Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Eukaryotic transcriptional dynamics: from single molecules to cell populations

Key Points

  • Single-molecule and genome-wide studies of transcription reveal the importance of dynamics for understanding the mechanisms of gene regulation.

  • A single gene can be regulated by dozens of factors interacting in a combinatorial manner. Observing all such interactions experimentally is still a daunting task, but computational models of transcription dynamics can provide insight into the underlying mechanisms.

  • Molecular models of transcription often emphasize sequential, ordered recruitment, for example in the formation of a pre-initiation complex at a promoter. These sequential processes are best-described by non-equilibrium thermodynamics, in which kinetics and energy dependence are treated explicitly.

  • Models based on non-equilibrium thermodynamics provide insight into a range of transcription phenomena, including nucleosome positioning, transcriptional bursting, and refractory periods during transcription.

Abstract

Transcriptional regulation is achieved through combinatorial interactions between regulatory elements in the human genome and a vast range of factors that modulate the recruitment and activity of RNA polymerase. Experimental approaches for studying transcription in vivo now extend from single-molecule techniques to genome-wide measurements. Parallel to these developments is the need for testable quantitative and predictive models for understanding gene regulation. These conceptual models must also provide insight into the dynamics of transcription and the variability that is observed at the single-cell level. In this Review, we discuss recent results on transcriptional regulation and also the models those results engender. We show how a non-equilibrium description informs our view of transcription by explicitly considering time- and energy-dependence at the molecular level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Points of view on transcriptional regulation.
Figure 2: Experimental techniques to study transcriptional kinetics.

Similar content being viewed by others

References

  1. McNally, J. G., Muller, W. G., Walker, D., Wolford, R. & Hager, G. L. The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science 287, 1262–1265 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Dundr, M. et al. A kinetic framework for a mammalian RNA polymerase in vivo. Science 298, 1623–1626 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Dion, M. F. et al. Dynamics of replication-independent histone turnover in budding yeast. Science 315, 1405–1408 (2007). This study measured the turnover rates of core histones on a genome-wide scale and reported dwell times on the order of tens of minutes that varied substantially between genomic locations.

    Article  CAS  PubMed  Google Scholar 

  4. Métivier, R., Penot, G., Hübner, M. R., Reid, G. & Brand, H. Estrogen receptor-α directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 115, 751–763 (2003).

    Article  PubMed  Google Scholar 

  5. Chubb, J. R., Trcek, T., Shenoy, S. M. & Singer, R. H. Transcriptional pulsing of a developmental gene. Curr. Biol. 16, 1018–1025 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Larson, D. R. What do expression dynamics tell us about the mechanism of transcription? Curr. Op. Genet. Dev. 21, 591–599 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Stamatoyannopoulos, J. A. What does our genome encode? Genome Res. 22, 1602–1611 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Johnson, D. S., Mortazavi, A., Myers, R. M. & Wold, B. Genome-wide mapping of in vivo protein-DNA interactions. Science 316, 1497–1502 (2007). The first article to report genome-wide binding of a chromatin-interacting factor by ChIP followed by high-throughput sequencing (ChIP–seq).

    Article  CAS  PubMed  Google Scholar 

  9. Rhee, H. S. & Pugh, B. F. Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution. Cell 147, 1408–1419 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. The ENCODE Project Consortium. ENCODE project [online].

  11. van Royen, M. E., Zotter, A., Ibrahim, S. M., Geverts, B. & Houtsmuller, A. B. Nuclear proteins: finding and binding target sites in chromatin. Chromosome Res. 19, 83–98 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Raj, A. & van Oudenaarden, A. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135, 216–226 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Soutoglou, E. & Talianidis, I. Coordination of PIC assembly and chromatin remodeling during differentiation-induced gene activation. Science 295, 1901–1904 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Shang, Y. F., Hu, X., DiRenzo, J., Lazar, M. A. & Brown, M. Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 103, 843–852 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Sharma, D. & Fondell, J. D. Ordered recruitment of histone acetyltransferases and the TRAP/Mediator complex to thyroid hormone-responsive promoters in vivo. Proc. Natl Acad. Sci. USA 99, 7934–7939 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Métivier, R. et al. Cyclical DNA methylation of a transcriptionally active promoter. Nature 452, 45–50 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Elf, J., Li, G. W. & Xie, X. S. Probing transcription factor dynamics at the single-molecule level in a living cell. Science 316, 1191–1194 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Larson, D. R., Zenklusen, D., Wu, B., Chao, J. A. & Singer, R. H. Real-time observation of transcription initiation and elongation on an endogenous yeast gene. Science 332, 475–478 (2011). The first direct observation of RNA synthesis in living cells at the single-transcript level, which revealed the kinetics of initiation and elongation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fuda, N. J., Ardehali, M. B. & Lis, J. T. Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nature 461, 186–192 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cairns, B. R. The logic of chromatin architecture and remodelling at promoters. Nature 461, 193–198 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Weake, V. M. & Workman, J. L. Inducible gene expression: diverse regulatory mechanisms. Nature Rev. Genet. 11, 426–437 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Buratowski, S., Hahn, S., Guarente, L. & Sharp, P. A. Five intermediate complexes in transcription initiation by RNA polymerase II. Cell 56, 549–561 (1989).

    Article  CAS  PubMed  Google Scholar 

  23. Roeder, R. G. Transcriptional regulation and the role of diverse coactivators in animal cells. FEBS Lett. 579, 909–915 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Thomas, M. C. & Chiang, C.-M. The general transcription machinery and general cofactors. Crit. Rev. Biochem. Mol. Biol. 41, 105–178 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Dieci, G. & Sentenac, A. Detours and shortcuts to transcription reinitiation. Trends Biochem. Sci. 28, 202–209 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Esnault, C. et al. Mediator-dependent recruitment of TFIIH modules in preinitiation complex. Mol. Cell 31, 337–346 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Sikorski, T. W. & Buratowski, S. The basal initiation machinery: beyond the general transcription factors. Curr. Opin. Cell Biol. 21, 344–351 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim, S., Shevde, N. K. & Pike, J. W. 1,25-Dihydroxyvitamin D3 stimulates cyclic vitamin D receptor/retinoid X receptor DNA-binding, co-activator recruitment, and histone acetylation in intact osteoblasts. J. Bone Miner. Res. 20, 305–317 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Nagaich, A. K., Walker, D. A., Wolford, R. & Hager, G. L. Rapid periodic binding and displacement of the glucocorticoid receptor during chromatin remodeling. Mol. Cell 14, 163–174 (2004). This study presented a minimalist in vitro system that recapitulated the recruitment of a remodeller to a chromatin template by GR, thus resulting in its own eviction following remodelling. This system displays an intrinsic periodic behaviour.

    Article  CAS  PubMed  Google Scholar 

  30. Qiu, Y. et al. HDAC1 acetylation is linked to progressive modulation of steroid receptor-induced gene transcription. Mol. Cell 22, 669–679 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. John, S. et al. Kinetic complexity of the global response to glucocorticoid receptor action. Endocrinology 150, 1766–1774 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, G. et al. Highly compacted chromatin formed in vitro reflects the dynamics of transcription activation in vivo. Mol. Cell 38, 41–53 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Carroll, J. S. et al. Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122, 33–43 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Laganière, J. et al. Location analysis of estrogen receptor α target promoters reveals that FOXA1 defines a domain of the estrogen response. Proc. Natl Acad. Sci. USA 102, 11651–11656 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lupien, M. et al. FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell 132, 958–970 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Welboren, W.-J. et al. ChIP-Seq of ERα and RNA polymerase II defines genes differentially responding to ligands. EMBO J. 28, 1418–1428 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hurtado, A., Holmes, K. A., Ross-Innes, C. S., Schmidt, D. & Carroll, J. S. FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nature Genet. 43, 27–33 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Kong, S. L., Li, G., Loh, S. L., Sung, W.-K. & Liu, E. T. Cellular reprogramming by the conjoint action of ERα, FOXA1, and GATA3 to a ligand-inducible growth state. Mol. Syst. Biol. 7, 526 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cirillo, L. A. et al. Binding of the winged-helix transcription factor HNF3 to a linker histone site on the nucleosome. EMBO J. 17, 244–254 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cirillo, L. A. et al. Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol. Cell 9, 279–289 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Perlmann, T., Eriksson, P. & Wrange, O. Quantitative analysis of the glucocorticoid receptor-DNA interaction at the mouse mammary tumor virus glucocorticoid response element. J. Biol. Chem. 265, 17222–17229 (1990).

    CAS  PubMed  Google Scholar 

  42. Zabel, U. & Baeuerle, P. A. Purified human IκB can rapidly dissociate the complex of the NF-κB transcription factor with its cognate DNA. Cell 61, 255–265 (1990).

    Article  CAS  PubMed  Google Scholar 

  43. Lieberman, B. A. & Nordeen, S. K. DNA intersegment transfer, how steroid receptors search for a target site. J. Biol. Chem. 272, 1061–1068 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Yie, J. M., Merika, M., Munshi, N., Chen, G. Y. & Thanos, D. The role of HMG I(Y) in the assembly and function of the IFN-β enhanceosome. EMBO J. 18, 3074–3089 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stenoien, D. L. et al. FRAP reveals that mobility of oestrogen receptor-α is ligand- and proteasome-dependent. Nature Cell Biol. 3, 15–23 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Lickwar, C. R., Mueller, F., Hanlon, S. E., McNally, J. G. & Lieb, J. D. Genome-wide protein-DNA binding dynamics suggest a molecular clutch for transcription factor function. Nature 484, 251–255 (2012). An assessment of genome-wide turnover of a transcription factor revealing that gene output correlates better with dwell time at regulatory sites than with average occupancy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Normanno, D., Dahan, M. & Darzacq, X. Intra-nuclear mobility and target search mechanisms of transcription factors: a single-molecule perspective on gene expression. Biochim. Biophys. Acta Gene Regulatory Mechs. 1819, 482–493 (2012).

    Article  CAS  Google Scholar 

  48. Darzacq, X. et al. Imaging transcription in living cells. Annu. Rev. Biophys. 38, 173–196 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sung, M.-H. & McNally, J. G. Live cell imaging and systems biology. Wiley Interdiscip. Rev. Syst. Biol. Med. 3, 167–182 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hager, G. L., McNally, J. G. & Misteli, T. Transcription dynamics. Mol. Cell 35, 741–753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mueller, F., Mazza, D., Stasevich, T. J. & McNally, J. G. FRAP and kinetic modeling in the analysis of nuclear protein dynamics: what do we really know? Curr. Opin. Cell Biol. 22, 403–411 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stasevich, T. J. et al. Cross-validating FRAP and FCS to quantify the impact of photobleaching on in vivo binding estimates. Biophys. J. 99, 3093–3101 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nalley, K., Johnston, S. A. & Kodadek, T. Proteolytic turnover of the Gal4 transcription factor is not required for function in vivo. Nature 442, 1054–1057 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Deal, R. B., Henikoff, J. G. & Henikoff, S. Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones. Science 328, 1161–1164 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rayasam, G. V. et al. Ligand-specific dynamics of the progesterone receptor in living cells and during chromatin remodeling in vitro. Mol. Cell. Biol. 25, 2406–2418 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Agresti, A., Scaffidi, P., Riva, A., Caiolfa, V. R. & Bianchi, M. E. GR and HMGB1 interact only within chromatin and influence each other's residence time. Mol. Cell 18, 109–121 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Yao, J., Munson, K. M., Webb, W. W. & Lis, J. T. Dynamics of heat shock factor association with native gene loci in living cells. Nature 442, 1050–1053 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Darzacq, X. et al. In vivo dynamics of RNA polymerase II transcription. Nature Struct. Mol. Biol. 14, 796–806 (2007).

    Article  CAS  Google Scholar 

  59. Gorski, S. A., Snyder, S. K., John, S., Grummt, I. & Misteli, T. Modulation of RNA polymerase assembly dynamics in transcriptional regulation. Mol. Cell 30, 486–497 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sprouse, R. O. et al. Regulation of TATA-binding protein dynamics in living yeast cells. Proc. Natl Acad. Sci. USA 105, 13304–13308 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Erdel, F., Schubert, T., Marth, C., Längst, G. & Rippe, K. Human ISWI chromatin-remodeling complexes sample nucleosomes via transient binding reactions and become immobilized at active sites. Proc. Natl Acad. Sci. USA 107, 19873–19878 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Harper, C. V. et al. Dynamic analysis of stochastic transcription cycles. PLoS Biol. 9, e1000607 (2011). This paper presents inference of single-gene activity from fluctuations of protein expression levels. Two identical genes monitored simultaneously in the same cell display uncorrelated periodic activity, thus indicating a cis -originating mechanism that is consistent with a molecular ratchet.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Suter, D. M. et al. Mammalian genes are transcribed with widely different bursting kinetics. Science 332, 472–474 (2011). This study presents inference of single-gene activity from fluctuations of protein expression levels. Distributions of active and inactive times in gene bursting indicate refractoriness in gene reactivation, thus reflecting a multistep sequential process.

    Article  CAS  PubMed  Google Scholar 

  64. Levsky, J. M. & Singer, R. H. Gene expression and the myth of the average cell. Trends Cell Biol. 13, 4–6 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Raj, A., Peskin, C. S., Tranchina, D., Vargas, D. Y. & Tyagi, S. Stochastic mRNA synthesis in mammalian cells. PLoS Biol. 4, e309 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Karpova, T. S. et al. Concurrent fast and slow cycling of a transcriptional activator at an endogenous promoter. Science 319, 466–469 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Voss, T. C. et al. Combinatorial probabilistic chromatin interactions produce transcriptional heterogeneity. J. Cell Sci. 122, 345–356 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Viñuelas, J. et al. Quantifying the contribution of chromatin dynamics to stochastic gene expression reveals long, locus-dependent periods between transcriptional bursts. BMC Biol. 11, 15 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. von Hippel, P. H. From “simple” DNA-protein interactions to the macromolecular machines of gene expression. Annu. Rev. Biophys. Biomol. Struct. 36, 79–105 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Field, Y. et al. Distinct modes of regulation by chromatin encoded through nucleosome positioning signals. PLoS Comput. Biol. 4, e1000216 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Raveh-Sadka, T., Levo, M. & Segal, E. Incorporating nucleosomes into thermodynamic models of transcription regulation. Genome Res. 19, 1480–1496 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Segal, E. & Widom, J. From DNA sequence to transcriptional behaviour: a quantitative approach. Nature Rev. Genet. 10, 443–456 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Lam, F. H., Steger, D. J. & O'Shea, E. K. Chromatin decouples promoter threshold from dynamic range. Nature 453, 246–250 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kingston, R. E. & Narlikar, G. J. ATP-dependent remodeling and acetylation as regulators of chromatin fluidity. Genes. Dev. 13, 2339–2352 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Partensky, P. D. & Narlikar, G. J. Chromatin remodelers act globally, sequence positions nucleosomes locally. J. Mol. Biol. 391, 12–25 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Clapier, C. R. & Cairns, B. R. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78, 273–304 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Lemaire, V., Lee, C., Lei, J., Métivier, R. & Glass, L. . Sequential recruitment and combinatorial assembling of multiprotein complexes in transcriptional activation. Phys. Rev. Lett. 96, 198102 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Coulon, A., Gandrillon, O. & Beslon, G. On the spontaneous stochastic dynamics of a single gene: complexity of the molecular interplay at the promoter. BMC Systems Biol. 4, 2 (2010).

    Article  CAS  Google Scholar 

  80. Kim, H. D. & O'Shea, E. K. A quantitative model of transcription factor-activated gene expression. Nature Struct. Mol. Biol. 15, 1192–1198 (2008).

    Article  CAS  Google Scholar 

  81. Boettiger, A. N., Ralph, P. L. & Evans, S. N. Transcriptional regulation: effects of promoter proximal pausing on speed, synchrony and reliability. PLoS Comput. Biol. 7, e1001136 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Schwabe, A., Rybakova, K. N. & Bruggeman, F. J. Transcription stochasticity of complex gene regulation models. Biophys. J. 103, 1152–1161 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dobrzynski, M. & Bruggeman, F. J. Elongation dynamics shape bursty transcription and translation. Proc. Natl Acad. Sci. USA 106, 2583–2588 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Sanchez, A. & Kondev, J. Transcriptional control of noise in gene expression. Proc. Natl Acad. Sci. USA 105, 5081–5086 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Boeger, H., Griesenbeck, J. & Kornberg, R. D. Nucleosome retention and the stochastic nature of promoter chromatin remodeling for transcription. Cell 133, 716–726 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Müller, D. & Stelling, J. Precise regulation of gene expression dynamics favors complex promoter architectures. PLoS Comput. Biol. 5, e1000279 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kaplan, N. et al. The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458, 362–366 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Valouev, A. et al. Determinants of nucleosome organization in primary human cells. Nature 474, 516–520 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yuan, G. C. et al. Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309, 626–630 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Jiang, C. & Pugh, B. F. Nucleosome positioning and gene regulation: advances through genomics. Nature Rev. Genet. 10, 161–172 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Segal, E. et al. A genomic code for nucleosome positioning. Nature 442, 772–778 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kornberg, R. D. & Stryer, L. Statistical distributions of nucleosomes: nonrandom locations by a stochastic mechanism. Nucleic Acids Res. 16, 6677–6690 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Vaillant, C., Audit, B. & Arneodo, A. Experiments confirm the influence of genome long-range correlations on nucleosome positioning. Phys. Rev. Lett. 99, 218103 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Chevereau, G., Palmeira, L., Thermes, C., Arneodo, A. & Vaillant, C. Thermodynamics of intragenic nucleosome ordering. Phys. Rev. Lett. 103, 188103 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Weiner, A., Hughes, A., Yassour, M., Rando, O. J. & Friedman, N. High-resolution nucleosome mapping reveals transcription-dependent promoter packaging. Genome Res. 20, 90–100 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang, Z. et al. A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome. Science 332, 977–980 (2011). This study reports an in vitro reconstitution of nucleosome positioning patterns over gene bodies that mimic in vivo positions. The need for ATP to obtain this result demonstrates the non-equilibrium nature of nucleosome positioning.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sprague, B. L. et al. Analysis of binding at a single spatially localized cluster of binding sites by fluorescence recovery after photobleaching. Biophys. J. 91, 1169–1191 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Linder, B. Thermodynamics and introductory statistical mechanics (LibreDigital, 2004).

    Book  Google Scholar 

  99. Elbi, C. et al. Molecular chaperones function as steroid receptor nuclear mobility factors. Proc. Natl Acad. Sci. USA 101, 2876–2881 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Stavreva, D. A., Muller, W. G., Hager, G. L., Smith, C. L. & McNally, J. G. Rapid glucocorticoid receptor exchange at a promoter is coupled to transcription and regulated by chaperones and proteasomes. Mol. Cell. Biol. 24, 2682–2697 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bosisio, D. et al. A hyper-dynamic equilibrium between promoter-bound and nucleoplasmic dimers controls NF-κB-dependent gene activity. EMBO J. 25, 798–810 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Karpova, T. S., Chen, T. Y., Sprague, B. L. & McNally, J. G. Dynamic interactions of a transcription factor with DNA are accelerated by a chromatin remodeller. EMBO Rep. 5, 1064–1070 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Johnson, T. A., Elbi, C., Parekh, B. S., Hager, G. L. & John, S. Chromatin remodeling complexes interact dynamically with a glucocorticoid receptor-regulated promoter. Mol. Biol. Cell 19, 3308–3322 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fletcher, T. M. et al. ATP-dependent mobilization of the glucocorticoid receptor during chromatin remodeling. Mol. Cell. Biol. 22, 3255–3263 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Voss, T. C. et al. Dynamic exchange at regulatory elements during chromatin remodeling underlies assisted loading mechanism. Cell 146, 544–554 (2011). A demonstration that GR never saturates its response elements and that its transient binding modifies the chromatin, thus promoting the subsequent associations of other factors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ko, M. S., Nakauchi, H. & Takahashi, N. The dose dependence of glucocorticoid-inducible gene expression results from changes in the number of transcriptionally active templates. EMBO J. 9, 2835–2842 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Walters, M. C. et al. Enhancers increase the probability but not the level of gene expression. Proc. Natl Acad. Sci. USA 92, 7125–7129 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. White, M. R. et al. Real-time analysis of the transcriptional regulation of HIV and hCMV promoters in single mammalian cells. J. Cell Sci. 108, 441–455 (1995).

    CAS  PubMed  Google Scholar 

  109. Paszek, P. et al. Population robustness arising from cellular heterogeneity. Proc. Natl Acad. Sci. USA 107, 11644–11649 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Raj, A., Rifkin, S. A., Andersen, E. & van Oudenaarden, A. Variability in gene expression underlies incomplete penetrance. Nature 463, 913–918 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Swain, P. S., Elowitz, M. B. & Siggia, E. D. Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Natl Acad. Sci. USA 99, 12795–12800 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Raser, J. M. Control of stochasticity in eukaryotic gene expression. Science 304, 1811–1814 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Paulsson, J. Summing up the noise in gene networks. Nature 427, 415–418 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Paulsson, J. Models of stochastic gene expression. Phys. Life Rev. 2, 157–175 (2005).

    Article  Google Scholar 

  115. Becskei, A., Kaufmann, B. B. & van Oudenaarden, A. Contributions of low molecule number and chromosomal positioning to stochastic gene expression. Nature Genet. 37, 937–944 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Sigal, A. et al. Variability and memory of protein levels in human cells. Nature 444, 643–646 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Skupsky, R., Burnett, J. C., Foley, J. E., Schaffer, D. V. & Arkin, A. P. HIV promoter integration site primarily modulates transcriptional burst size rather than frequency. PLoS Comput. Biol. 6, e1000952 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Stevense, M., Muramoto, T., Muller, I. & Chubb, J. R. Digital nature of the immediate-early transcriptional response. Development 137, 579–584 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Muramoto, T., Müller, I., Thomas, G., Melvin, A. & Chubb, J. R. Methylation of H3K4 Is required for inheritance of active transcriptional states. Curr. Biol. 20, 397–406 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Peccoud, J. & Ycart, B. Markovian modeling of gene-product synthesis. Theor. Popul. Biol. 48, 222–234 (1995).

    Article  Google Scholar 

  121. Lionnet, T., Wu, B., Grünwald, D., Singer, R. H. & Larson, D. R. Nuclear physics: quantitative single-cell approaches to nuclear organization and gene expression. Cold Spring Harb. Symp. Quant. Biol. 75, 113–126 (2010).

    Article  CAS  PubMed  Google Scholar 

  122. Zenklusen, D., Larson, D. R. & Singer, R. H. Single-RNA counting reveals alternative modes of gene expression in yeast. Nature Struct. Mol. Biol. 15, 1263–1271 (2008).

    Article  CAS  Google Scholar 

  123. Golding, I. Decision making in living cells: lessons from a simple system. Annu. Rev. Biophys. 40, 63–80 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Newman, J. R. S. et al. Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441, 840–846 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Gandhi, S. J., Zenklusen, D., Lionnet, T. & Singer, R. H. Transcription of functionally related constitutive genes is not coordinated. Nature Struct. Mol. Biol. 18, 27–34 (2010).

    Article  CAS  Google Scholar 

  126. So, L.-h. et al. General properties of transcriptional time series in Escherichia coli. Nature Genet. 43, 554–560 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Dunlop, M. J., Cox, R. S., Levine, J. H., Murray, R. M. & Elowitz, M. B. Regulatory activity revealed by dynamic correlations in gene expression noise. Nature Genet. 40, 1493–1498 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Bertrand, E. et al. Localization of ASH1 mRNA particles in living yeast. Mol. Cell 2, 437–445 (1998). The first observation of RNA particles in living cells using the MS2 RNA-labelling technique.

    Article  CAS  PubMed  Google Scholar 

  129. Larson, D. R., Singer, R. H. & Zenklusen, D. A single molecule view of gene expression. Trends Cell Biol. 19, 630–637 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Grünwald, D. & Singer, R. H. In vivo imaging of labelled endogenous β-actin mRNA during nucleocytoplasmic transport. Nature 467, 604–607 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Yunger, S., Rosenfeld, L., Garini, Y. & Shav-Tal, Y. Single-allele analysis of transcription kinetics in living mammalian cells. Nature Methods 7, 631–633 (2010).

    Article  CAS  PubMed  Google Scholar 

  132. Lionnet, T. et al. A transgenic mouse for in vivo detection of endogenous labeled mRNA. Nature Methods 8, 165–170 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Schmidt, U. et al. Real-time imaging of cotranscriptional splicing reveals a kinetic model that reduces noise: implications for alternative splicing regulation. J. Cell Biol. 193, 819–829 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Bar-Even, A. et al. Noise in protein expression scales with natural protein abundance. Nature Genet. 38, 636–643 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Blake, W. J., Kærn, M., Cantor, C. R. & Collins, J. J. Noise in eukaryotic gene expression. Nature 422, 633–637 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Batenchuk, C. et al. Chromosomal position effects are linked to Sir2-mediated variation in transcriptional burst size. Biophys. J. 100, L56–L58 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Singh, A., Razooky, B., Cox, C. D., Simpson, M. L. & Weinberger, L. S. Transcriptional bursting from the HIV-1 promoter is a significant source of stochastic noise in HIV-1 gene expression. Biophys. J. 98, L32–L34 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Pedraza, J. M. & Paulsson, J. Effects of molecular memory and bursting on fluctuations in gene expression. Science 319, 339–343 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Métivier, R., Reid, G. & Gannon, F. Transcription in four dimensions: nuclear receptor-directed initiation of gene expression. EMBO Rep. 7, 161–167 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Moffitt, J. R. et al. Intersubunit coordination in a homomeric ring ATPase. Nature 457, 446–451 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Arazi, A., Ben-Jacob, E. & Yechiali, U. Bridging genetic networks and queueing theory. Phys. A: Statist. Mechan. Appl. 332, 585–616 (2004).

    Article  CAS  Google Scholar 

  142. Weber, A., Liu, J. H., Collins, I. & Levens, D. TFIIH operates through an expanded proximal promoter to fine-tune c-myc expression. Mol. Cell. Biol. 25, 147–161 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kimura, H., Sugaya, K. & Cook, P. R. The transcription cycle of RNA polymerase II in living cells. J. Cell Biol. 159, 777–782 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Singh, J. & Padgett, R. A. Rates of in situ transcription and splicing in large human genes. Nature Struct. Mol. Biol. 16, 1128–1133 (2009).

    Article  CAS  Google Scholar 

  145. Hager, G. L. et al. Chromatin dynamics and the evolution of alternate promoter states. Chromosome Res. 14, 107–116 (2006).

    Article  CAS  PubMed  Google Scholar 

  146. Reid, G., Gallais, R. & Métivier, R. Marking time: the dynamic role of chromatin and covalent modification in transcription. Int. J. Biochem. Cell Biol. 41, 155–163 (2009).

    Article  CAS  PubMed  Google Scholar 

  147. Baddeley, A. Working memory: looking back and looking forward. Nature Rev. Neurosci. 4, 829–839 (2003).

    Article  CAS  Google Scholar 

  148. Ong, K. M., Blackford, J. A., Kagan, B. L., Simons, S. S. & Chow, C. C. A theoretical framework for gene induction and experimental comparisons. Proc. Natl Acad. Sci. USA 107, 7107–7112 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Kininis, M. et al. Genomic analyses of transcription factor binding, histone acetylation, and gene expression reveal mechanistically distinct classes of estrogen-regulated promoters. Mol. Cell. Biol. 27, 5090–5104 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kang, Z., Pirskanen, A., Jänne, O. A. & Palvimo, J. J. Involvement of proteasome in the dynamic assembly of the androgen receptor transcription complex. J. Biol. Chem. 277, 48366–48371 (2002).

    Article  CAS  PubMed  Google Scholar 

  151. Paszek, P., Jackson, D. A. & White, M. R. Oscillatory control of signalling molecules. Curr. Opin. Genet. Dev. 20, 670–676 (2010).

    Article  CAS  PubMed  Google Scholar 

  152. Ferrell, J. E., Tsai, T. Y.-C. & Yang, Q. Modeling the cell cycle: why do certain circuits oscillate? Cell 144, 874–885 (2011).

    Article  CAS  PubMed  Google Scholar 

  153. Thurman, R. E. et al. The accessible chromatin landscape of the human genome. Nature 488, 75–82 (2012).

    Article  CAS  Google Scholar 

  154. Schwanhäusser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).

    Article  CAS  PubMed  Google Scholar 

  155. Simons, S. S. & Chow, C. C. The road less traveled: New views of steroid receptor action from the path of dose-response curves. Mol. Cell. Endocrinol. 348, 373–382 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the members of the Transcription Imaging Consortium at the Janelia Farm Research Campus for their important contributions to the theories proposed here. We also thank B. Lewis for critical reading of the manuscript. This work is supported in part by funding from the US National Institutes of Health (NIH) grants GM57071, 84364 and 86217 to R.H.S. D.R.L. is supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel R. Larson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Chromatin remodellers

Along with chromatin modifiers, these are complexes and enzymes that affect the status of chromatin, through conformational changes (such as nucleosome displacement or eviction, or histone replacement) or by depositing or removing covalent marks on histone tails. These processes are accompanied by the hydrolysis of coenzymes, releasing chemical energy.

Chromatin immunoprecipitation

(ChIP). A method to assess the occupancy at a given genomic locus by a particular factor. It is carried out by amplifying DNA fragments that have been crosslinked to the factor of interest and pulled down using an antibody.

Re-ChIP

A modification of the chromatin immunoprecipitation (ChIP) method. By successively using several antibodies, it allows an assessment of the co-occupancy of a locus by multiple factors.

Equilibrium

For a chemical system to be at equilibrium, every reaction must occur in both directions with equal probability (or rate). Hence, a system can reach a steady state without ever being at equilibrium.

Steady state

Refers to a system that does not evolve over time. This concept may apply to various descriptions such as a set of concentrations of molecular species or the probability distribution of a set of features among a population of cells (for example, nucleosome positions on a specific promoter).

Fluorescence recovery after photobleaching

(FRAP). An experimental microscopy method to assess the mobility of molecules in living cells. In FRAP, the rate at which fluorescently labelled molecules repopulate a region of the cell that has been photobleached reflects both their diffusion and binding to chromatin.

Fluorescence correlation spectroscopy

(FCS). An experimental microscopy method to assess the mobility of molecules in living cells. In FCS, those properties are derived from the temporal fluctuations of fluorescence due to molecules entering and leaving a small optically defined volume of the cell.

MS2 and/or PP7 RNA labelling

A microscopy technique for labelling, in live cells, the transcripts from an artificial gene construct. Many molecules of fluorescent proteins (MS2 or PP7) bind each RNA on a specific cassette, thus allowing the monitoring of the number of nascent RNAs being transcribed at the gene locus over time.

Genomic nuclear run-on followed by high-throughput sequencing

(GRO-seq). This approach uses nuclear run-on methodology to map transcriptionally engaged polymerases on a genome-wide level. This approach constitutes a direct measure of transcriptional activity.

Flux

The net flux of a reaction is the difference between the rates at which it is observed to occur in one direction versus the other. When a system satisfies detailed balance, the net fluxes of all reactions are null.

Equilibrium constant

The ratio of association and dissociation rates. In an equilibrium context, this describes the affinity of a molecule for a binding site and directly relates to interaction energy. In a non-equilibrium context, such a ratio does not reflect the interaction energy and should not be called an equilibrium constant

Refractoriness

A time distribution function that displays an increasing phase for short delays is said to be refractory because — as opposed to an exponential distribution — the probability for the random event to occur is not constant but increases over time, thus shaping the distribution and reflecting the underlying biomolecular mechanics.

Memoryless

A process is memoryless if the time it takes to complete is exponentially distributed, indicating that its probability of completion does not change over time and is hence independent of the past. A succession of memoryless events (for example, sequential recruitment of factors) can lead to memory.

Single-molecule fluorescence in situ hybridization

(smFISH). A microscopy technique for labelling and visualizing RNA in fixed cells using many probes that are hybridized to a single transcript. For each cell, this technique allows the counting of the number of RNAs at the transcription site (that is, nascent RNAs) and also the number of RNAs in the cell.

Hill coefficient

A value describing the steepness of a dose–response curve at the level of transition between a low value and a high response. It reflects the level of cooperativity in the binding of the regulator and equals 1 in the case of uncooperative binding.

Metastable

A biochemical or conformational feature can be qualified as metastable if it is very unlikely to disappear spontaneously without the intervention of an energy- dependent enzymatic reaction. For example, post-transcriptional modifications of histone tails are metastable, as are certain conformational or remodelled states of chromatin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coulon, A., Chow, C., Singer, R. et al. Eukaryotic transcriptional dynamics: from single molecules to cell populations. Nat Rev Genet 14, 572–584 (2013). https://doi.org/10.1038/nrg3484

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3484

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing