Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

From sequence to phenotype: reverse genetics in drosophila melanogaster

Key Points

  • Strategies for disrupting the function of a gene, the sequence of which is known, fall into two classes: random mutagenesis, followed by molecular identification of desired mutations; and directed disruption of gene function. Methods for both strategies have been developed for reverse genetics in Drosophila melanogaster.

  • Denaturing high-performance liquid chromatography can be used to identify single base-pair changes in a PCR product. This allows specific genes to be screened for sequence changes that are generated with a standard chemical mutagenesis.

  • P-transposable elements have been engineered to be important tools for insertional mutagenesis in Drosophila. Several thousand single-insert lines are now available from public stock centres.

  • If a P-element lies near a gene of interest, strategies such as imprecise excision and local transposition can often be used to generate mutations in the gene.

  • A method of targeted gene replacement in Drosophila has recently been developed. This method allows defined mutations in specific genes to be made.

  • Double-stranded RNA (dsRNA) has been shown to be a potent inhibitor of gene expression through a process termed RNA interference (RNAi). RNAi has been shown in Drosophila cell culture, in embryos injected with dsRNA and in individuals expressing an inverted repeat RNA.

Abstract

There has been a long history of innovation and development of tools for gene discovery and genetic analysis in Drosophila melanogaster. This includes methods to induce mutations and to screen for those mutations that disrupt specific processes, methods to map mutations genetically and physically, and methods to clone and characterize genes at the molecular level. Modern genetics also requires techniques to do the reverse — to disrupt the functions of specific genes, the sequences of which are already known. This is the process referred to as reverse genetics. During recent years, some valuable new methods for conducting reverse genetics in Drosophila have been developed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: P-element constructs used for reverse genetics in Drosophila.
Figure 2: P-element mobilization mutagenesis.
Figure 3: Generation of deletions by hybrid element insertion.
Figure 4: Targeted gene replacement in Drosophila.
Figure 5: RNA interference in Drosophila.

Similar content being viewed by others

References

  1. St Johnston, R. D. The art and design of genetic screens: Drosophila melanogaster. Nature Rev. Genet. 3, 176–188 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Adams, M. D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2196 (2000).

    PubMed  Google Scholar 

  3. Lewis, E. B. & Bacher, F. Method for feeding ethyl-methane sulfonate (EMS) to Drosophila males. Drosoph. Inf. Serv. 43, 193 (1968).

    Google Scholar 

  4. Pastink, A., Heemskerk, E., Nivard, M., Van Vliet, C. & Vogel, E. Mutational specificity of ethyl methanesulfonate in excision-repair-proficient and -deficient strains of Drosophila melanogaster. Mol. Gen. Genet. 229, 213–218 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Bentley, A., MacLennan, B., Calvo, J. & Dearolf, C. Targeted recovery of mutations in Drosophila. Genetics 156, 1169–1173 (2000).This paper describes the use of DHPLC to screen for de novo mutations in a specific gene of interest in Drosophila , after EMS mutagenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Taylor, G. M. (ed.) Laboratory Methods for the Detection of Mutations and Polymorphisms in DNA 352 (CRC Press, Boca Raton, Florida, 1997).

    Google Scholar 

  7. Underhill, P. A., Jin, L., Zemans, R., Oefner, P. J. & Cavalli-Sforza, L. L. A pre-Columbian Y chromosome-specific transition and its implications for human evolutionary history. Proc. Natl Acad. Sci. USA 93, 196–200 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Timmons, L., Xu, J., Hersperger, G., Deng, X. F. & Shearn, A. Point mutations in awdKpn which revert the prune/Killer of prune lethal interaction affect conserved residues that are involved in nucleoside diphosphate kinase substrate binding and catalysis. J. Biol. Chem. 270, 23021–23030 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Huang, S. L. & Baker, B. S. The mutability of the minute loci of Drosophila melanogaster with ethyl methanesulfonate. Mutat. Res. 34, 407–414 (1976).

    Article  CAS  PubMed  Google Scholar 

  10. Spradling, A. C. et al. The Berkeley Drosophila Genome Project Gene Disruption Project: single P-element insertions mutating 25% of vital Drosophila genes. Genetics 153, 135–177 (1999).A description of the strategy and progress of the Gene Disruption Project. This paper focuses on lethal insertions that were selected in the early phases of the project.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bier, E. et al. Searching for pattern and mutation in the Drosophila genome with P-lacZ vector. Genes Dev. 3, 1273–1287 (1989).

    Article  CAS  PubMed  Google Scholar 

  12. Spradling, A. C. et al. Gene disruptions using P transposable elements: an integral component of the Drosophila genome project. Proc. Natl Acad. Sci. USA 92, 10824–10830 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rubin, G. M. & Spradling, A. C. Genetic transformation of Drosophila with transposable element vectors. Science 218, 348–353 (1982).

    Article  CAS  PubMed  Google Scholar 

  14. Rørth, P. et al. Systematic gain-of-function genetics in Drosophila. Development 125, 1049–1057 (1998).

    PubMed  Google Scholar 

  15. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

  16. Lukacsovich, T. et al. Dual-tagging gene trap of novel genes in Drosophila melanogaster. Genetics 157, 727–742 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Roseman, R. R. et al. A P element containing suppressor of Hairy-wing binding regions has novel properties for mutagenesis in Drosophila melanogaster. Genetics 141, 1061–1074 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Roseman, R. R., Pirrotta, V. & Geyer, P. K. The Su(Hw) protein insulates the expression of the Drosophila melanogaster white gene from chromosomal position-effects. EMBO J. 12, 435–442 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Geyer, P. K., Spana, C. & Corces, V. G. On the molecular mechanism of gypsy-induced mutations at the yellow locus of Drosophila melanogaster. EMBO J. 5, 2657–2662 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang, P. & Spradling, A. C. Efficient and dispersed local P element transposition from Drosophila females. Genetics 133, 361–373 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ballinger, D. G. & Benzer, S. Targeted gene mutations in Drosophila. Proc. Natl Acad. Sci. USA 86, 9402–9406 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kaiser, K. & Goodwin, S. F. 'Site-selected' transposon mutagenesis of Drosophila. Proc. Natl Acad. Sci. USA 87, 1686–1690 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pereira, A., Doshen, J., Tanaka, E. & Goldstein, L. S. Genetic analysis of a Drosophila microtubule-associated protein. J. Cell Biol. 116, 377–383 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Dalby, B., Pereira, A. J. & Goldstein, L. S. B. An inverse PCR screen for the detection of P element insertions in cloned genomic intervals in Drosophila melanogaster. Genetics 139, 757–766 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Voelker, R. A. et al. Frequent imprecise excision among reversions of a P element-caused lethal mutation in Drosophila. Genetics 107, 279–294 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Daniels, S. B., McCarron, M. Y., Love, C. & Chovnick, A. Dysgenesis-induced instability of rosy locus transformation in Drosophila melanogaster: analysis of excision events and the selective recovery of control element deletions. Genetics 109, 95–117 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Beall, E. L. & Rio, D. C. Drosophila P-element transposase is a novel site-specific endonuclease. Genes Dev. 11, 2137–2151 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Engels, W. R., Johnson-Schlitz, D. M., Eggleston, W. B. & Sved, J. High-frequency P element loss in Drosophila is homolog dependent. Cell 62, 515–525 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Stavely, B. E., Heslip, T. R., Hodgetts, R. B. & Bell, J. B. Protected P-element termini suggest a role for inverted repeat-binding protein in transposase-induced gap repair in Drosophila melanogaster. Genetics 139, 1321–1329 (1995).

    Google Scholar 

  30. Mihaly, J., Hogga, I., Gausz, J., Gyurkovics, H. & Karch, F. In situ dissection of the Fab-7 region of the bithorax complex into a chromatin domain boundary and a Polycomb-response element. Development 124, 1809–1820 (1997).

    CAS  PubMed  Google Scholar 

  31. Suzanne, M. et al. The Drosophila p38 MAPK pathway is required during oogenesis for egg asymmetric development. Genes Dev. 13, 1464–1474 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cayirlioglu, P., Bonnette, P. C., Dickson, M. R. & Duronio, R. J. Drosophila E2f2 promotes the conversion from genomic DNA replication to gene amplification in ovarian follicle cells. Development 128, 5085–5098 (2001).

    CAS  PubMed  Google Scholar 

  33. Gloor, G. B., Nassif, N. A., Johnson-Schlitz, D. M., Preston, C. R. & Engels, W. R. Targeted gene replacement in Drosophila via P element-induced gap repair. Science 253, 1110–1117 (1991).This is the paper that introduced the use of an ectopic template in P -element gap repair, which makes gene replacement possible.

    Article  CAS  PubMed  Google Scholar 

  34. Keeler, K. J., Dray, T., Penney, J. E. & Gloor, G. B. Gene targeting of a plasmid-borne sequence to a double-strand DNA break in Drosophila melanogaster. Mol. Cell. Biol. 16, 522–528 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lankenau, D. H. & Gloor, G. B. In vivo gap repair in Drosophila: a one-way street with many destinations. Bioessays 20, 317–327 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Geyer, P. K., Richardson, K. L., Corces, V. G. & Green, M. M. Genetic instability in Drosophila melanogaster: P-element mutagenesis by gene conversion. Proc. Natl Acad. Sci. USA 85, 6455–6459 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Heslip, T. R. & Hodgetts, R. B. Targeted transposition at the vestigial locus of Drosophila melanogaster. Genetics 138, 1127–1135 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Gonzy-Treboul, G., Lepesant, J. & Deutsch, J. Enhancer-trap targeting at the Broad-Complex locus of Drosophila melanogaster. Genes Dev. 9, 1137–1148 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Gray, Y. H. M., Tanaka, M. M. & Sved, J. A. P-element-induced recombination in Drosophila melanogaster: hybrid element insertion. Genetics 144, 1601–1610 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Preston, C. R. & Engels, W. R. Flanking duplications and deletions associated with P-induced male recombination in Drosophila. Genetics 144, 1623–1638 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen, B., Chu, T., Harms, E., Gergen, J. & Strickland, S. Mapping of Drosophila mutations using site-specific male recombination. Genetics 149, 157–163 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. McKim, K. S. & Hayashi-Hagihara, A. mei-W68 in Drosophila melanogaster encodes a Spo11 homolog: evidence that the mechanism for initiating meiotic recombination is conserved. Genes Dev. 12, 2932–2942 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rong, Y. S. & Golic, K. G. Gene targeting by homologous recombination in Drosophila. Science 288, 2013–2018 (2000).This paper shows the use of the strategy for gene targeting in which the linear DNA-targeting molecule is generated in vivo using Flp recombinase and the restriction enzyme I-Sce I.

    Article  CAS  PubMed  Google Scholar 

  44. Rong, Y. S. & Golic, K. G. A targeted gene knockout in Drosophila. Genetics 157, 1307–1312 (2001).In a follow-up to their 2000 publication (reference 43 ), the authors show that their strategy can be used to do gene replacement without previous knowledge of mutant phenotypes.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ivanov, E. L. & Haber, J. E. RAD1 and RAD10, but not other excision repair genes, are required for double-strand break-induced recombination in Saccharomyces cerevisiae. Mol. Cell. Biol. 15, 2245–2251 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Spradling, A. C. & Rubin, G. M. The effect of chromosomal position on the expression of the Drosophila xanthine dehrydrogenase gene. Cell 34, 47–57 (1983).

    Article  CAS  PubMed  Google Scholar 

  47. Hazelrigg, T., Levis, R. W. & Rubin, G. R. Transformation of white locus DNA in Drosophila: dosage compensation, zeste interaction, and position effects. Cell 36, 469–481 (1984).

    Article  CAS  PubMed  Google Scholar 

  48. Wakimoto, B. T., Kalfayan, L. J. & Spradling, A. C. Developmentally regulated expression of Drosophila chorion genes introduced at diverse chromosomal positions. J. Mol. Biol. 187, 33–45 (1986).

    Article  CAS  PubMed  Google Scholar 

  49. Hammond, S. M., Caudy, A. & Hannon, G. J. Post-transcriptional gene silencing by double-stranded RNA. Nature Rev. Genet. 2, 110–119 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Yang, D., Lu, H. & Erickson, J. W. Evidence that processed small dsRNAs may mediate sequence-specific mRNA degradation during RNAi in Drosophila embryos. Curr. Biol. 10, 1191–1200 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Zamore, P. D., Tuschl, T., Sharp, P. A. & Bartel, D. P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25–33 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Elbashir, S. M., Lendeckel, W. & Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15, 188–200 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lau, N. C., Lim, L. P., Weinstein, E. G. & Bartel, D. P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–862 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Lee, R. & Ambros, V. An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862–864 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).The landmark discovery of RNAi as a genetic tool.

    Article  CAS  PubMed  Google Scholar 

  56. Clemens, J. et al. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc. Natl Acad. Sci. USA 97, 6499–6503 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Adams, R. R., Maiato, H., Earnshaw, W. C. & Carmena, M. Essential roles of Drosophila inner centromere protein (INCENP) and aurora B in histone H3 phosphorylation, metaphase chromosome alignment, kinetochore disjunction, and chromosome segregation. J. Cell Biol. 153, 865–880 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Giet, R. & Glover, D. M. Drosophila aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis. J. Cell Biol. 152, 669–682 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Caplen, N., Fleenor, J., Fire, A. & Morgan, R. dsRNA-mediated gene silencing in cultured Drosophila cells: a tissue culture model for the analysis of RNA interference. Gene 252, 95–105 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Misquitta, L. & Paterson, B. Targeted disruption of gene function in Drosophila by RNA interference (RNA-i): a role for nautilus in embryonic somatic muscle formation. Proc. Natl Acad. Sci. USA 96, 1451–1456 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kennerdell, J. R. & Carthew, R. W. HeriTable gene silencing in Drosophila using double-stranded RNA. Nature Biotechnol. 18, 896–898 (2000).Injection of dsRNA into Drosophila embryos is shown to specifically phenocopy mutations.

    Article  CAS  Google Scholar 

  62. Lam, G. & Thummel, C. S. Inducible expression of double-stranded RNA directs specific genetic interference in Drosophila. Curr. Biol. 10, 957–963 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Piccin, A. et al. Efficient and heriTable functional knock-out of an adult phenotype in Drosophila using a GAL4-driven hairpin RNA incorporating a heterologous spacer. Nucleic Acids Res. 29, E55–5 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Warren, G. & Green, R. Comparison of physical and genetic properties of palindromic DNA sequences. J. Bacteriol. 161, 1103–1111 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Fortier, E. & Belote, J. Temperature-dependent gene silencing by an expressed inverted repeat in Drosophila. Genesis 26, 240–244 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Winzeler, E. A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Fraser, A. et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408, 325–330 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Gonczy, P. et al. Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature 408, 331–336 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Piano, F., Schetter, A., Mangone, M., Stein, L. & Kemphues, K. RNAi analysis of genes expressed in the ovary of Caenorhabditis elegans. Curr. Biol. 10, 1619–1622 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Maeda, I., Kohara, Y., Yamamoto, M. & Sugimoto, A. Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi. Curr. Biol. 11, 171–176 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Mullins, M., Rio, D. C. & Rubin, G. M. Cis-acting DNA sequence requirements for P-element transposition. Genes Dev. 3, 729–738 (1989).

    Article  CAS  PubMed  Google Scholar 

  72. Kaufman, P. D. & Rio, D. C. P element transposition in vitro proceeds by a cut-and-paste mechanism and uses GTP as a cofactor. Cell 69, 27–39 (1992).

    Article  CAS  PubMed  Google Scholar 

  73. Smith, D., Wohlgemuth, J., Calvi, B. R., Franklin, I. & Gelbart, W. M. hobo enhancer trapping mutagenesis in Drosophila reveals an insertion specificity different from P elements. Genetics 135, 1063–1076 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Horn, C. & Wimmer, E. A versatile vector set for animal transgenesis. Dev. Genes Evol. 210, 630–637 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Hammond, S. M., Bernstein, E., Beach, D. & Hannon, G. J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–296 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Y. Rong and K. Golic for communicating unpublished results. M.D.A. was supported by a postdoctoral fellowship from the American Cancer Society.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink 

abnormal wing discs

Dicer

pugilist

rosy

white

FURTHER INFORMATION

Berkeley Drosophila Genome Project

Bloomington Drosophila Stock Center

Drosophila Virtual Library 

Genome, proteome and the quest for a full structure–function description of an organism 

European Drosophila Genome Project

Exelixis, Inc. EP flyStation

FlyBase

P-element Gene Disruption Project

Szeged P-insertion Mutant Stock Center

Glossary

HYPOMORPHIC

A partial loss-of-function allele, sometimes called weak or leaky.

HEMIZYGOUS

A diploid genotype that has only one copy of a particular gene, as in X-chromosome genes in a male, or when the homologous chromosome carries a deletion.

COMPOUND HETEROZYGOUS

A diploid genotype in which the two copies of a gene carry different mutations.

ENHANCER-TRAP CONSTRUCT

A transgenic construct used to identify genes that are expressed in specific tissues. When the construct inserts near a tissue-specific enhancer, the weak promoter on the construct comes under the control of the enhancer, resulting in tissue-specific expression of the reporter gene.

PLASMID RESCUE

A method for cloning DNA that flanks a transgenic construct. The construct carries a plasmid backbone and an antibiotic resistance gene. Genomic DNA from a transgenic line is restricted, circularized and transformed into bacteria. After selection for antibiotic resistance, plasmid DNA is recovered and sequenced.

WHITE MINI-GENE

A copy of the white gene in which non-essential sequences have been removed. In mini- white, either a heterologous promoter is used, or some of the cis-regulatory region is removed.

DOSAGE COMPENSATION

The process of compensating for differences in gene dosage between the sexes of organisms that use a chromosomal basis of sex determination. In Drosophila, males have one X chromosome, whereas females have two X chromosomes. Dosage compensation results in the increased expression of X-linked genes in males.

INVERSE PCR

A method for cloning DNA that flanks a known sequence. Genomic DNA is digested and ligated into circles, and is then subjected to PCR. Primers correspond to the known sequence, but point out from this sequence. In a circle that contains the known sequence, the unknown flanking sequence will be amplified.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, M., Sekelsky, J. From sequence to phenotype: reverse genetics in drosophila melanogaster. Nat Rev Genet 3, 189–198 (2002). https://doi.org/10.1038/nrg752

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg752

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing