Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A new world of Polycombs: unexpected partnerships and emerging functions

Key Points

  • Many new Polycomb repressive complex 1 (PRC1) components have been identified in mammals and Drosophila melanogaster, which results in alternative complexes that are centred on the E3 ubiquitin-protein ligase RING2; not all of these alternative complexes include a chromodomain-containing Polycomb homologue.

  • Alternative PRC2 complexes have also been discovered in mammals and D. melanogaster.

  • Although much is still unclear, some of these variant complexes may act together. Others have tissue-specific roles in differentiation.

  • Histone H2A ubiquitylation and deubiquitylation are both important for Polycomb group-mediated gene silencing.

  • Mammalian systems reveal multiple strategies of recruitment of PRC1, PRC2 and their variant complexes, including the use of non-coding RNAs, Polycomb response elements and CpG islands.

  • Mutations that affect the methylation of histone H3 lysine 27 (H3K27), as well as mutations in H3K27 itself, reveal surprising effects on both the kinetics of PRC2 function and its role in disease.

  • Enhancer of zeste homologue 2 can methylate non-histone proteins with both activating and repressing effects, which indicates its roles beyond chromatin.

Abstract

Polycomb group (PcG) proteins are epigenetic repressors that are essential for the transcriptional control of cell differentiation and development. PcG-mediated repression is associated with specific post-translational histone modifications and is thought to involve both biochemical and physical modulation of chromatin structure. Recent advances show that PcG complexes comprise a multiplicity of variants and are far more biochemically diverse than previously thought. The importance of these new PcG complexes for normal development and disease, their targeting mechanisms and their shifting roles in the course of differentiation are now the subject of investigation and the focus of this Review.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mammalian RING2 complexes.
Figure 2: Alternative enhancer of zeste complexes.
Figure 3: Targeting of Polycomb group complexes.
Figure 4: The roles of Polycomb group proteins in cancer.

Similar content being viewed by others

References

  1. Jürgens, G. A group of genes controlling the spatial expression of the bithorax complex in Drosophila. Nature 316, 153–155 (1985).

    Article  Google Scholar 

  2. Gaytán de Ayala Alonso, A. et al. Genetic screen identifies novel Polycomb group genes in Drosophila. Genetics 176, 2099–2108 (2007).

    Article  PubMed  CAS  Google Scholar 

  3. Poux, S., Kostic, C. & Pirrotta, V. Hunchback-independent silencing of late Ubx enhancers by a Polycomb group response element. EMBO J. 15, 4713–4722 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Leeb, M. et al. Polycomb complexes act redundantly to repress genomic repeats and genes. Genes Dev. 24, 265–276 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhou, W. et al. Histone H2A monoubiquitination represses transcription by inhibiting RNA polymerase II transcriptional elongation. Mol. Cell 29, 69–80 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Dellino, G. I. et al. Polycomb silencing blocks transcription initiation. Mol. Cell 13, 887–893 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Grau, D. J. et al. Compaction of chromatin by diverse Polycomb group proteins requires localized regions of high charge. Genes Dev. 25, 2210–2221 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Eskeland, R. et al. Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination. Mol. Cell 38, 452–464 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gutiérrez, L. et al. The role of the histone H2A ubiquitinase Sce in Polycomb repression. Development 139, 117–127 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Schwartz, Y. B. et al. Genome-wide analysis of Polycomb targets in Drosophila melanogaster. Nature Genet. 38, 700–705 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Lagarou, A. et al. dKDM2 couples histone H2A ubiquitylation to histone H3 demethylation during Polycomb group silencing. Genes Dev. 22, 2799–2810 (2008). This study gives the first evidence of alternative protein complexes that contain core PRC1 components.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Farcas, A. M. et al. KDM2B links the Polycomb repressive complex 1 (PRC1) to recognition of CpG islands. eLife Sciences 1, e00205 (2012).

    Article  CAS  Google Scholar 

  13. Wu, X., Johansen, J. V. & Helin, K. Fbxl10/Kdm2b recruits Polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation. Mol. Cell. 49, 1134–1146 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. He, J. et al. Kdm2b maintains murine embryonic stem cell status by recruiting PRC1 complex to CpG islands of developmental genes. Nature Cell Biol. 15, 373–384 (2013). References 12–14 shows that the zinc-finger-CxxC DNA-binding domain of KDM2B recruits a variant RING2 or RING1 complex to unmethylated CpG, thereby contributing to PcG-mediated repression in mouse embryonic stem cells.

    Article  CAS  PubMed  Google Scholar 

  15. Gao, Z. et al. PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol. Cell 45, 344–356 (2012). This key paper provides a comprehensive description of variant RING1 and RING2 protein complexes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tavares, L. et al. RYBP–PRC1 complexes mediate H2A ubiquitylation at Polycomb target sites independently of PRC2 and H3K27me3. Cell 148, 664–678 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pfau, R. et al. Members of a family of JmjC domain-containing oncoproteins immortalize embryonic fibroblasts via a JmjC domain-dependent process. Proc. Natl Acad. Sci. USA 105, 1907–1912 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tzatsos, A., Pfau, R., Kampranis, S. C. & Tsichlis, P. N. Ndy1/KDM2B immortalizes mouse embryonic fibroblasts by repressing the Ink4a/Arf locus. Proc. Natl Acad. Sci. USA 106, 2641–2646 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, R. et al. Polycomb group targeting through different binding partners of RING1B C-terminal domain. Structure 18, 966–975 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vandamme, J., Völkel, P., Rosnoblet, C., Le Faou, P. & Angrand, P.-O. Interaction proteomics analysis of Polycomb proteins defines distinct PRC1 complexes in mammalian cells. Mol. Cell. Proteomics 10, M110.002642 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Cao, R., Tsukada, Y.-I. & Zhang, Y. Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol. Cell 20, 845–854 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Wei, J., Zhai, L., Xu, J. & Wang, H. Role of Bmi1 in H2A ubiquitylation and hox gene silencing. J. Biol. Chem. 281, 22537–22544 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Wu, X. et al. Cooperation between EZH2, NSPc1-mediated histone H2A ubiquitination and Dnmt1 in HOX gene silencing. Nucleic Acids Res. 36, 3590–3599 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Morey, L. et al. Nonoverlapping functions of the Polycomb group Cbx family of proteins in embryonic stem cells. Cell Stem Cell. 10, 47–62 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. O'Loghlen, A. et al. MicroRNA regulation of Cbx7 mediates a switch of Polycomb orthologs during ESC differentiation. Cell Stem Cell. 201210, 33–46 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Klauke, K. et al. Polycomb Cbx family members mediate the balance between haematopoietic stem cell self-renewal and differentiation. Nature Cell Biol. 15, 353–362 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Iwama, A. et al. Enhanced self-renewal of hematopoietic stem cells mediated by the Polycomb gene product Bmi-1. Immunity. 21, 843–851 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. van der Lugt, N. M. et al. Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the bmi-1 proto-oncogene. Genes Dev. 8, 757–769 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Trojer, P. et al. L3MBTL2 protein acts in concert with PcG protein-mediated monoubiquitination of H2A to establish a repressive chromatin structure. Mol. Cell 42, 438–450 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ogawa, H., Ishiguro, K., Gaubatz, S., Livingston, D. M. & Nakatani, Y. A complex with chromatin modifiers that occupies E2F- and Myc-responsive genes in G0 cells. Science 296, 1132–1136 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Shen, X. et al. EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol. Cell 32, 491–502 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. O'Carroll, D. et al. The Polycomb-group gene Ezh2 is required for early mouse development. Mol. Cell. Biol. 21, 4330–4336 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ezhkova, E. et al. EZH1 and EZH2 cogovern histone H3K27 trimethylation and are essential for hair follicle homeostasis and wound repair. Genes Dev. 25, 485–498 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kuzmichev, A., Jenuwein, T., Tempst, P. & Reinberg, D. Different Ezh2-containing complexes target methylation of histone H1 or nucleosomal histone H3. Mol. Cell 14, 183–193 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Peters, A. H. F. M. et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol. Cell 12, 1577–1589 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Jung, H. R., Pasini, D., Helin, K. & Jensen, O. N. Quantitative mass spectrometry of histones H3.2 and H3.3 in Suz12-deficient mouse embryonic stem cells reveals distinct, dynamic post-translational modifications at lys-27 and lys-36. Mol. Cell. Proteomics 9, 838–850 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Voigt, P. et al. Asymmetrically modified nucleosomes. Cell 151, 181–193 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tie, F., Prasad-Sinha, J., Birve, A., Rasmuson-Lestander, Å. & Harte, P. J. A 1-megadalton ESC/E(Z) complex from Drosophila that contains Polycomblike and RPD3. Mol. Cell. Biol. 23, 3352–3362 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nekrasov, M. et al. Pcl–PRC2 is needed to generate high levels of H3-K27 trimethylation at Polycomb target genes. EMBO J. 26, 4078–4088 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sarma, K., Margueron, R., Ivanov, A., Pirrotta, V. & Reinberg, D. Ezh2 requires PHF1 to efficiently catalyze H3 lysine 27 trimethylation in vivo. Mol. Cell. Biol. 28, 2718–2731 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cao, R. et al. Role of hPHF1 in H3K27 methylation and Hox gene silencing. Mol. Cell. Biol. 28, 1862–1872 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Ballaré, C. et al. Phf19 links methylated Lys36 of histone H3 to regulation of Polycomb activity. Nature Struct. Mol. Biol. 19, 1257–1265 (2012).

    Article  CAS  Google Scholar 

  43. Cai, L. et al. An H3K36 methylation-engaging Tudor motif of Polycomb-like proteins mediates PRC2 complex targeting. Mol. Cell 49, 571–582 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Savla, U., Benes, J., Zhang, J. & Jones, R. S. Recruitment of Drosophila Polycomb-group proteins by Polycomblike, a component of a novel protein complex in larvae. Development 135, 813–817 (2008). References 39–44 combine the current knowledge of the features and roles of PRC2–PCL complexes.

    Article  CAS  PubMed  Google Scholar 

  45. Duncan, I. M. Polycomblike: a gene that appears to be required for the normal expression of the Bithorax and Antennapedia gene complexes of Drosophila melanogaster. Genetics 102, 49–70 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Papp, B. & Muller, J. Histone trimethylation and the maintenance of transcriptional ON and OFF states by trxG and PcG proteins. Genes Dev. 20, 2041–2054 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Walker, E. et al. Polycomb-like 2 associates with PRC2 and regulates rranscriptional networks during mouse embryonic stem cell self-renewal and differentiation. Cell Stem Cell 6, 153–166 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hunkapiller, J. et al. Polycomb-Like 3 promotes Polycomb repressive complex 2 binding to CpG Islands and embryonic stem cell self-renewal. PLoS Genet. 8, e1002576 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Musselman, C. A. et al. Molecular basis for H3K36me3 recognition by the Tudor domain of PHF1. Nature Struct. Mol. Biol. 19, 1266–1272 (2012).

    Article  CAS  Google Scholar 

  50. Friberg, A., Oddone, A., Klymenko, T., Müller, J. & Sattler, M. Structure of an atypical Tudor domain in the Drosophila Polycomblike protein. Protein Sci. 19, 1906–1916 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shen, X. et al. Jumonji modulates Polycomb activity and self-renewal versus differentiation of stem cells. Cell 139, 1303–1314 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Peng, J. C. et al. Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells. Cell 139, 1290–1302 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Pasini, D. et al. JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature 464, 306–310 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Li, G. et al. Jarid2 and PRC2, partners in regulating gene expression. Genes Dev. 24, 368–380 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Landeira, D. et al. Jarid2 is a PRC2 component in embryonic stem cells required for multi-lineage differentiation and recruitment of PRC1 and RNA Polymerase II to developmental regulators. Nature Cell Biol. 12, 618–624 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Herz, H.-M. et al. Polycomb repressive complex 2-dependent and -independent functions of Jarid2 in transcriptional regulation in Drosophila. Mol. Cell. Biol. 32, 1683–1693 (2012). References 51–56 outline the properties of PRC2–JARID2 complexes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Takeuchi, T. et al. Gene trap capture of a novel mouse gene, Jumonji, required for neural tube formation. Genes Dev. 9, 1211–1222 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Lee, Y. et al. Jumonji, a nuclear protein that is necessary for normal heart development. Circ. Res. 86, 932–938 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. He, A. et al. PRC2 directly methylates GATA4 and represses its transcriptional activity. Genes Dev. 26, 37–42 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Su, I.-h. et al. Polycomb group protein Ezh2 controls actin polymerization and cell signaling. Cell 121, 425–436 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Furuyama, T., Banerjee, R., Breen, T. R. & Harte, P. J. SIR2 is required for Polycomb silencing and is associated with an E(z) histone methyltransferase complex. Curr. Biol. 14, 1812–1821 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Kuzmichev, A. et al. Composition and histone substrates of Polycomb repressive group complexes change during cellular differentiation. Proc. Natl Acad. Sci. USA 102, 1859–1864 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chan, C.-S., Rastelli, L. & Pirrotta, V. A. Polycomb response element in the Ubx gene that determines an epigenetically inherited state of repression. EMBO J. 13, 2553–2564 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Müller, J. & Kassis, J. A. Polycomb response elements and targeting of Polycomb group proteins in Drosophila. Curr. Opin. Genet. Dev. 16, 476–484 (2006).

    Article  PubMed  CAS  Google Scholar 

  65. Horard, B., Tatout, C., Poux, S. & Pirrotta, V. Structure of a Polycomb response element and in vitro binding of Polycomb group complexes containing GAGA factor. Mol. Cell. Biol. 20, 3187–3197 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kahn, T. G., Schwartz, Y. B., Dellino, G. I. & Pirrotta, V. Polycomb complexes and the propagation of the methylation mark at the Drosophila Ubx gene. J. Biol. Chem. 281, 29064–29075 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Kharchenko, P. V. et al. Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. Nature 471, 480–485 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Hodgson, J. W., Argiropoulos, B. & Brock, H. W. Site-specific recognition of a 70-base-pair element containing d(GA)(n) repeats mediates bithoraxoid Polycomb group response element-dependent silencing. Mol. Cell. Biol. 21, 4528–4543 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dejardin, J. et al. Recruitment of Drosophila Polycomb group proteins to chromatin by DSP1. Nature 434, 533–538 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Ren, X., Vincenz, C. & Kerppola, T. K. Changes in the distributions and dynamics of Polycomb repressive complexes during embryonic stem cell differentiation. Mol. Cell. Biol. 28, 2884–2895 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sing, A. et al. A vertebrate Polycomb response element governs segmentation of the posterior hindbrain. Cell 138, 885–897 (2009). This paper is the first report of the mammalian PRE-like element. In contrast to D. melanogaster PREs, this element can recruit PRC1 but not PRC2.

    Article  CAS  PubMed  Google Scholar 

  72. Woo, C. J., Kharchenko, P. V., Daheron, L., Park, P. J. & Kingston, R. E. A region of the human HOXD cluster that confers Polycomb-group responsiveness. Cell 140, 99–110 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ku, M. et al. Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genetics 4, e1000242 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Mendenhall, E. M. et al. GC-rich sequence elements recruit PRC2 in mammalian ES cells. PLoS Genet. 6, e1001244 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Lynch, M. D. et al. An interspecies analysis reveals a key role for unmethylated CpG dinucleotides in vertebrate Polycomb complex recruitment. EMBO J. 31, 317–329 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Thomson, J. P. et al. CpG islands influence chromatin structure via the CpG-binding protein Cfp1. Nature 464, 1082–1086 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Blackledge, N. P. et al. CpG islands recruit a histone H3 lysine 36 demethylase. Mol. Cell 38, 179–190 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dietrich, N. et al. REST-mediated recruitment of Polycomb repressor complexes in mammalian cells. PLoS Genet. 8, e1002494 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Arnold, P. et al. Modeling of epigenome dynamics identifies transcription factors that mediate Polycomb targeting. Genome Res. 23, 60–73 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rinn, J. L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 1311–1323 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tsai, M.-C. et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 329, 689–693 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gupta, R. A. et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464, 1071–1076 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Schorderet, P. & Duboule, D. Structural and functional differences in the long non-coding RNA Hotair in mouse and human. PLoS Genet. 7, e1002071 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhao, J., Sun, B. K., Erwin, J. A., Song, J.-J. & Lee, J. T. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322, 750–756 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yap, K. L. et al. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by Polycomb CBX7 in transcriptional silencing of INK4a. Mol. Cell 38, 662–667 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lee, J. T. Epigenetic regulation by long noncoding RNAs. Science 338, 1435–1439 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Khalil, A. M. et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl Acad. Sci. USA 106, 11667–11672 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhao, J. et al. Genome-wide identification of Polycomb-associated RNAs by RIP–seq. Mol. Cell 40, 939–953 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kanhere, A. et al. Short RNAs are transcribed from repressed Polycomb target genes and Interact with Polycomb repressive complex-2. Mol. Cell 38, 675–688 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ebert, A. et al. Su(var) genes regulate the balance between euchromatin and heterochromatin in Drosophila. Genes Dev. 18, 2973–2983 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ketel, C. S. et al. Subunit contributions to histone methyltransferase activities of fly and worm Polycomb group complexes. Mol. Cell. Biol. 25, 6857–6868 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Schmitges, F. W. et al. Histone methylation by PRC2 is inhibited by active chromatin marks. Mol. Cell 42, 330–341 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Yuan, W. et al. H3K36 methylation antagonizes PRC2-mediated H3K27 methylation. J. Biol. Chem. 286, 7983–7989 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yuan, W. et al. Dense chromatin activates Polycomb repressive complex 2 to regulate H3 lysine 27 methylation. Science 337, 971–975 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Margueron, R. et al. Role of the Polycomb protein EED in the propagation of repressive histone marks. Nature 461, 762–767 (2009). References 92–95 report the effects of pre-existing H3K27, H3K36 and H3K4 methylation marks and of nucleosome density on the catalytic activity of PRC2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kagey, M. H., Melhuish, T. A. & Wotton, D. The Polycomb protein Pc2 is a SUMO E3. Cell 113, 127–137 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Kagey, M. H., Melhuish, T. A., Powers, S. E. & Wotton, D. Multiple activities contribute to Pc2 E3 function. EMBO J. 24, 108–119 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Zhang, H. et al. SUMO modification is required for in vivo Hox gene regulation by the Caenorhabditis elegans Polycomb group protein SOP-2. Nature Genet. 36, 507–511 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Kang, X. et al. SUMO-specific protease 2 is essential for suppression of Polycomb group protein-mediated gene silencing during embryonic development. Mol. Cell 38, 191–201 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ismail, I. H. et al. CBX4-mediated SUMO modification regulates BMI1 recruitment at sites of DNA damage. Nucleic Acids Res. 40, 5497–5510 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Voncken, J. W. et al. MAPKAP Kinase 3pK phosphorylates and regulates chromatin association of the Polycomb group protein Bmi1. J. Biol. Chem. 280, 5178–5187 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Elderkin, S. et al. A phosphorylated form of Mel-18 targets the Ring1B histone H2A ubiquitin ligase to chromatin. Mol. Cell 28, 107–120 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Schumacher, A., Faust, C. & Magnuson, T. Positional cloning of a global regulator of anterior-posterior patterning in mice. Nature 383, 250–253 (1996).

    Article  CAS  Google Scholar 

  104. Voncken, J. W. et al. Rnf2 (Ring1b) deficiency causes gastrulation arrest and cell cycle inhibition. Proc. Natl Acad. Sci. USA 100, 2468–2473 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. van Lohuizen, M. et al. Identification of cooperating oncogenes in Eμ-myc transgenic mice by provirus tagging. Cell. 65, 737–752 (1991).

    Article  CAS  PubMed  Google Scholar 

  106. Sparmann, A. & van Lohuizen, M. Polycomb silencers control cell fate, development and cancer. Nature Rev. Cancer 6, 846–856 (2006).

    Article  CAS  Google Scholar 

  107. Radulovic, V., de Haan, G. & Klauke, K. Polycomb-group proteins in hematopoietic stem cell regulation and hematopoietic neoplasms. Leukemia 27, 523–533 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Leung, C. et al. Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature 428, 337–341 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Vonlanthen, S. et al. The bmi-1 oncoprotein is differentially expressed in non-small cell lung cancer and correlates with INK4A–ARF locus expression. Br. J. Cancer 84, 1372–1376 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bruggeman, S. W. et al. Bmi1 controls tumor development in an Ink4a/Arf-independent manner in a mouse model for glioma. Cancer Cell 12, 328–341 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Gargiulo, G. et al. In vivo RNAi screen for bmi1 targets identifies TGF-β/BMP–ER stress pathways as key regulators of neural- and malignant glioma-stem cell homeostasis. Cancer Cell 23, 660–676 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Simon, J. A. & Lange, C. A. Roles of the Ezh2 histone methyltransferase in cancer epigenetics. Mut. Res. 647, 21–29 (2008).

    Article  CAS  Google Scholar 

  113. Sneeringer, C. J. et al. Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc. Natl Acad. Sci. USA 2010 107, 20980–20985 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. McCabe, M. T. et al. Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27). Proc. Natl Acad. Sci. USA 109, 2989–2994 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. McCabe, M. T. et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492, 108–112 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Knutson, S. K. et al. A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nature Chem. Biol. 8, 890–896 (2012). References 115 and 116 show that treatment with small-molecule inhibitors is a promising therapeutic strategy for lymphomas that have catalytically hyperactive variants of EZH2.

    Article  CAS  Google Scholar 

  117. Simon, C. et al. A key role for EZH2 and associated genes in mouse and human adult T-cell acute leukemia. Genes Dev. 26, 651–656 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Chan, K. M. et al. The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. Genes Dev. 27, 985–990 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lewis, P. W. et al. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340, 857–861 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Xu, K. et al. EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science 338, 1465–1469 (2012). This paper reports a surprising PRC2-independent role of EZH2 in the proliferation of castration-resistant prostate cancer cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lee, J. M. et al. EZH2 generates a methyl degron that is recognized by the DCAF1/DDB1/CUL4 E3-ubiquitin ligase complex. Mol. Cell 48, 572–586 (2012).

    Article  CAS  PubMed  Google Scholar 

  122. Shao, Z. et al. Stabilization of chromatin structure by PRC1, a Polycomb complex. Cell 98, 37–46 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Francis, N. J., Saurin, A. J., Shao, Z. & Kingston, R. E. Reconstitution of a functional core Polycomb repressive complex. Mol. Cell 8, 545–556 (2001).

    Article  CAS  PubMed  Google Scholar 

  124. Saurin, A. J., Shao, Z., Erdjument-Bromage, H., Tempst, P. & Kingston, R. E. A. Drosophila Polycomb group complex includes Zeste and dTAFII proteins. Nature 412, 655–660 (2001).

    Article  CAS  PubMed  Google Scholar 

  125. Buchwald, G. et al. Structure and E3-ligase activity of the Ring–Ring complex of Polycomb proteins Bmi1 and Ring1b. EMBO J. 25, 2465–2474 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. de Napoles, M. et al. Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev. Cell 7, 663–676 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Wang, H. et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature 431, 873–878 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Bornemann, D., Miller, E. & Simon, J. The Drosophila Polycomb group gene Sex comb on midleg (Scm) encodes a zinc finger protein with similarity to polyhomeotic protein. Development 122, 1621–1630 (1996).

    Article  CAS  PubMed  Google Scholar 

  129. Peterson, A. J. et al. A domain shared by the Polycomb group proteins Scm and Ph mediates heterotypic and homotypic interactions. Mol. Cell. Biol. 17, 6683–6692 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Cao, R. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039–1043 (2002).

    Article  CAS  PubMed  Google Scholar 

  131. Czermin, B. et al. Drosophila Enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111, 185–196 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Müller, J. et al. Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111, 197–208 (2002).

    Article  PubMed  Google Scholar 

  133. Kuzmichev, A., Nishioka, K., Erdjument-Bromage, H., Tempst, P. & Reinberg, D. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of zeste protein. Genes Dev. 22, 2893–2905 (2002).

    Article  CAS  Google Scholar 

  134. Pengelly, A. R., Copur, Ö., Jäckle, H., Herzig, A. & Müller, J. A histone mutant reproduces the phenotype caused by loss of histone-modifying factor Polycomb. Science 339, 698–699 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Cao, R. & Zhang, Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED–EZH2 complex. Mol. Cell 15, 57–67 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Kim, H., Kang, K. & Kim, J. AEBP2 as a potential targeting protein for Polycomb repression complex PRC2. Nucl. Acids Res. 37, 2940–2950 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ciferri, C. et al. Molecular architecture of human Polycomb repre ssive complex 2. eLife 1, e00005 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Klymenko, T. et al. A Polycomb group protein complex with sequence-specific DNA-binding and selective methyl-lysine-binding activities. Genes Dev. 20, 1110–1122 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Oktaba, K. et al. Dynamic regulation by Polycomb group protein complexes controls pattern formation and the cell cycle in Drosophila. Develop. Cell 15, 877–889 (2008).

    Article  CAS  Google Scholar 

  140. Mendenhall, E. M. et al. GC-rich sequence elements recruit PRC2 in mammalian ES cells. PLoS Genet. 6, e1001244 (2010). This study shows that GC-rich elements that lack transcription activator-binding sites can autonomously recruit mammalian PRC2, even when these elements are derived from bacterial genomes.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Vella, P., Barozzi, I., Cuomo, A., Bonaldi, T. & Pasini, D. Yin Yang 1 extends the Myc-related transcription factors network in embryonic stem cells. Nucleic Acids Res. 40, 3403–3418 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Scheuermann, J. C. et al. Histone H2A deubiquitinase activity of the Polycomb repressive complex PR–DUB. Nature 465, 243–247 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Yang, L. et al. ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell 147, 773–788 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Schuettengruber, B., Chourrout, D., Vervoort, M., Leblanc, B. & Cavalli, G. Genome regulation by Polycomb and Trithorax proteins. Cell 128, 735–745 (2007).

    Article  CAS  PubMed  Google Scholar 

  145. Schwartz, Y. B. and Pirrotta, V. Polycomb silencing mechanisms and the management of genomic programmes. Nature Rev. Genet. 8, 9–22 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work in the Y.B.S. laboratory is supported by grants from the Swedish Research Council, Carl Tryggers Foundation, Kempestiftelserna, Erik Philip-Sörensens Stiftelse and European Network of Excellence EpiGeneSys. The research of V.P. is supported by the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Pirrotta.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Homeotic genes

A set of related master transcription regulatory factors that regulate morphogenesis and tissue differentiation.

CpG islands

Vertebrate genomic regions of the order of 1 kb that are rich in CpG dinucleotides; they often lack 5-methylcytosine and frequently correspond to promoter regions.

Embryoid bodies

Three-dimensional aggregates of pluripotent stem cells.

Paralogues

Genes that are originated by a duplication event within the genome.

Orthologues

Genes in different species that are originated from a single gene of the last common ancestor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, Y., Pirrotta, V. A new world of Polycombs: unexpected partnerships and emerging functions. Nat Rev Genet 14, 853–864 (2013). https://doi.org/10.1038/nrg3603

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3603

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing