Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging roles of tRNA in adaptive translation, signalling dynamics and disease

Key Points

  • tRNAs are key molecules for translation that deliver amino acids to the ribosome to translate genetic information in an mRNA template-directed manner. However, emerging evidence suggests that tRNAs have a more central role in a stress response paradigm by functioning directly as signalling molecules in adaptive translation.

  • tRNA composition differs markedly in various cells and tissues to meet diverse translational demands. The expression and abundance of tRNA pools are shaped by tissue-specific chromatin accessibility and RNA polymerase III interactions.

  • Stress-related tRNA functions operate on different timescales and include reprogramming covalent modifications to modulate decoding fidelity, fragmentation in the anticodon loop to interfere with translation initiation, and global tRNA depletion by deactivation of the ubiquitous CCA termini.

  • Mutations in tRNAs and in tRNA processing or modifying genes are linked to several human diseases, with some tissues affected more than others. Mitochondria generally carry a single copy of each tRNA-encoding gene and are particularly vulnerable to deleterious mutations.

  • Many human diseases (for example, cancer-related and neurodegenerative pathologies) do not have a direct mutational link to tRNAs but alter tRNA pools as a secondary effect of the disease biology.

  • A complete inventory of the tRNA pool (and tRNA fragments) in each tissue is necessary to understand tissue-specific features that modulate pathology.

Abstract

tRNAs, nexus molecules between mRNAs and proteins, have a central role in translation. Recent discoveries have revealed unprecedented complexity of tRNA biosynthesis, modification patterns, regulation and function. In this Review, we present emerging concepts regarding how tRNA abundance is dynamically regulated and how tRNAs (and their nucleolytic fragments) are centrally involved in stress signalling and adaptive translation, operating across a wide range of timescales. Mutations in tRNAs or in genes affecting tRNA biogenesis are also linked to complex human diseases with surprising heterogeneity in tissue vulnerability, and we highlight cell-specific aspects that modulate the disease penetrance of tRNA-based pathologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: tRNA biogenesis and architecture.
Figure 2: Stress-induced dynamics of tRNA pools.
Figure 3: tRNA alterations and disease.

Similar content being viewed by others

References

  1. Rodnina, M. V. & Wintermeyer, W. The ribosome as a molecular machine: the mechanism of tRNA–mRNA movement in translocation. Biochem. Soc. Trans. 39, 658–662 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Giege, R. Toward a more complete view of tRNA biology. Nature Struct. Mol. Biol. 15, 1007–1014 (2008).

    Article  CAS  Google Scholar 

  3. Gebetsberger, J. & Polacek, N. Slicing tRNAs to boost functional ncRNA diversity. RNA Biol. 10, 1798–1806 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Thompson, D. M. & Parker, R. Stressing out over tRNA cleavage. Cell 138, 215–219 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Abbott, J. A., Francklyn, C. S. & Robey-Bond, S. M. Transfer RNA and human disease. Front. Genet. 5, 158 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Blanco, S. & Frye, M. Role of RNA methyltransferases in tissue renewal and pathology. Curr. Opin. Cell Biol. 31C, 1–7 (2014).

    Article  CAS  Google Scholar 

  7. Schon, E. A., DiMauro, S. & Hirano, M. Human mitochondrial DNA: roles of inherited and somatic mutations. Nature Rev. Genet. 13, 878–890 (2012). This review highlights crucial aspects of somatic mutations in some human pathologies.

    Article  CAS  PubMed  Google Scholar 

  8. Suzuki, T., Nagao, A. & Suzuki, T. Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases. Annu. Rev. Genet. 45, 299–329 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Yao, P. & Fox, P. L. Aminoacyl-tRNA synthetases in medicine and disease. EMBO Mol. Med. 5, 332–343 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Durdevic, Z. & Schaefer, M. tRNA modifications: necessary for correct tRNA-derived fragments during the recovery from stress? Bioessays 35, 323–327 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. El Yacoubi, B., Bailly, M. & de Crecy-Lagard, V. Biosynthesis and function of posttranscriptional modifications of transfer RNAs. Annu. Rev. Genet. 46, 69–95 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Gustilo, E. M., Vendeix, F. A. & Agris, P. F. tRNA's modifications bring order to gene expression. Curr. Opin. Microbiol. 11, 134–140 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Phizicky, E. M. & Hopper, A. K. tRNA biology charges to the front. Genes Dev. 24, 1832–1860 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ibba, M. & Soll, D. Aminoacyl-tRNA synthesis. Annu. Rev. Biochem. 69, 617–650 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Ramakrishnan, V. Ribosome structure and the mechanism of translation. Cell 108, 557–572 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Lang, B. F., Gray, M. W. & Burger, G. Mitochondrial genome evolution and the origin of eukaryotes. Annu. Rev. Genet. 33, 351–397 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Ambrogelly, A., Palioura, S. & Soll, D. Natural expansion of the genetic code. Nature Chem. Biol. 3, 29–35 (2007).

    Article  CAS  Google Scholar 

  18. Chan, P. P. & Lowe, T. M. GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res. 37, D93–D97 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Iben, J. R. & Maraia, R. J. tRNA gene copy number variation in humans. Gene 536, 376–384 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Parisien, M., Wang, X. & Pan, T. Diversity of human tRNA genes from the 1000-genomes project. RNA Biol. 10, 1853–1867 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Goodenbour, J. M. & Pan, T. Diversity of tRNA genes in eukaryotes. Nucleic Acids Res. 34, 6137–6146 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kutter, C. et al. Pol III binding in six mammals shows conservation among amino acid isotypes despite divergence among tRNA genes. Nature Genet. 43, 948–955 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Thompson, M., Haeusler, R. A., Good, P. D. & Engelke, D. R. Nucleolar clustering of dispersed tRNA genes. Science 302, 1399–1401 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dong, H., Nilsson, L. & Kurland, C. G. Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates. J. Mol. Biol. 260, 649–663 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, G., Lukoszek, R., Mueller-Roeber, B. & Ignatova, Z. Different sequence signatures in the upstream regions of plant and animal tRNA genes shape distinct modes of regulation. Nucleic Acids Res. 39, 3331–3339 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Ouyang, C., Martinez, M. J., Young, L. S. & Sprague, K. U. TATA-binding protein–TATA interaction is a key determinant of differential transcription of silkworm constitutive and silk gland-specific tRNA(Ala) genes. Mol. Cell. Biol. 20, 1329–1343 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fredrick, K. & Ibba, M. How the sequence of a gene can tune its translation. Cell 141, 227–229 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang, G. & Ignatova, Z. Folding at the birth of the nascent chain: coordinating translation with co-translational folding. Curr. Opin. Struct. Biol. 21, 25–31 (2011).

    Article  PubMed  CAS  Google Scholar 

  29. Sauna, Z. E. & Kimchi-Sarfaty, C. Understanding the contribution of synonymous mutations to human disease. Nature Rev. Genet. 12, 683–691 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Zhou, M. et al. Non-optimal codon usage affects expression, structure and function of clock protein FRQ. Nature 495, 111–115 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Novoa, E. M. & Ribas de Pouplana, L. Speeding with control: codon usage, tRNAs, and ribosomes. Trends Genet. 28, 574–581 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Plotkin, J. B. & Kudla, G. Synonymous but not the same: the causes and consequences of codon bias. Nature Rev. Genet. 12, 32–42 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Novoa, E. M., Pavon-Eternod, M., Pan, T. & Ribas de Pouplana, L. A role for tRNA modifications in genome structure and codon usage. Cell 149, 202–213 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Dittmar, K. A., Goodenbour, J. M. & Pan, T. Tissue-specific differences in human transfer RNA expression. PLoS Genet. 2, e221 (2006). This paper presents quantitative assessment of tRNA abundance and reports broad variations in the tissue-specific expression of tRNA species.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Gingold, H. et al. A dual program for translation regulation in cellular proliferation and differentiation. Cell 158, 1281–1292 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Plotkin, J. B., Robins, H. & Levine, A. J. Tissue-specific codon usage and the expression of human genes. Proc. Natl Acad. Sci. USA 101, 12588–12591 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lampson, B. L. et al. Rare codons regulate KRAS oncogenesis. Curr. Biol. 23, 70–75 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Barski, A. et al. Pol II and its associated epigenetic marks are present at Pol III-transcribed noncoding RNA genes. Nature Struct. Mol. Biol. 17, 629–634 (2010).

    Article  CAS  Google Scholar 

  39. Oler, A. J. et al. Human RNA polymerase III transcriptomes and relationships to Pol II promoter chromatin and enhancer-binding factors. Nature Struct. Mol. Biol. 17, 620–628 (2010).

    Article  CAS  Google Scholar 

  40. McFarlane, R. J. & Whitehall, S. K. tRNA genes in eukaryotic genome organization and reorganization. Cell Cycle 8, 3102–3106 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Ledoux, S., Olejniczak, M. & Uhlenbeck, O. C. A sequence element that tunes Escherichia coli tRNAAlaGGC to ensure accurate decoding. Nature Struct. Mol. Biol. 16, 359–364 (2009).

    Article  CAS  Google Scholar 

  42. Wohlgemuth, I., Pohl, C., Mittelstaet, J., Konevega, A. L. & Rodnina, M. V. Evolutionary optimization of speed and accuracy of decoding on the ribosome. Phil. Trans. R. Soc. B 366, 2979–2986 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fedyunin, I. et al. tRNA concentration fine tunes protein solubility. FEBS Lett. 586, 3336–3340 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Bloom-Ackermann, Z. et al. A comprehensive tRNA deletion library unravels the genetic architecture of the tRNA pool. PLoS Genet. 10, e1004084 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Yona, A. H. et al. tRNA genes rapidly change in evolution to meet novel translational demands. Elife 2, e01339 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Geslain, R. & Pan, T. Functional analysis of human tRNA isodecoders. J. Mol. Biol. 396, 821–831 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. de Nadal, E., Ammerer, G. & Posas, F. Controlling gene expression in response to stress. Nature Rev. Genet. 12, 833–845 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Levitz, R. et al. The optional E. coli prr locus encodes a latent form of phage T4-induced anticodon nuclease. EMBO J. 9, 1383–1389 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Haiser, H. J., Karginov, F. V., Hannon, G. J. & Elliot, M. A. Developmentally regulated cleavage of tRNAs in the bacterium Streptomyces coelicolor. Nucleic Acids Res. 36, 732–741 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Hsieh, L. C., Lin, S. I., Kuo, H. F. & Chiou, T. J. Abundance of tRNA-derived small RNAs in phosphate-starved Arabidopsis roots. Plant Signal Behav. 5, 537–539 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jochl, C. et al. Small ncRNA transcriptome analysis from Aspergillus fumigatus suggests a novel mechanism for regulation of protein synthesis. Nucleic Acids Res. 36, 2677–2689 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Thompson, D. M., Lu, C., Green, P. J. & Parker, R. tRNA cleavage is a conserved response to oxidative stress in eukaryotes. RNA 14, 2095–2103 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, Q. et al. Identification and functional characterization of tRNA-derived RNA fragments (tRFs) in respiratory syncytial virus infection. Mol. Ther. 21, 368–379 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Thompson, D. M. & Parker, R. The RNase Rny1p cleaves tRNAs and promotes cell death during oxidative stress in Saccharomyces cerevisiae. J. Cell Biol. 185, 43–50 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yamasaki, S., Ivanov, P., Hu, G. F. & Anderson, P. Angiogenin cleaves tRNA and promotes stress-induced translational repression. J. Cell Biol. 185, 35–42 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Saikia, M. et al. Genome-wide identification and quantitative analysis of cleaved tRNA fragments induced by cellular stress. J. Biol. Chem. 287, 42708–42725 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Czech, A., Wende, S., Morl, M., Pan, T. & Ignatova, Z. Reversible and rapid transfer-RNA deactivation as a mechanism of translational repression in stress. PLoS Genet. 9, e1003767 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Emara, M. M. et al. Angiogenin-induced tRNA-derived stress-induced RNAs promote stress-induced stress granule assembly. J. Biol. Chem. 285, 10959–10968 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ivanov, P., Emara, M. M., Villen, J., Gygi, S. P. & Anderson, P. Angiogenin-induced tRNA fragments inhibit translation initiation. Mol. Cell 43, 613–623 (2011). This paper reports the first observation that tRNA fragments specifically displace eIF4G and eIF4F initiation factors and inhibit protein initiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang, Y. et al. Identification and characterization of an ancient class of small RNAs enriched in serum associating with active infection. J. Mol. Cell. Biol. 6, 172–174 (2014).

    Article  PubMed  Google Scholar 

  61. Durdevic, Z., Mobin, M. B., Hanna, K., Lyko, F. & Schaefer, M. The RNA methyltransferase Dnmt2 is required for efficient Dicer-2-dependent siRNA pathway activity in Drosophila. Cell Rep. 4, 931–937 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Dhahbi, J. M. et al. 5′ tRNA halves are present as abundant complexes in serum, concentrated in blood cells, and modulated by aging and calorie restriction. BMC Genomics 14, 298 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Holcik, M. & Sonenberg, N. Translational control in stress and apoptosis. Nature Rev. Mol. Cell Biol. 6, 318–327 (2005).

    Article  CAS  Google Scholar 

  64. Donnelly, N., Gorman, A. M., Gupta, S. & Samali, A. The eIF2α kinases: their structures and functions. Cell. Mol. Life Sci. 70, 3493–3511 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Whitney, M. L., Hurto, R. L., Shaheen, H. H. & Hopper, A. K. Rapid and reversible nuclear accumulation of cytoplasmic tRNA in response to nutrient availability. Mol. Biol. Cell 18, 2678–2686 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Murguia, J. R. & Serrano, R. New functions of protein kinase Gcn2 in yeast and mammals. IUBMB Life 64, 971–974 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Qiu, H. et al. Defects in tRNA processing and nuclear export induce GCN4 translation independently of phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2. Mol. Cell. Biol. 20, 2505–2516 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chan, C. T. et al. A quantitative systems approach reveals dynamic control of tRNA modifications during cellular stress. PLoS Genet. 6, e1001247 (2010). This study describes a highly sensitive mass spectrometry-based approach to simultaneously detect tRNA modification in yeast.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chan, C. T. et al. Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins. Nature Commun. 3, 937 (2012).

    Article  CAS  Google Scholar 

  70. Zinshteyn, B. & Gilbert, W. V. Loss of a conserved tRNA anticodon modification perturbs cellular signaling. PLoS Genet. 9, e1003675 (2013). Using translatome-wide analysis, this study shows that stress-induced mismodification of wobble position U34 reduces global gene expression by activating GCN4-mediated stress response and not by altered codon–anticodon pairing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Johansson, M. J., Esberg, A., Huang, B., Bjork, G. R. & Bystrom, A. S. Eukaryotic wobble uridine modifications promote a functionally redundant decoding system. Mol. Cell. Biol. 28, 3301–3312 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chen, C., Tuck, S. & Bystrom, A. S. Defects in tRNA modification associated with neurological and developmental dysfunctions in Caenorhabditis elegans elongator mutants. PLoS Genet. 5, e1000561 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Ingolia, N. T. Ribosome profiling: new views of translation, from single codons to genome scale. Nature Rev. Genet. 15, 205–213 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Miranda, I. et al. Candida albicans CUG mistranslation is a mechanism to create cell surface variation. MBio 4, e00285-13 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Wiltrout, E., Goodenbour, J. M., Frechin, M. & Pan, T. Misacylation of tRNA with methionine in Saccharomyces cerevisiae. Nucleic Acids Res. 40, 10494–10506 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Netzer, N. et al. Innate immune and chemically triggered oxidative stress modifies translational fidelity. Nature 462, 522–526 (2009). This study describes a new mechanism that protects cells against oxidative stress by misincorporation of methionine through non-Met-tRNAs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jones, T. E., Alexander, R. W. & Pan, T. Misacylation of specific nonmethionyl tRNAs by a bacterial methionyl-tRNA synthetase. Proc. Natl Acad. Sci. USA 108, 6933–6938 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bender, A., Hajieva, P. & Moosmann, B. Adaptive antioxidant methionine accumulation in respiratory chain complexes explains the use of a deviant genetic code in mitochondria. Proc. Natl Acad. Sci. USA 105, 16496–16501 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schneider, A. Mitochondrial tRNA import and its consequences for mitochondrial translation. Annu. Rev. Biochem. 80, 1033–1053 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Brandon, M. C. et al. MITOMAP: a human mitochondrial genome database — 2004 update. Nucleic Acids Res. 33, D611–D613 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Moraes, C. T. et al. A mitochondrial tRNA anticodon swap associated with a muscle disease. Nature Genet. 4, 284–288 (1993).

    Article  CAS  PubMed  Google Scholar 

  82. Flierl, A., Reichmann, H. & Seibel, P. Pathophysiology of the MELAS 3243 transition mutation. J. Biol. Chem. 272, 27189–27196 (1997).

    Article  CAS  PubMed  Google Scholar 

  83. Suzuki, T., Wada, T., Saigo, K. & Watanabe, K. Taurine as a constituent of mitochondrial tRNAs: new insights into the functions of taurine and human mitochondrial diseases. EMBO J. 21, 6581–6589 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kirino, Y. et al. Codon-specific translational defect caused by a wobble modification deficiency in mutant tRNA from a human mitochondrial disease. Proc. Natl Acad. Sci. USA 101, 15070–15075 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yasukawa, T., Suzuki, T., Ishii, N., Ohta, S. & Watanabe, K. Wobble modification defect in tRNA disturbs codon-anticodon interaction in a mitochondrial disease. EMBO J. 20, 4794–4802 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hasegawa, H., Matsuoka, T., Goto, Y. & Nonaka, I. Cytochrome-C-oxidase activity is deficient in blood-vessels of patients with myoclonus epilepsy with ragged-red fibers. Acta Neuropathol. 85, 280–284 (1993).

    Article  CAS  PubMed  Google Scholar 

  87. Naini, A. et al. Hypocitrullinemia in patients with MELAS: an insight into the “MELAS paradox”. J. Neurol. Sci. 229–230, 187–193 (2005).

    Article  PubMed  CAS  Google Scholar 

  88. Wang, S. et al. Maternally inherited essential hypertension is associated with the novel 4263A>G mutation in the mitochondrial tRNAIle gene in a large Han Chinese family. Circ. Res. 108, 862–870 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Liang, M. Hypertension as a mitochondrial and metabolic disease. Kidney Int. 80, 15–16 (2011).

    Article  PubMed  Google Scholar 

  90. Liu, Y. et al. Mitochondrial transfer RNAMet 4435A>G mutation is associated with maternally inherited hypertension in a Chinese pedigree. Hypertension 53, 1083–1090 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Ishimura, R. et al. RNA function. Ribosome stalling induced by mutation of a CNS-specific tRNA causes neurodegeneration. Science 345, 455–459 (2014). This study reports that a mutation in a nuclear-encoded tRNA gene, which is specifically expressed in the CNS, may itself be phenotypically silent but epistatically exacerbates the deleterious effect of the mutation in a partner of the ribosome recycling protein Pelota.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Karaca, E. et al. Human CLP1 mutations alter tRNA biogenesis, affecting both peripheral and central nervous system function. Cell 157, 636–650 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Schaffer, A. E. et al. CLP1 founder mutation links tRNA splicing and maturation to cerebellar development and neurodegeneration. Cell 157, 651–663 (2014). References 92 and 93, which were simultaneously published, reveal a new link between a mutation in CLP1 kinase, impairment in pre-tRNA processing and human pathology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hanada, T. et al. CLP1 links tRNA metabolism to progressive motor-neuron loss. Nature 495, 474–480 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Latour, P. et al. A major determinant for binding and aminoacylation of tRNAAla in cytoplasmic Alanyl-tRNA synthetase is mutated in dominant axonal Charcot–Marie–Tooth disease. Am. J. Hum. Genet. 86, 77–82 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Guo, M. et al. Paradox of mistranslation of serine for alanine caused by AlaRS recognition dilemma. Nature 462, 808–812 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lee, J. W. et al. Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature 443, 50–55 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Sleigh, J. N., Grice, S. J., Burgess, R. W., Talbot, K. & Cader, M. Z. Neuromuscular junction maturation defects precede impaired lower motor neuron connectivity in Charcot–Marie–Tooth type 2D mice. Hum. Mol. Genet. 23, 2639–2650 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Finsterer, J. Central nervous system manifestations of mitochondrial disorders. Acta Neurol. Scand. 114, 217–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Alazami, A. M. et al. Mutation in ADAT3, encoding adenosine deaminase acting on transfer RNA, causes intellectual disability and strabismus. J. Med. Genet. 50, 425–430 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Martinez, F. J. et al. Whole exome sequencing identifies a splicing mutation in NSUN2 as a cause of a Dubowitz-like syndrome. J. Med. Genet. 49, 380–385 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Rodriguez, V. et al. Chromosome 8 BAC array comparative genomic hybridization and expression analysis identify amplification and overexpression of TRMT12 in breast cancer. Genes Chromosomes Cancer 46, 694–707 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Blanco, S. et al. Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders. EMBO J. 33, 2020–2039 (2014). This paper shows that a mutation in a tRNA-modifying enzyme leads to mismodification of tRNAs and enhances their susceptibility to angiogenin-mediated cleavage with an enhanced effect in neuronal tissues.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Darnell, J. C. Defects in translational regulation contributing to human cognitive and behavioral disease. Curr. Opin. Genet. Dev. 21, 465–473 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wei, F. Y. et al. Deficit of tRNALys modification by Cdkal1 causes the development of type 2 diabetes in mice. J. Clin. Invest. 121, 3598–3608 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhou, B. et al. Identification of a splicing variant that regulates type 2 diabetes risk factor CDKAL1 level by a coding-independent mechanism in human. Hum. Mol. Genet. 23, 4639–4650 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Wei, F. Y. & Tomizawa, K. Functional loss of Cdkal1, a novel tRNA modification enzyme, causes the development of type 2 diabetes. Endocr. J. 58, 819–825 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Stumpf, C. R. & Ruggero, D. The cancerous translation apparatus. Curr. Opin. Genet. Dev. 21, 474–483 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. White, R. J. RNA polymerase III transcription and cancer. Oncogene 23, 3208–3216 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Pavon-Eternod, M. et al. tRNA over-expression in breast cancer and functional consequences. Nucleic Acids Res. 37, 7268–7280 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhou, Y., Goodenbour, J. M., Godley, L. A., Wickrema, A. & Pan, T. High levels of tRNA abundance and alteration of tRNA charging by bortezomib in multiple myeloma. Biochem. Biophys. Res. Commun. 385, 160–164 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Girstmair, H. et al. Depletion of cognate charged transfer RNA causes translational frameshifting within the expanded CAG stretch in huntingtin. Cell Rep. 3, 148–159 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Landwehrmeyer, G. B. et al. Huntington's disease gene: regional and cellular expression in brain of normal and affected individuals. Ann. Neurol. 37, 218–230 (1995).

    Article  CAS  PubMed  Google Scholar 

  114. Krokowski, D. et al. A self-defeating anabolic program leads to β-cell apoptosis in endoplasmic reticulum stress-induced diabetes via regulation of amino acid flux. J. Biol. Chem. 288, 17202–17213 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kim, H. & Kim, J. S. A guide to genome engineering with programmable nucleases. Nature Rev. Genet. 15, 321–334 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Puri, P. et al. Systematic identification of tRNAome and its dynamics in Lactococcus lactis. Mol. Microbiol. 93, 944–956 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Phizicky, E. M. & Alfonzo, J. D. Do all modifications benefit all tRNAs? FEBS Lett. 584, 265–271 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Suzuki, T. A complete landscape of post-transcriptional modifications in mammalian mitochondrial tRNAs. Nucleic Acids Res. 42, 7346–7357 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Torres, A. G., Batlle, E. & Ribas de Pouplana, L. Role of tRNA modifications in human diseases. Trends Mol. Med. http://dx.doi.org/10.1016/j.molmed.2014.01.008 (2014).

  120. Czerwoniec, A. et al. MODOMICS: a database of RNA modification pathways. 2008 update. Nucleic Acids Res. 37, D118–121 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Waldron, C. & Lacroute, F. Effect of growth rate on the amounts of ribosomal and transfer ribonucleic acids in yeast. J. Bacteriol. 122, 855–865 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Persson, B. C., Gustafsson, C., Berg, D. E. & Bjork, G. R. The gene for a transfer-RNA modifying enzyme, M5u54-methyltransferase, is essential for viability in Escherichia-coli. Proc. Natl Acad. Sci. USA 89, 3995–3998 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lee, T. & Feig, A. L. The RNA binding protein Hfq interacts specifically with tRNAs. RNA 14, 514–523 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Navarre, W. W. & Schneewind, O. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol. Mol. Biol. Rev. 63, 174–229 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Graciet, E. et al. Aminoacyl-transferases and the N-end rule pathway of prokaryotic/eukaryotic specificity in a human pathogen. Proc. Natl Acad. Sci. USA 103, 3078–3083 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Roy, H. & Ibba, M. RNA-dependent lipid remodeling by bacterial multiple peptide resistance factors. Proc. Natl Acad. Sci. USA 105, 4667–4672 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Jahn, D., Verkamp, E. & Soll, D. Glutamyl-transfer RNA: a precursor of heme and chlorophyll biosynthesis. Trends Biochem. Sci. 17, 215–218 (1992).

    Article  CAS  PubMed  Google Scholar 

  128. Karakozova, M. et al. Arginylation of β-actin regulates actin cytoskeleton and cell motility. Science 313, 192–196 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Hou, Y. M. & Yang, X. Regulation of cell death by transfer RNA. Antioxid. Redox Signal 19, 583–594 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Raab, J. R. et al. Human tRNA genes function as chromatin insulators. EMBO J. 31, 330–350 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Miller, S. B., Yildiz, F. Z., Lo, J. A., Wang, B. & D'Souza, V. M. A structure-based mechanism for tRNA and retroviral RNA remodelling during primer annealing. Nature 515, 591–595 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. Ruggero, K. et al. Small noncoding RNAs in cells transformed by human T-cell leukemia virus type 1: a role for a tRNA fragment as a primer for reverse transcriptase. J. Virol. 88, 3612–3622 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Sheppard, K. et al. From one amino acid to another: tRNA-dependent amino acid biosynthesis. Nucleic Acids Res. 36, 1813–1825 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Parisien, M. et al. Discovering RNA–protein interactome by using chemical context profiling of the RNA–protein interface. Cell Rep. 3, 1703–1713 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Rudinger-Thirion, J., Lescure, A., Paulus, C. & Frugier, M. Misfolded human tRNA isodecoder binds and neutralizes a 3′ UTR-embedded Alu element. Proc. Natl Acad. Sci. USA 108, E794–802 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lund, E. & Dahlberg, J. E. Proofreading and aminoacylation of tRNAs before export from the nucleus. Science 282, 2082–2085 (1998).

    Article  CAS  PubMed  Google Scholar 

  137. Smits, P. et al. Functional consequences of mitochondrial tRNA Trp and tRNA Arg mutations causing combined OXPHOS defects. Eur. J. Hum. Genet. 18, 324–329 (2010).

    Article  CAS  PubMed  Google Scholar 

  138. Levinger, L., Morl, M. & Florentz, C. Mitochondrial tRNA 3′ end metabolism and human disease. Nucleic Acids Res. 32, 5430–5441 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wittenhagen, L. M. & Kelley, S. O. Dimerization of a pathogenic human mitochondrial tRNA. Nature Struct. Biol. 9, 586–590 (2002).

    CAS  PubMed  Google Scholar 

  140. Chomyn, A., Enriquez, J. A., Micol, V., Fernandez-Silva, P. & Attardi, G. The mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episode syndrome-associated human mitochondrial tRNALeuUUR mutation causes aminoacylation deficiency and concomitant reduced association of mRNA with ribosomes. J. Biol. Chem. 275, 19198–19209 (2000).

    Article  CAS  PubMed  Google Scholar 

  141. Calvaruso, M. A. et al. New mitochondrial tRNA HIS mutation in a family with lactic acidosis and stroke-like episodes (MELAS). Mitochondrion 11, 778–782 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. Shoffner, J. M. et al. Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNALys mutation. Cell 61, 931–937 (1990).

    Article  CAS  PubMed  Google Scholar 

  143. Schaller, A. et al. Impairment of mitochondrial tRNAIle processing by a novel mutation associated with chronic progressive external ophthalmoplegia. Mitochondrion 11, 488–496 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Souilem, S. et al. A novel mitochondrial tRNAIle point mutation associated with chronic progressive external ophthalmoplegia and hyperCKemia. J. Neurol. Sci. 300, 187–190 (2011).

    Article  CAS  PubMed  Google Scholar 

  145. McFarland, R. et al. Multiple neonatal deaths due to a homoplasmic mitochondrial DNA mutation. Nature Genet. 30, 145–146 (2002).

    Article  CAS  PubMed  Google Scholar 

  146. Sacconi, S. et al. Complex neurologic syndrome associated with the G1606A mutation of mitochondrial DNA. Arch. Neurol. 59, 1013–1015 (2002).

    Article  PubMed  Google Scholar 

  147. Lynn, S. et al. Mitochondrial diabetes: investigation and identification of a novel mutation. Diabetes 47, 1800–1802 (1998).

    Article  CAS  PubMed  Google Scholar 

  148. Seneca, S. et al. A mitochondrial tRNA aspartate mutation causing isolated mitochondrial myopathy. Am. J. Med. Genet. A 137A, 170–175 (2005).

    Article  Google Scholar 

  149. Jones, C. N., Jones, C. I., Graham, W. D., Agris, P. F. & Spremulli, L. L. A disease-causing point mutation in human mitochondrial tRNAMet rsults in tRNA misfolding leading to defects in translational initiation and elongation. J. Biol. Chem. 283, 34445–34456 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Tulinius, M. et al. Leigh syndrome with cytochrome-c oxidase deficiency and a single T insertion nt 5537 in the mitochondrial tRNATrp gene. Neuropediatrics 34, 87–91 (2003).

    Article  CAS  PubMed  Google Scholar 

  151. t Hart, L. M. et al. Evidence that the mitochondrial leucyl tRNA synthetase (LARS2) gene represents a novel type 2 diabetes susceptibility gene. Diabetes 54, 1892–1895 (2005).

    Article  CAS  Google Scholar 

  152. Bonnefond, L. et al. Crystal structure of human mitochondrial tyrosyl-tRNA synthetase reveals common and idiosyncratic features. Structure 15, 1505–1516 (2007).

    Article  CAS  PubMed  Google Scholar 

  153. Scheper, G. C. et al. Mitochondrial aspartyl-tRNA synthetase deficiency causes leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation. Nature Genet. 39, 534–539 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Pierce, S. B. et al. Mutations in mitochondrial histidyl tRNA synthetase HARS2 cause ovarian dysgenesis and sensorineural hearing loss of Perrault syndrome. Proc. Natl Acad. Sci. USA 108, 6543–6548 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Begley, U. et al. A human tRNA methyltransferase 9-like protein prevents tumour growth by regulating LIN9 and HIF1-α. EMBO Mol. Med. 5, 366–383 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Pavon-Eternod, M. et al. Vaccinia and influenza A viruses select rather than adjust tRNAs to optimize translation. Nucleic Acids Res. 41, 1914–1921 (2013).

    Article  CAS  PubMed  Google Scholar 

  157. Clarke, P., Leser, J. S., Bowen, R. A. & Tyler, K. L. Virus-induced transcriptional changes in the brain include the differential expression of genes associated with interferon, apoptosis, interleukin 17 receptor A, and glutamate signaling as well as flavivirus-specific upregulation of tRNA synthetases. MBio 5, e00902–e00914 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Pavon-Eternod, M., Wei, M., Pan, T. & Kleiman, L. Profiling non-lysyl tRNAs in HIV-1. RNA 16, 267–273 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Scheper, G. C., van der Knaap, M. S. & Proud, C. G. Translation matters: protein synthesis defects in inherited disease. Nature Rev. Genet. 8, 711–723 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge careful reading of the manuscript and numerous suggestions by R. Smock and laboratory members. Work in the authors' laboratory on tRNA and translation is supported by grants from Deutsche Forschungsgemeinschaft, German Federal Ministry of Education and Research, and Marie–Curie Training Network of the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoya Ignatova.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Anticodon

Nucleotides 34, 35 and 36 of each tRNA that recognize a specific codon of mRNA.

A-site

The site of entry of the aminoacyl tRNA in the ribosome.

Codon

Three consecutive nucleotides on mRNA that encode one amino acid.

Translational frameshifting

A shift in the linear readthrough of mRNA in which the ribosome reads the second or the third nucleotide of a codon as the first nucleotide.

Wobbling

Non-Watson–Crick base pairing between the third base in the codon with the first nucleotide of the tRNA anticodon (nucleotide 34 in tRNA numbering).

tRNA isoacceptors

Different tRNA species carrying the same amino acids but with different anticodon sequences.

tRNA isodecoders

Distinct tRNA species bearing the same amino acids and anticodons but with sequence variations in the tRNA body.

Transcription factors

Proteins that bind to specific sequences in DNA and control the transcription of a gene.

Synonymous substitutions

Substitutions of nucleotides in the exons of protein-coding genes that do not change the encoded amino acid.

Codon bias

The difference in occurrence of codons encoding the same amino acid.

Paralogous genes

Genes that arose from a duplication event but have diverged from a parent copy by mutation and selection drift; they may evolve new functions.

Proteotoxic stress

A collective term to describe the intracellular stress caused by toxic protein aggregation.

tRNA isoacceptor family

A family of all tRNA isoacceptors carrying the same amino acid.

Endonuclease

An enzyme that hydrolyses the phosphodiester bond between two nucleotides in a sequence.

RNA interference

A process by which short RNA sequences block gene expression by binding to specific mRNAs to cause their destruction.

Homoplasmy

The presence of a single mitochondrial-encoded tDNA genotype in a cell.

Heteroplasmy

The presence of a mixture of more than one mitochondrial-encoded tDNA genotype in a cell.

tRNAome

The collective definition of the entire set of tRNAs expressed in a cell, a tissue or an organism at a given time.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirchner, S., Ignatova, Z. Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. Nat Rev Genet 16, 98–112 (2015). https://doi.org/10.1038/nrg3861

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3861

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing