Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genomic and epigenetic insights into the molecular bases of heterosis

Key Points

  • Century-old genetic models are limited in their ability to explain the molecular bases of heterosis.

  • Transcriptomic, proteomic, metabolic and epigenomic studies provide new insights into parental genomic interactions, leading to regulatory and network changes and heterosis.

  • Genetic and epigenetic reprogramming of individual genes, regulatory factors and their associated networks in hybrids promotes growth, stress tolerance and fitness.

  • Key regulators can be manipulated using biochemical and transgenic approaches to alter biological networks and heterosis.

  • Although heterosis is most extensively studied in plants, the principles uncovered in plants are likely to apply more broadly across organisms.

Abstract

Heterosis, also known as hybrid vigour, is widespread in plants and animals, but the molecular bases for this phenomenon remain elusive. Recent studies in hybrids and allopolyploids using transcriptomic, proteomic, metabolomic, epigenomic and systems biology approaches have provided new insights. Emerging genomic and epigenetic perspectives suggest that heterosis arises from allelic interactions between parental genomes, leading to altered programming of genes that promote the growth, stress tolerance and fitness of hybrids. For example, epigenetic modifications of key regulatory genes in hybrids and allopolyploids can alter complex regulatory networks of physiology and metabolism, thus modulating biomass and leading to heterosis. The conceptual advances could help to improve plant and animal productivity through the manipulation of heterosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Heterosis and additive and non-additive gene expression.
Figure 2: Growth vigour in plant hybrids.
Figure 3: Molecular changes at epigenetic, genomic, proteomic and metabolic levels lead to heterosis traits.
Figure 4: A regulatory network of the circadian clock in Arabidopsis thaliana
Figure 5: Models for altered clock gene expression.
Figure 6: A model for small RNAs in the allelic expression of genes and transposable elements in hybrids and allopolyploids.

Similar content being viewed by others

References

  1. Reed, H. S. A Short History of the Plant Sciences 323 (Ronald Proess Co., 1942).

    Google Scholar 

  2. Darwin, C. R. The Effects of Cross- and Self-fertilisation in the Vegetable Kingdom, (John Murry, London, 1876).

    Google Scholar 

  3. Lippman, Z. B. & Zamir, D. Heterosis: revisiting the magic. Trends Genet. 23, 60–66 (2007).

    CAS  PubMed  Google Scholar 

  4. Birchler, J. A., Auger, D. L. & Riddle, N. C. In search of the molecular basis of heterosis. Plant Cell 15, 2236–2239 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen, Z. J. Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci. 15, 57–71 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hochholdinger, F. & Hoecker, N. Towards the molecular basis of heterosis. Trends Plant Sci. 12, 427–432 (2007).

    CAS  PubMed  Google Scholar 

  7. Kaeppler, S. Heterosis: many genes, many mechanisms - end the search for an undiscovered unifying theory. ISRN Bot. 2012, 682824 (2012).

    Google Scholar 

  8. Goff, S. A. A unifying theory for general multigenic heterosis: energy efficiency, protein metabolism, and implications for molecular breeding. New Phytol. 189, 923–937 (2011).

    CAS  PubMed  Google Scholar 

  9. Chen, Z. J. & Birchler, J. A. Polyploid and Hybrid Genomics, (Wiley-Blackwell, 2013).

    Google Scholar 

  10. Birchler, J. A., Yao, H., Chudalayandi, S., Vaiman, D. & Veitia, R. A. Heterosis. Plant Cell 22, 2105–2112 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Shull, G. H. What Is “heterosis”? Genetics 33, 439–446 (1948).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Crow, J. F. 90 years ago: the beginning of hybrid maize. Genetics 148, 923–928 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Duvick, D. N. Biotechnology in the 1930s: the development of hybrid maize. Nature Rev. Genet. 2, 69–74 (2001).

    CAS  PubMed  Google Scholar 

  14. Charlesworth, D. & Willis, J. H. The genetics of inbreeding depression. Nature Rev. Genet. 10, 783–796 (2009).

    CAS  PubMed  Google Scholar 

  15. Ng, D. W., Lu, J. & Chen, Z. J. Big roles for small RNAs in polyploidy, hybrid vigor, and hybrid incompatibility. Curr. Opin. Plant Biol. 15, 154–161 (2012).

    CAS  PubMed  Google Scholar 

  16. Bomblies, K. & Weigel, D. Hybrid necrosis: autoimmunity as a potential gene-flow barrier in plant species. Nature Rev. Genet. 8, 382–393 (2007).

    CAS  PubMed  Google Scholar 

  17. Schnable, P. S. & Springer, N. M. Progress toward understanding heterosis in crop plants. Ann. Rev. Plant Biol. 64, 71–88 (2013).

    CAS  Google Scholar 

  18. Mingroni, M. A. Resolving the IQ paradox: heterosis as a cause of the Flynn effect and other trends. Psychol. Rev. 114, 806–829 (2007).

    PubMed  Google Scholar 

  19. Woodley, M. A. Heterosis doesn't cause the Flynn effect: a critical examination of Mingroni (2007). Psychol. Rev. 118, 689–693 (2011).

    PubMed  Google Scholar 

  20. Koziel, S., Danel, D. P. & Zareba, M. Isolation by distance between spouses and its effects on children's growth in height. Am. J. Phys. Anthropol. 146, 14–19 (2011).

    PubMed  Google Scholar 

  21. Lewis, M. B. Why are mixed-race people perceived as more attractive? Perception 39, 136–138 (2010).

    PubMed  Google Scholar 

  22. Cassady, J. P., Young, L. D. & Leymaster, K. A. Heterosis and recombination effects on pig reproductive traits. J. Anim. Sci. 80, 2303–2315 (2002).

    CAS  PubMed  Google Scholar 

  23. Sagebiel, J. A. et al. Effect of heterosis and maternal influence on gestation length and birth weight in reciprocal crosses among Angus, Charolais and Hereford cattle. J. Anim. Sci. 37, 1273–1278 (1973).

    CAS  PubMed  Google Scholar 

  24. Ishikawa, A. Mapping an overdominant quantitative trait locus for heterosis of body weight in mice. J. Hered. 100, 501–504 (2009).

    CAS  PubMed  Google Scholar 

  25. Steinmetz, L. M. et al. Dissecting the architecture of a quantitative trait locus in yeast. Nature 416, 326–330 (2002). A seminal study that mapped and cloned a QTL (containing three linked genes) that is associated with high-temperature growth vigour in hybrid yeast strains. However, neither the expression level nor the complementation of any gene within the locus could account for the growth phenotype.

    CAS  PubMed  Google Scholar 

  26. Comai, L. The advantages and disadvantages of being polyploid. Nature Rev. Genet. 6, 836–846 (2005).

    CAS  PubMed  Google Scholar 

  27. Chen, Z. J. Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu. Rev. Plant Biol. 58, 377–406 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Shen, H. et al. Genome-wide analysis of DNA methylation and gene expression changes in two Arabidopsis ecotypes and their reciprocal hybrids. Plant Cell 24, 875–892 (2012). A comprehensive study using genome-wide analyses of small RNA, mRNA and methylome data in hybrids relative to the parents. In the hybrids, the authors found increased levels of small RNAs and DNA methylation and the repression of some genes.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Groszmann, M. et al. Changes in 24-nt siRNA levels in Arabidopsis hybrids suggest an epigenetic contribution to hybrid vigor. Proc. Natl Acad. Sci. USA 108, 2617–2622 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Meyer, R. C. et al. Heterosis manifestation during early Arabidopsis seedling development is characterized by intermediate gene expression and enhanced metabolic activity in the hybrids. Plant J. 71, 669–683 (2012). An extensive study of gene expression, metabolites and biomass in the seedlings of hybrids during the early stages of development. It suggested that there are maternal effects on metabolites early in development.

    CAS  PubMed  Google Scholar 

  31. Miller, M., Zhang, C. & Chen, Z. J. Ploidy and hybridity effects on growth vigor and gene expression in Arabidopsis thaliana hybrids and their parents. G3 2, 505–513 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Barth, S., Busimi, A. K., Friedrich Utz, H. & Melchinger, A. E. Heterosis for biomass yield and related traits in five hybrids of Arabidopsis thaliana L. Heynh. Heredity 91, 36–42 (2003).

    CAS  PubMed  Google Scholar 

  33. Meyer, R. C., Torjek, O., Becher, M. & Altmann, T. Heterosis of biomass production in Arabidopsis. Establishment during early development. Plant Physiol. 134, 1813–1823 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ozias-Akins, P. & van Dijk, P. J. Mendelian genetics of apomixis in plants. Annu. Rev. Genet. 41, 509–537 (2007).

    CAS  PubMed  Google Scholar 

  35. Marimuthu, M. P. et al. Synthetic clonal reproduction through seeds. Science 331, 876 (2011).

    CAS  PubMed  Google Scholar 

  36. Crow, J. F. Mid-century controversies in population genetics. Annu. Rev. Genet. 42, 1–16 (2008).

    CAS  PubMed  Google Scholar 

  37. East, E. M. Heterosis. Genetics 21, 375–397 (1936).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Shull, G. H. The composition of a field of maize. Amer. Breeders Assoc. Rep. 4, 296–301 (1908).

    Google Scholar 

  39. Bruce, A. B. The Mendelian theory of heredity and the augmentation of vigor. Science 32, 627–628 (1910).

    CAS  PubMed  Google Scholar 

  40. Jones, D. F. Dominance of linked factors as a means of accounting for heterosis. Genetics 2, 466–479 (1917).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Crow, J. F. Alternative hypothesis of hybrid vigor. Genetics 33, 477–487 (1948).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, L. et al. Dominance, overdominance and epistasis condition the heterosis in two heterotic rice hybrids. Genetics 180, 1725–1742 (2008).

    PubMed  PubMed Central  Google Scholar 

  43. Li, Z. K. et al. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Genetics 158, 1737–1753 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Xiao, J., Li, J., Yuan, L. & Tanksley, S. D. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics 140, 745–754 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Yu, S. B. et al. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc. Natl Acad. Sci. USA 94, 9226–9231 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhou, G. et al. Genetic composition of yield heterosis in an elite rice hybrid. Proc. Natl Acad. Sci. USA 109, 15847–15852 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Duvick, D. N. & Cassman, K. G. Post-green revolution trends in yield potential of temperate maize in the North-Central United States. Crop Sci. 39, 1622–1630 (1999).

    Google Scholar 

  48. Pauling, L. et al. Sickle cell anemia a molecular disease. Science 110, 543–548 (1949).

    CAS  PubMed  Google Scholar 

  49. Ingram, V. M. Gene mutations in human haemoglobin: the chemical difference between normal and sickle cell haemoglobin. Nature 180, 326–328 (1957).

    CAS  PubMed  Google Scholar 

  50. Redei, G. P. Single locus heterosis. Mol. Gen. Genet. 93, 164–170 (1962).

    Google Scholar 

  51. Shpak, E. D., Berthiaume, C. T., Hill, E. J. & Torii, K. U. Synergistic interaction of three ERECTA-family receptor-like kinases controls Arabidopsis organ growth and flower development by promoting cell proliferation. Development 131, 1491–1501 (2004).

    CAS  PubMed  Google Scholar 

  52. Kim, G. T. et al. The ANGUSTIFOLIA gene of Arabidopsis, a plant CtBP gene, regulates leaf-cell expansion, the arrangement of cortical microtubules in leaf cells and expression of a gene involved in cell-wall formation. EMBO J. 21, 1267–1279 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Schwartz, E. Single gene heterosis for alcohol dehydrogenase in maize: the nature of the subunit interaction. Theor. Appl. Genet. 43, 117–120 (1973).

    CAS  PubMed  Google Scholar 

  54. Krieger, U., Lippman, Z. B. & Zamir, D. The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nature Genet. 42, 459–463 (2010). A painstaking genetic study of tomato introgression lines that provided an example of single-locus heterosis. The basis of heterosis might be complicated by developmental changes and other factors that act in trans in the genetic background of these introgression lines.

    CAS  PubMed  Google Scholar 

  55. Blackman, B. K., Strasburg, J. L., Raduski, A. R., Michaels, S. D. & Rieseberg, L. H. The role of recently derived FT paralogs in sunflower domestication. Curr. Biol. 20, 629–635 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Groose, R. W., Talbert, L. E., Kojis, W. P. & Bingham, E. T. Progressive eterosis in autotetraploid alfalfa - studies using 2 types of inbreds. Crop Sci. 29, 1173–1177 (1989).

    Google Scholar 

  57. Bingham, E. T., Groose, R. W., Woodfield, D. R. & Kidwell, K. K. Complementary gene interactions in alfalfa are greater in autotetraploids than diploids. Crop Sci. 34, 823–829 (1994).

    Google Scholar 

  58. Riddle, N. C., Jiang, H., An, L., Doerge, R. W. & Birchler, J. A. Gene expression analysis at the intersection of ploidy and hybridity in maize. Theor. Appl. Genet. 120, 341–353 (2010). A microarray-based study of gene expression that dissected the effects of ploidy and hybridity on gene expression in maize hybrids at different ploidy levels.

    CAS  PubMed  Google Scholar 

  59. Yao, H., Dogra Gray, A., Auger, D. L. & Birchler, J. A. Genomic dosage effects on heterosis in triploid maize. Proc. Natl Acad. Sci. USA 110, 2665–2669 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Fujimoto, R., Taylor, J. M., Shirasawa, S., Peacock, W. J. & Dennis, E. S. Heterosis of Arabidopsis hybrids between C24 and Col is associated with increased photosynthesis capacity. Proc. Natl Acad. Sci. USA 109, 7109–7114 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Andorf, S. et al. Enriched partial correlations in genome-wide gene expression profiles of hybrids (A. thaliana): a systems biological approach towards the molecular basis of heterosis. Theor. Appl. Genet. 120, 249–259 (2010).

    CAS  PubMed  Google Scholar 

  62. He, G. et al. Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell 22, 17–33 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Swanson-Wagner, R. A. et al. All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbred parents. Proc. Natl Acad. Sci. USA 103, 6805–6810 (2006). A transcriptomic study that showed various possible modes of gene expression patterns in maize hybrids, including additivity, high- and low-parent dominance, underdominance and overdominance.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Guo, M. et al. Genome-wide transcript analysis of maize hybrids: allelic additive gene expression and yield heterosis. Theor. Appl. Genet. 113, 831–845 (2006).

    CAS  PubMed  Google Scholar 

  65. Stupar, R. M. & Springer, N. M. Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression patterns in the F1 hybrid. Genetics 173, 2199–2210 (2006). A microarray-based study of allelic gene expression in reciprocal hybrids in maize that found minimal effects of the parent-of-origin and non-additive gene expression, thus suggesting a role for additive gene expression in maize heterosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang, Z., Ni, Z., Wu, H., Nie, X. & Sun, Q. Heterosis in root development and differential gene expression between hybrids and their parental inbreds in wheat (Triticum aestivum L.). Theor. Appl. Genet. 113, 1283–1294 (2006).

    CAS  PubMed  Google Scholar 

  67. Shi, X. et al. Cis- and trans-regulatory divergence between progenitor species determines gene-expression novelty in Arabidopsis allopolyploids. Nature Commun. 3, 950 (2012). An RNA-sequencing study of allelic gene expression in Arabidopsis allotetraploids. Cis and trans effects were detected. Some of the changes were associated with DNA methylation and histone modifications.

    Google Scholar 

  68. Wang, J. et al. Genomewide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics 172, 507–517 (2006). This first genome-wide study found non-additive gene expression and genomic dominance in resynthesized Arabidopsis allopolyploids. Altered gene expression was found in several biological pathways, including energy and metabolism, stress response and phytohormonal signalling.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Flagel, L., Udall, J., Nettleton, D. & Wendel, J. Duplicate gene expression in allopolyploid Gossypium reveals two temporally distinct phases of expression evolution. BMC Biol. 6, 16 (2008).

    PubMed  PubMed Central  Google Scholar 

  70. Pumphrey, M., Bai, J., Laudencia-Chingcuanco, D., Anderson, O. & Gill, B. S. Nonadditive expression of homoeologous genes is established upon polyploidization in hexaploid wheat. Genetics 181, 1147–1157 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Qi, B. et al. Global transgenerational gene expression dynamics in two newly synthesized allohexaploid wheat (Triticum aestivum) lines. BMC Biol. 10, 3 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Hegarty, M. J. et al. Transcriptome shock after interspecific hybridization in Senecio is ameliorated by genome duplication. Curr. Biol. 16, 1652–1659 (2006).

    CAS  PubMed  Google Scholar 

  73. Buggs, R. J. et al. Transcriptomic shock generates evolutionary novelty in a newly formed, natural allopolyploid plant. Curr. Biol. 21, 551–556 (2011).

    CAS  PubMed  Google Scholar 

  74. Jackson, S. & Chen, Z. J. Genomic and expression plasticity of polyploidy. Curr. Opin. Plant Biol. 13, 153–159 (2010).

    CAS  PubMed  Google Scholar 

  75. Pikaard, C. S. The epigenetics of nucleolar dominance. Trends Genet. 16, 495–500 (2000).

    CAS  PubMed  Google Scholar 

  76. Chen, Z. J., Comai, L. & Pikaard, C. S. Gene dosage and stochastic effects determine the severity and direction of uniparental ribosomal RNA gene silencing (nucleolar dominance) in Arabidopsis allopolyploids. Proc. Natl Acad. Sci. USA 95, 14891–14896 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Comai, L. et al. Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. Plant Cell 12, 1551–1568 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang, J. et al. Stochastic and epigenetic changes of gene expression in Arabidopsis polyploids. Genetics 167, 1961–1973 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Chen, Z. J. & Pikaard, C. S. Epigenetic silencing of RNA polymerase I transcription: a role for DNA methylation and histone modification in nucleolar dominance. Genes Dev. 11, 2124–2136 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Preuss, S. B. et al. Multimegabase silencing in nucleolar dominance involves siRNA-directed DNA methylation and specific methylcytosine-binding proteins. Mol. Cell 32, 673–684 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Ni, Z. et al. Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature 457, 327–331 (2009). A breakthrough finding that linked epigenetic alteration of circadian-mediated expression networks to increased levels of photosynthesis and starch metabolism in Arabidopsis hybrids and allopolyploids. Similar changes were subsequently found in references 29, 30 and 124.

    CAS  PubMed  Google Scholar 

  82. Hovav, R. et al. The evolution of spinnable cotton fiber entailed prolonged development and a novel metabolism. PLoS Genet. 4, e25 (2008).

    PubMed  PubMed Central  Google Scholar 

  83. Guo, M. et al. Allelic variation of gene expression in maize hybrids. Plant Cell 16, 1707–1716 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Todesco, M. et al. Natural allelic variation underlying a major fitness trade-off in Arabidopsis thaliana. Nature 465, 632–636 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Tian, D., Traw, M. B., Chen, J. Q., Kreitman, M. & Bergelson, J. Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature 423, 74–77 (2003).

    CAS  PubMed  Google Scholar 

  86. Guo, H. & Ecker, J. R. The ethylene signaling pathway: new insights. Curr. Opin. Plant Biol. 7, 40–49 (2004).

    CAS  PubMed  Google Scholar 

  87. Wittkopp, P. J., Haerum, B. K. & Clark, A. G. Evolutionary changes in cis and trans gene regulation. Nature 430, 85–88 (2004).

    CAS  PubMed  Google Scholar 

  88. Tirosh, I., Reikhav, S., Levy, A. A. & Barkai, N. A yeast hybrid provides insight into the evolution of gene expression regulation. Science 324, 659–662 (2009).

    CAS  PubMed  Google Scholar 

  89. Springer, N. M. & Stupar, R. M. Allelic variation and heterosis in maize: how do two halves make more than a whole? Genome Res. 17, 264–275 (2007).

    CAS  PubMed  Google Scholar 

  90. Marcon, C. et al. Nonadditive protein accumulation patterns in maize (Zea mays L.) hybrids during embryo development. J. Proteome Res. 9, 6511–6522 (2010).

    CAS  PubMed  Google Scholar 

  91. Hoecker, N. et al. Comparison of maize (Zea mays L.) F1-hybrid and parental inbred line primary root transcriptomes suggests organ-specific patterns of nonadditive gene expression and conserved expression trends. Genetics 179, 1275–1283 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Dahal, D., Mooney, B. P. & Newton, K. J. Specific changes in total and mitochondrial proteomes are associated with higher levels of heterosis in maize hybrids. Plant J. 72, 70–83 (2012). A comprehensive proteomic study in different tissues of maize hybrids compared with the parents. It found that altered protein abundance is involved in stress responses and in primary carbon and protein metabolism.

    CAS  PubMed  Google Scholar 

  93. Wang, W. et al. Proteomic profiling of rice embryos from a hybrid rice cultivar and its parental lines. Proteomics 8, 4808–4821 (2008).

    CAS  PubMed  Google Scholar 

  94. Ng, D. W. et al. Proteomic divergence in Arabidopsis autopolyploids and allopolyploids and their progenitors. Heredity 108, 419–430 (2012).

    CAS  PubMed  Google Scholar 

  95. Meyer, R. C. et al. The metabolic signature related to high plant growth rate in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 104, 4759–4764 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Lisec, J. et al. Identification of heterotic metabolite QTL in Arabidopsis thaliana RIL and IL populations. Plant J. 59, 777–788 (2009).

    CAS  PubMed  Google Scholar 

  97. Korn, M. et al. Predicting Arabidopsis freezing tolerance and heterosis in freezing tolerance from metabolite composition. Mol. Plant 3, 224–235 (2010).

    CAS  PubMed  Google Scholar 

  98. Schauer, N. et al. Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nature Biotechnol. 24, 447–454 (2006).

    CAS  Google Scholar 

  99. Riedelsheimer, C. et al. Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nature Genet. 44, 217–220 (2012).

    CAS  PubMed  Google Scholar 

  100. Riedelsheimer, C. et al. Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. Proc. Natl Acad. Sci. USA 109, 8872–8877 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Fievet, J. B., Dillmann, C. & de Vienne, D. Systemic properties of metabolic networks lead to an epistasis-based model for heterosis. Theor. Appl. Genet. 120, 463–473 (2010).

    CAS  PubMed  Google Scholar 

  102. Steinfath, M. et al. Prediction of hybrid biomass in Arabidopsis thaliana by selected parental SNP and metabolic markers. Theor. Appl. Genet. 120, 239–247 (2010).

    PubMed  Google Scholar 

  103. Kacser, H. & Burns, J. A. The molecular basis of dominance. Genetics 97, 639–666 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Wijnen, H. & Young, M. W. Interplay of circadian clocks and metabolic rhythms. Annu. Rev. Genet. 40, 409–448 (2006).

    CAS  PubMed  Google Scholar 

  105. McClung, C. R. Plant circadian rhythms. Plant Cell 18, 792–803 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Harmer, S. L. The circadian system in higher plants. Annu. Rev. Plant Biol. 60, 357–377 (2009).

    CAS  PubMed  Google Scholar 

  107. Nagel, D. H. & Kay, S. A. Complexity in the wiring and regulation of plant circadian networks. Curr. Biol. 22, R648–R657 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. McClung, C. R. & Gutierrez, R. A. Network news: prime time for systems biology of the plant circadian clock. Curr. Opin. Genet. Dev. 20, 588–598 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Dodd, A. N. et al. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309, 630–633 (2005).

    CAS  PubMed  Google Scholar 

  110. Harmer, S. L. et al. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290, 2110–2113 (2000).

    CAS  PubMed  Google Scholar 

  111. Michael, T. P. et al. Network discovery pipeline elucidates conserved time-of-day-specific cis-regulatory modules. PLoS Genet. 4, e14 (2008).

    PubMed  PubMed Central  Google Scholar 

  112. Michael, T. P. et al. A morning-specific phytohormone gene expression program underlying rhythmic plant growth. PLoS Biol. 6, e225 (2008).

    PubMed  PubMed Central  Google Scholar 

  113. Graf, A., Schlereth, A., Stitt, M. & Smith, A. M. Circadian control of carbohydrate availability for growth in Arabidopsis plants at night. Proc. Natl Acad. Sci. USA 107, 9458–9463 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Cross, J. M. et al. Variation of enzyme activities and metabolite levels in 24 Arabidopsis accessions growing in carbon-limited conditions. Plant Physiol. 142, 1574–1588 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Sulpice, R. et al. Starch as a major integrator in the regulation of plant growth. Proc. Natl Acad. Sci. USA 106, 10348–10353 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Song, G. S. et al. Comparative transcriptional profiling and preliminary study on heterosis mechanism of super-hybrid rice. Mol. Plant 3, 1012–1025 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Michael, T. P. et al. Enhanced fitness conferred by naturally occurring variation in the circadian clock. Science 302, 1049–1053 (2003).

    CAS  PubMed  Google Scholar 

  118. Salathia, N., Edwards, K. & Millar, A. J. QTL for timing: a natural diversity of clock genes. Trends Genet. 18, 115–118 (2002).

    CAS  PubMed  Google Scholar 

  119. Mikkelsen, M. D. & Thomashow, M. F. A role for circadian evening elements in cold-regulated gene expression in Arabidopsis. Plant J. 60, 328–339 (2009).

    CAS  PubMed  Google Scholar 

  120. Nakamichi, N. et al. Transcript profiling of an Arabidopsis PSEUDO RESPONSE REGULATOR arrhythmic triple mutant reveals a role for the circadian clock in cold stress response. Plant Cell Physiol. 50, 447–462 (2009).

    CAS  PubMed  Google Scholar 

  121. Dong, M. A., Farre, E. M. & Thomashow, M. F. CIRCADIAN CLOCK-ASSOCIATED 1 and LATE ELONGATED HYPOCOTYL regulate expression of the C-REPEAT BINDING FACTOR (CBF) pathway in Arabidopsis. Proc. Natl Acad. Sci. USA 108, 7241–7246 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Roden, L. C. & Ingle, R. A. Lights, rhythms, infection: the role of light and the circadian clock in determining the outcome of plant-pathogen interactions. Plant Cell 21, 2546–2552 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Goodspeed, D., Chehab, E. W., Min-Venditti, A., Braam, J. & Covington, M. F. Arabidopsis synchronizes jasmonate-mediated defense with insect circadian behavior. Proc. Natl Acad. Sci. USA 109, 4674–4677 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Wang, W. et al. Timing of plant immune responses by a central circadian regulator. Nature 470, 110–114 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Turck, F., Fornara, F. & Coupland, G. Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu. Rev. Plant Biol. 59, 573–594 (2008).

    CAS  PubMed  Google Scholar 

  126. Xue, W. et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature Genet. 40, 761–767 (2008).

    CAS  PubMed  Google Scholar 

  127. Hung, H. Y. et al. ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize. Proc. Natl Acad. Sci. USA 109, E1913–E1921 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Ma, Q., Hedden, P. & Zhang, Q. Heterosis in rice seedlings: its relationship to gibberellin content and expression of gibberellin metabolism and signaling genes. Plant Physiol. 156, 1905–1920 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhang, Y., Ni, Z., Yao, Y., Nie, X. & Sun, Q. Gibberellins and heterosis of plant height in wheat (Triticum aestivum L.). BMC Genet. 8, 40 (2007).

    PubMed  PubMed Central  Google Scholar 

  130. Lee, H. S. & Chen, Z. J. Protein-coding genes are epigenetically regulated in Arabidopsis polyploids. Proc. Natl Acad. Sci. USA 98, 6753–6758 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Chen, M., Ha, M., Lackey, E., Wang, J. & Chen, Z. J. RNAi of met1 reduces DNA methylation and induces genome-specific changes in gene expression and centromeric small RNA accumulation in Arabidopsis allopolyploids. Genetics 178, 1845–1858 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Kashkush, K., Feldman, M. & Levy, A. A. Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nature Genet. 33, 102–106 (2003).

    CAS  PubMed  Google Scholar 

  133. Chandler, V. L. Paramutation's properties and puzzles. Science 330, 628–629 (2010).

    CAS  PubMed  Google Scholar 

  134. Malapeira, J., Khaitova, L. C. & Mas, P. Ordered changes in histone modifications at the core of the Arabidopsis circadian clock. Proc. Natl Acad. Sci. USA 109, 21540–21545 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Perales, M. & Mas, P. A functional link between rhythmic changes in chromatin structure and the Arabidopsis biological clock. Plant Cell 19, 2111–2123 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Asher, G. et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134, 317–328 (2008).

    CAS  PubMed  Google Scholar 

  137. Nakahata, Y. et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134, 329–340 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Nakahata, Y., Sahar, S., Astarita, G., Kaluzova, M. & Sassone-Corsi, P. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324, 654–657 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. James, A. B. et al. Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes. Plant Cell 24, 961–981 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Filichkin, S. A. et al. Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res. 20, 45–58 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Kim, E. D. & Chen, Z. J. Unstable transcripts in Arabidopsis allotetraploids are associated with nonadditive gene expression in response to abiotic and biotic stresses. PLoS ONE 6, e24251 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Wang, J., Tian, L., Lee, H. S. & Chen, Z. J. Nonadditive regulation of FRI and FLC loci mediates flowering-time variation in Arabidopsis allopolyploids. Genetics 173, 965–974 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Chapman, E. J. & Carrington, J. C. Specialization and evolution of endogenous small RNA pathways. Nature Rev. Genet. 8, 884–896 (2007).

    CAS  PubMed  Google Scholar 

  144. Chen, X. Small RNAs and their roles in plant development. Annu. Rev. Cell Dev. Biol. 25, 21–44 (2009).

    PubMed  PubMed Central  Google Scholar 

  145. Molnar, A., Melnyk, C. & Baulcombe, D. C. Silencing signals in plants: a long journey for small RNAs. Genome Biol. 12, 215 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Herr, A. J., Jensen, M. B., Dalmay, T. & Baulcombe, D. C. RNA polymerase IV directs silencing of endogenous DNA. Science 308, 118–120 (2005).

    CAS  PubMed  Google Scholar 

  147. Onodera, Y. et al. Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell 120, 613–622 (2005).

    CAS  PubMed  Google Scholar 

  148. Law, J. A. & Jacobsen, S. E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nature Rev. Genet. 11, 204–220 (2010).

    CAS  PubMed  Google Scholar 

  149. Haag, J. R. & Pikaard, C. S. Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing. Nature Rev. Mol. Cell Biol. 12, 483–492 (2011).

    CAS  Google Scholar 

  150. Wassenegger, M., Heimes, S., Riedel, L. & Sanger, H. L. RNA-directed de novo methylation of genomic sequences in plants. Cell 76, 567–576 (1994).

    CAS  PubMed  Google Scholar 

  151. Ha, M. et al. Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids. Proc. Natl Acad. Sci. USA 106, 17835–17840 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Barber, W. T. et al. Repeat associated small RNAs vary among parents and following hybridization in maize. Proc. Natl Acad. Sci. USA 109, 10444–10449 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Kenan-Eichler, M. et al. Wheat hybridization and polyploidization results in deregulation of small RNAs. Genetics 188, 263–272 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Alleman, M. et al. An RNA-dependent RNA polymerase is required for paramutation in maize. Nature 442, 295–298 (2006).

    CAS  PubMed  Google Scholar 

  155. Nobuta, K. et al. Distinct size distribution of endogeneous siRNAs in maize: Evidence from deep sequencing in the mop1-1 mutant. Proc. Natl Acad. Sci. USA 105, 14958–14963 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Lee, Y. et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051–4060 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Park, W., Li, J., Song, R., Messing, J. & Chen, X. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr. Biol. 12, 1484 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Voinnet, O. Origin, biogenesis, and activity of plant microRNAs. Cell 136, 669–687 (2009).

    CAS  PubMed  Google Scholar 

  159. Peragine, A., Yoshikawa, M., Wu, G., Albrecht, H. L. & Poethig, R. S. SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev. 18, 2368–2379 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Ng, D. W. et al. cis- and trans-Regulation of miR163 and target genes confers natural variation of secondary metabolites in two Arabidopsis species and their allopolyploids. Plant Cell 23, 1729–1740 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Shivaprasad, P. V., Dunn, R. M., Santos, B. A., Bassett, A. & Baulcombe, D. C. Extraordinary transgressive phenotypes of hybrid tomato are influenced by epigenetics and small silencing RNAs. EMBO J. 31, 257–266 (2012).

    CAS  PubMed  Google Scholar 

  162. Greaves, I. K. et al. Trans chromosomal methylation in Arabidopsis hybrids. Proc. Natl Acad. Sci. USA 109, 3570–3575 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Chodavarapu, R. K. et al. Transcriptome and methylome interactions in rice hybrids. Proc. Natl Acad. Sci. USA 109, 12040–12045 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Gore, M. A. et al. A first-generation haplotype map of maize. Science 326, 1115–1117 (2009).

    CAS  PubMed  Google Scholar 

  165. Zilberman, D., Gehring, M., Tran, R. K., Ballinger, T. & Henikoff, S. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nature Genet. 39, 61–69 (2007).

    CAS  PubMed  Google Scholar 

  166. Zhang, X. et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126, 1189–1201 (2006).

    CAS  PubMed  Google Scholar 

  167. Kurihara, Y. et al. Identification of the candidate genes regulated by RNA-directed DNA methylation in Arabidopsis. Biochem. Biophys. Res. Commun. 376, 553–557 (2008).

    CAS  PubMed  Google Scholar 

  168. Madlung, A. et al. Remodeling of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids. Plant Physiol. 129, 733–746 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    CAS  PubMed  Google Scholar 

  170. Li, B., Carey, M. & Workman, J. L. The role of chromatin during transcription. Cell 128, 707–719 (2007).

    CAS  PubMed  Google Scholar 

  171. Banaei Moghaddam, A. M. et al. Additive inheritance of histone modifications in Arabidopsis thaliana intra-specific hybrids. Plant J. 67, 691–700 (2011).

    Google Scholar 

  172. Ha, M., Ng, D. W., Li, W. H. & Chen, Z. J. Coordinated histone modifications are associated with gene expression variation within and between species. Genome Res. 21, 590–598 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Ferguson-Smith, A. C. Genomic imprinting: the emergence of an epigenetic paradigm. Nature Rev. Genet. 12, 565–575 (2011).

    CAS  PubMed  Google Scholar 

  174. Mosher, R. A. et al. Uniparental expression of PolIV-dependent siRNAs in developing endosperm of Arabidopsis. Nature 460, 283–286 (2009).

    CAS  PubMed  Google Scholar 

  175. Lu, J., Zhang, C., Baulcombe, D. C. & Chen, Z. J. Maternal siRNAs as regulators of parental genome imbalance and gene expression in endosperm of Arabidopsis seeds. Proc. Natl Acad. Sci. USA 109, 5529–5534 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Somers, D. E., Devlin, P. F. & Kay, S. A. Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science 282, 1488–1490 (1998).

    CAS  PubMed  Google Scholar 

  177. Huang, W. et al. Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator. Science 336, 75–79 (2012).

    CAS  PubMed  Google Scholar 

  178. Gendron, J. M. et al. Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor. Proc. Natl Acad. Sci. USA 109, 3167–3172 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Kim, W. Y. et al. ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449, 356–360 (2007).

    CAS  PubMed  Google Scholar 

  180. Jones, M. A. et al. Jumonji domain protein JMJD5 functions in both the plant and human circadian systems. Proc. Natl Acad. Sci. USA 107, 21623–21628 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Lu, S. X. et al. The Jumonji C domain-containing protein JMJ30 regulates period length in the Arabidopsis circadian clock. Plant Physiol. 155, 906–915 (2011).

    CAS  PubMed  Google Scholar 

  182. Portoles, S. & Mas, P. The Functional Interplay between Protein Kinase CK2 and CCA1 transcriptional activity is essential for clock temperature compensation in Arabidopsis. PLoS Genet. 6, e1001201 (2010).

    PubMed  PubMed Central  Google Scholar 

  183. Daniel, X., Sugano, S. & Tobin, E. M. CK2 phosphorylation of CCA1 is necessary for its circadian oscillator function in Arabidopsis. Proc. Natl Acad. Sci. USA 101, 3292–3297 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Nusinow, D. A. et al. The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 475, 398–402 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Pruneda-Paz, J. L., Breton, G., Para, A. & Kay, S. A. A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock. Science 323, 1481–1485 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I am grateful to former and current members of the Laboratory of Polyploidy, Heterosis and Epigenetics for their contributions to this work. I apologize for omitting or glossing over some relevant studies owing to the space limitation. Funding for the research is provided by the US National Science Foundation (grants IOS1238048, IOS1025947 and MCB1110857), the US National Institutes of Health (grant GM067015), the Cotton Incorporated (grant 07161) and the National Natural Science Foundation of China (grant No. 31290213).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Jeffrey Chen.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

FURTHER INFORMATION

Z. Jeffrey Chen's homepage

PowerPoint slides

Glossary

Allopolyploid

An organism or individual that contains two or more sets of genetically distinct chromosomes, usually through hybridization between different species. A disomic allopolyploid (also known as amphidiploid) is a type of allopolyploid in which bivalents form within each chromosome set.

Heterosis

(Also known as hybrid vigour). When hybrids display increased levels of growth, survival or fitness relative to their parents.

Apomixis

A phenomenon that transmits genes and genomes from only one parent (usually the female) to the offspring.

Dominance

A scenario in which the phenotype of alleles displays fully when they are present in the heterozygous or heterokaryotic state.

Overdominance

(Also known as monohybrid heterosis). The phenomenon of heterozygotes having a more extreme phenotype than either homozygote.

Heterozygote advantage

When the heterozygote genotype has a higher relative fitness than either the homozygote dominant or homozygote recessive genotype.

Epistasis

Non-reciprocal interactions between non-allelic genes, which cannot be easily explained by quantitative genetic models.

Pseudo-dominance

A phenomenon of overdominance that is associated with the complementation of two or more linked dominant and recessive alleles in repulsion, in which the dominant and recessive alleles are located on opposite homologues of the two genes, acting as overdominance.

Quantitative trait locus

(QTL). A genetic locus that contributes to variation in quantitative phenotypes. The effects may also vary under certain environmental conditions.

Autopolyploids

Polyploids created by the multiplication of one basic set of chromosomes (usually within the same species).

Parent-of-origin effects

Phenomena whereby the expression of a gene is dependent on the parental origin. This is usually synonymous to imprinting but could be different from imprinting in cases in which the parent-of-origin effect can be caused by cytoplasmic–nuclear gene interactions (known as maternal effects) in plants, whereas imprinting occurs between two alleles in the nucleus with the same maternal parent.

Homoeologous

Chromosomes or genes in the related species that are derived from the same ancestor and coexist in an allopolyploid.

Circadian period

The time for the completion of an oscillation cycle from one peak to the next or from one trough to the next, which is usually 24 hours.

Circadian amplitude

The difference between the level of a peak (or trough) and the mean value of a wave. For symmetrical waves, the amplitude is half the value of the range of oscillation.

Photoperiod

A light–dark cycle in a given day. Long-day plants, such as Arabidopsis thaliana and wheat, respond to lengthening days and they flower in spring. Short-day plants, such as rice and maize, respond to shortening days and flower in late summer or autumn.

Paramutation

An epigenetic phenomenon discovered in maize in which one allele influences the expression of another allele at the same locus when the two alleles are combined in a heterozygote.

Small interfering RNAs

(siRNAs). A class of 20–25 nucleotide-long small RNAs that repress gene expression or induce epigenetic processes. They are normally derived from transposable elements and repetitive DNA.

MicroRNAs

(miRNAs). A class of 21–23 nucleotide-long small RNAs that have functions in transcriptional and post-transcriptional regulation of gene expression, usually through mRNA degradation or translational repression through complementarity with the target transcripts.

Trans-acting siRNAs

(ta-siRNAs). A class of small RNAs that are generated from target mRNAs, in a process triggered by specific microRNAs (miRNAs), thus leading to a series of consecutive 21-nucleotide small interfering RNAs (siRNAs), called 'phasing'. These secondary siRNAs can act in trans to regulate their target transcripts through mRNA degradation.

RNA-directed DNA methylation

(RdDM). An epigenetic process to establish DNA methylation through the biogenesis of siRNAs that guide the methylation of homologous loci. The process is known as de novo DNA methylation and is predominately found in plants and fungi.

Genome shock

The release of genome-wide chromatin constraints of gene expression, including the activation of transposons in response to environmental changes and genomic hybridization. The term was first used by Barbara McClintock in 1984.

Imprinting

Expression of only the maternal or paternal allele of a gene in the offspring; it is an epigenetic phenomenon involving DNA methylation, chromatin modifications and non-coding RNAs.

Genome-wide association studies

(GWASs). Examinations of many common genetic variants (usually SNPs in linkage disequilibrium) of different individuals to test if any variant is associated with a phenotypic trait.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z. Genomic and epigenetic insights into the molecular bases of heterosis. Nat Rev Genet 14, 471–482 (2013). https://doi.org/10.1038/nrg3503

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3503

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research