natl Acad. Sci. USA 77, 4838–4841 (1980).The first theoretical analysis to show that higher rates of recombination could evolve when deleterious mutations exhibit negative fitness interactions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kondrashov, A. S. Deleterious mutations as an evolutionary factor. I. The advantage of recombination. Genet. Res. 44, 199–217 (1984).

    Article  CAS  PubMed  Google Scholar 

  36. Charlesworth, B. Mutation–selection balance and the evolutionary advantage of sex and recombination. Genet. Res. 55, 199–221 (1990).

    Article  CAS  PubMed  Google Scholar 

  37. Barton, N. H. A general model for the evolution of recombination. Genet. Res. 65, 123–144 (1995).A ground-breaking theoretical study that generalized models of the evolution of recombination to a genome-wide level and to include several forms of selection.

    Article  CAS  PubMed  Google Scholar 

  38. Otto, S. P. & Feldman, M. W. Deleterious mutations, variable epistatic interactions, and the evolution of recombination. Theor. Popul. Biol. 51, 134–147 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Eshel, I. & Feldman, M. W. On the evolutionary effect of recombination. Theor. Popul. Biol. 1, 88–100 (1970).

    Article  CAS  PubMed  Google Scholar 

  40. Chasnov, J. R. Mutation–selection balance, dominance and the maintenance of sex. Genetics 156, 1419–1425 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Agrawal, A. F. & Chasnov, J. R. Recessive mutations and the maintenance of sex in structured populations. Genetics 158, 913–917 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Simmons, M. J. & Crow, J. F. Mutations affecting fitness in Drosophila populations. Annu. Rev. Genet. 11, 49–78 (1977).

    Article  CAS  PubMed  Google Scholar 

  43. Peters, A. D. & Lively, C. M. The Red Queen and fluctuating epistasis: a population genetic analysis of antagonistic coevolution. Am. Nat. 154, 393–405 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Lenormand, T. & Otto, S. P. The evolution of recombination in a heterogeneous environment. Genetics 156, 423–438 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Pylkov, K. V., Zhivotovsky, L. A. & Feldman, M. W. Migration versus mutation in the evolution of recombination under multilocus selection. Genet. Res. 71, 247–256 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Hill, W. G. & Robertson, A. The effect of linkage on the limits to artificial selection. Genet. Res. 8, 269–294 (1966).This paper showed that, in finite populations, selection at a locus is less efficient when neighboring loci are also under selection because of increased variation in the reproductive success of an allele (that is, increased random genetic drift).

    Article  CAS  PubMed  Google Scholar 

  47. Otto, S. P. & Barton, N. H. The evolution of recombination: removing the limits to natural selection. Genetics 147, 879–906 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Gessler, D. D. & Xu, S. On the evolution of recombination and meiosis. Genet. Res. 73, 119–131 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Peck, J. R. A ruby in the rubbish: beneficial mutations, deleterious mutations and the evolution of sex. Genetics 137, 597–606 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Martin, G. Évolution de la Recombinaison en Populations Subdivisées: Étude par Simulation de l'Influence de la Structure sur la Sélection pour la Recombinaison via l'Effet Hill–Robertson (DEA, Biologié, Université Montpellier II, Montpellier, 2001).

    Google Scholar 

  51. Foucault, M. The History of Sexuality. I. An Introduction (Vintage Books, New York, 1978).

    Google Scholar 

  52. Howard, R. S. & Lively, C. M. The maintenance of sex by parasitism and mutation accumulation under epistatic fitness functions. Evolution 52, 604–610 (1998).

    Article  PubMed  Google Scholar 

  53. Nei, M. Modification of linkage intensity by natural selection. Genetics 57, 625–641 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the comments and suggestions of J. Boughman, C. Griswold, T. Johnson, R. Redfield, H. Rundle, R. Sargent, D. Schluter, M. Whitlock and three anonymous reviewers. Funding was provided by the Natural Sciences and Engineering Research Council (Canada) to S.P.O. and the Centre National de la Recherche Scientifique (France) to S.P.O. and T. L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah P. Otto.

Related links

Related links

FURTHER INFORMATION

Deinococcus radiodurans

Rickettsia prowazekii

Sarah Otto's lab

Glossary

TRANSDUCTION

The exchange of genetic material from one cell to another that is mediated by a virus or phage.

TRANSFORMATION

The uptake of DNA by a bacterium from the surrounding environment.

CONJUGATION

In prokaryotes, the transfer of DNA from a donor cell to a recipient cell that is mediated by direct cell–cell contact.

PROTIST

A eukaryote other than animals, plants and fungi; often single celled.

CHIASMA

(pl. chiasmata). The cytological manifestation of genetic exchange between chromosomes, indicating that a crossover has occurred between homologous chromosomes.

ANEUPLOIDY

The presence of extra copies, or fewer copies, of some chromosomes.

EQUILIBRIUM

A state in which a system remains unchanged over time.

LINKAGE DISEQUILIBRIUM

(D). A measure of genetic associations between alleles at different loci, which indicates whether particular haplotypes are more common than expected. We use the two-locus measure, D = frequency(AB) × frequency(ab) − frequency(Ab) × frequency(aB).

HAPLOTYPE

A haploid genotype. A diploid genotype comprises a maternal and a paternal haplotype.

GENETIC DRIFT

(also known as random drift). A phenomenon whereby the frequency of a gene in a population changes over time because the number of offspring born to parents that carry the gene is subject to chance variation.

EPISTASIS

(ɛ). A measure of fitness interactions between alleles at different loci. In haploids, we use the two-locus measure, ɛ = fitness(AB) × fitness(ab) − fitness(Ab) × fitness(aB).

MUTATION–SELECTION BALANCE

The equilibrium at which selection that increases the frequency of a favourable allele exactly balances mutations that decrease the frequency.

SELECTION COEFFICIENT

A term that describes the difference in average fitness between two genotypes when fitness is measured relative to the average fitness of one of the genotypes (known as the reference genotype).

DIRECTIONAL SELECTION

Selection that favours one allele over all other alleles of a gene. The frequency of this beneficial allele can rise or can be held in check by recurrent mutation.

RECOMBINATION LOAD

The difference in fitness between offspring produced without recombination and those produced with recombination.

HARDY–WEINBERG EQUILIBRIUM

A state in which the frequency of each diploid genotype at a locus equals that expected from the random union of alleles — that is, where the inbreeding coefficient (F) is zero.

INBREEDING COEFFICIENT

(F). A measure of genetic associations between alleles at the same locus, which indicates whether homozygotes (positive F) or heterozygotes (negative F) are more common than expected. For ease of comparison with linkage disequilibrium, we write the standard measure for F as {frequency(AA) × frequency(aa) − [0.5 × frequency(Aa)]2}/{frequency(A) × frequency(a)}.

DOMINANCE COEFFICIENT

The factor by which the selection coefficient is reduced in heterozygotes relative to homozygotes.

SINGLE-LOCUS INTERACTION

(ı). A measure of fitness interactions between alleles at the same locus. We use the single-locus measure, ı = fitness(AA) × fitness(aa) − fitness(Aa)2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otto, S., Lenormand, T. Resolving the paradox of sex and recombination. Nat Rev Genet 3, 252–261 (2002). https://doi.org/10.1038/nrg761

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg761

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing