Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The genetic causes of convergent evolution

Key Points

  • Convergent phenotypic evolution often results from similar genetic changes in independent species by a process known as parallel evolution.

  • Sometimes, convergent evolution results from the evolution of a genetic change that is inherited from an ancestral population or from hybridization between species, which, in this Review, are collectively called collateral evolution.

  • Whole-genome sequencing of experimental-evolution populations has provided compelling evidence for the importance of parallel evolution, and parallel evolution at specific genes has also been documented between highly divergent taxa.

  • Collateral evolution by ancestry is likely to be common in species in which a single large population is surrounded by multiple geographical isolates. Collateral evolution by hybridization has been documented only recently and is likely to be widespread in nature.

  • Multiple factors contribute to parallel evolution; it seems that genes which control key developmental decisions and those that interact most immediately with the environment are most likely to contribute to this type of evolution.

Abstract

The evolution of phenotypic similarities between species, known as convergence, illustrates that populations can respond predictably to ecological challenges. Convergence often results from similar genetic changes, which can emerge in two ways: the evolution of similar or identical mutations in independent lineages, which is termed parallel evolution; and the evolution in independent lineages of alleles that are shared among populations, which I call collateral genetic evolution. Evidence for parallel and collateral evolution has been found in many taxa, and an emerging hypothesis is that they result from the fact that mutations in some genetic targets minimize pleiotropic effects while simultaneously maximizing adaptation. If this proves correct, then the molecular changes underlying adaptation might be more predictable than has been appreciated previously.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Parallel and collateral genetic evolution.
Figure 2: The landscape of parallel evolution.
Figure 3: The structure of developmental networks can influence which genes underlie phenotypic evolution.

Similar content being viewed by others

References

  1. Endler, J. A. Natural Selection in the Wild (ed. May, R. M.) (Princeton Univ. Press, 1986).

    Google Scholar 

  2. Losos, J. B. Convergence, adaptation, and constraint. Evolution 65, 1827–1840 (2011).

    Article  PubMed  Google Scholar 

  3. Martin, A. & Orgogozo, V. The loci of repeated evolution: a catalog of genetic hotspots of phenotypic variation. Evolution 67, 1235–1250 (2013). A comprehensive survey of all published examples of repeated evolution. Many examples of parallel and collateral evolution are documented, along with a discussion of hotspot genes.

    CAS  PubMed  Google Scholar 

  4. Shaw, A. B. Adam and Eve, paleontology, and the non-objective arts. J. Paleontol. 43, 1085–1098 (1969).

    Google Scholar 

  5. Stern, D. L. Evolution, Development, and the Predictable Genome (Roberts & Co., 2010).

    Google Scholar 

  6. Gompel, N. & Prud'homme, B. The causes of repeated genetic evolution. Dev. Biol. 332, 36–47 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Christin, P. A., Weinreich, D. M. & Besnard, G. Causes and evolutionary significance of genetic convergence. Trends Genet. 26, 400–405 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Wood, T. E., Burke, J. M. & Rieseberg, L. H. Parallel genotypic adaptation: when evolution repeats itself. Genetica 123, 157–170 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Arendt, J. & Reznick, D. Convergence and parallelism reconsidered: what have we learned about the genetics of adaptation? Trends Ecol. Evol. 23, 26–32 (2008).

    Article  PubMed  Google Scholar 

  10. Levy, Y. Y. & Dean, C. The transition to flowering. Plant Cell 10, 1973–1990 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Nusslein-Volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801 (1980).

    Article  CAS  PubMed  Google Scholar 

  12. Barrett, R. D. & Schluter, D. Adaptation from standing genetic variation. Trends Ecol. Evol. 23, 38–44 (2008).

    Article  PubMed  Google Scholar 

  13. McGregor, A. P. et al. Morphological evolution through multiple cis-regulatory mutations at a single gene. Nature 448, 587–590 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Loehlin, D. W. & Werren, J. H. Evolution of shape by multiple regulatory changes to a growth gene. Science 335, 943–947 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Joron, M. et al. Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry. Nature 477, 203–206 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Conte, G. L., Arnegard, M. E., Peichel, C. L. & Schluter, D. The probability of genetic parallelism and convergence in natural populations. Proc. Biol. Sci. 279, 5039–5047 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Stern, D. L. & Orgogozo, V. The loci of evolution: how predictable is genetic evolution? Evolution 62, 2155–2177 (2008). A comprehensive survey of the genetic changes contributing to evolution, revealing multiple examples of parallel evolution and suggesting that population genetic parameters influence the predictability of genetic evolution.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Stern, D. L. & Orgogozo, V. Is genetic evolution predictable? Science 323, 746–751 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Dettman, J. R. et al. Evolutionary insight from whole-genome sequencing of experimentally evolved microbes. Mol. Ecol. 21, 2058–2077 (2012). A summary of significant discoveries from whole-genome sequencing of experimental-evolution studies in microorganisms.

    Article  CAS  PubMed  Google Scholar 

  20. Woods, R., Schneider, D., Winkworth, C. L., Riley, M. A. & Lenski, R. E. Tests of parallel molecular evolution in a long-term experiment with Escherichia coli. Proc. Natl Acad. Sci. USA 103, 9107–9112 (2006). A beautifully designed experiment to test the importance of parallel evolution in experimental-evolution populations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bull, J. J. et al. Exceptional convergent evolution in a virus. Genetics 147, 1497–1507 (1997). A paper documenting many examples of parallel evolution that involve identical substitutions in evolving viral populations.

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Wichman, H. A., Badgett, M. R., Scott, L. A., Boulianne, C. M. & Bull, J. J. Different trajectories of parallel evolution during viral adaptation. Science 285, 422–424 (1999). A study of viral populations which finds that although parallel evolution is common, the order of substitutions is less predictable.

    Article  CAS  PubMed  Google Scholar 

  23. van Ditmarsch, D. et al. Convergent evolution of hyperswarming leads to impaired biofilm formation in pathogenic bacteria. Cell Rep. 4, 1–12 (2013). A paper showing that Pseudomonas aeruginosa evolve multiple flagella when they are grown on an agar plate and that this is always because of parallel mutations in a single gene.

    Article  CAS  Google Scholar 

  24. Wong, A., Rodrigue, N. & Kassen, R. Genomics of adaptation during experimental evolution of the opportunistic pathogen Pseudomonas aeruginosa. PLoS Genet. 8, e1002928 (2012). A study demonstrating that antibiotic resistance evolves mainly through parallel substitutions, but compensation for the costs of resistance evolves through diverse mechanisms.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Conrad, T. M. et al. Whole-genome resequencing of Escherichia coli K-12 MG1655 undergoing short-term laboratory evolution in lactate minimal media reveals flexible selection of adaptive mutations. Genome Biol. 10, R118 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Blount, Z. D., Barrick, J. E., Davidson, C. J. & Lenski, R. E. Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature 489, 513–518 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Riehle, M. M., Bennett, A. F. & Long, A. D. Genetic architecture of thermal adaptation in Escherichia coli. Proc. Natl Acad. Sci. USA 98, 525–530 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tenaillon, O. et al. The molecular diversity of adaptive convergence. Science 335, 457–461 (2012). This is a genomic analysis of 115 independent populations that were evolved for 2,000 generations; it provides a comprehensive documentation of parallel evolution at multiple functional levels.

    Article  CAS  PubMed  Google Scholar 

  29. Kvitek, D. J. & Sherlock, G. Reciprocal sign epistasis between frequently experimentally evolved adaptive mutations causes a rugged fitness landscape. PLoS Genet. 7, e1002056 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Weinreich, D. M., Delaney, N. F., Depristo, M. A. & Hartl, D. L. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312, 111–114 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Shindo, C. et al. Role of FRIGIDA and FLOWERING LOCUS C in determining variation in flowering time of Arabidopsis. Plant Physiol. 138, 1163–1173 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Sucena, E. & Stern, D. L. Divergence of larval morphology between Drosophila sechellia and its sibling species caused by cis-regulatory evolution of ovo/shaven-baby. Proc. Natl Acad. Sci., USA 97, 4530–4534 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sucena, E., Delon, I., Jones, I., Payre, F. & Stern, D. L. Regulatory evolution of shavenbaby/ovo underlies multiple cases of morphological parallelism. Nature 424, 935–938 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Frankel, N. et al. Morphological evolution caused by many subtle-effect substitutions in regulatory DNA. Nature 474, 598–603 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Frankel, N., Wang, S. & Stern, D. L. Conserved regulatory architecture underlies parallel genetic changes and convergent phenotypic evolution. Proc. Natl Acad. Sci. USA 109, 20975–20979 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yatime, L. et al. Structural insights into the high affinity binding of cardiotonic steroids to the Na+,K+-ATPase. J. Struct. Biol. 174, 296–306 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Dobler, S., Dalla, S., Wagschal, V. & Agrawal, A. A. Community-wide convergent evolution in insect adaptation to toxic cardenolides by substitutions in the Na,K-ATPase. Proc. Natl Acad. Sci. USA 109, 13040–13045 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhen, Y., Aardema, M. L., Medina, E. M., Schumer, M. & Andolfatto, P. Parallel molecular evolution in an herbivore community. Science 337, 1634–1637 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Hittinger, C. T. & Carroll, S. B. Gene duplication and the adaptive evolution of a classic genetic switch. Nature 449, 677–681 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Des Marais, D. L. & Rausher, M. D. Escape from adaptive conflict after duplication in an anthocyanin pathway gene. Nature 454, 762–765 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Nasvall, J., Sun, L., Roth, J. R. & Andersson, D. I. Real-time evolution of new genes by innovation, amplification, and divergence. Science 338, 384–387 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Chen, L., DeVries, A. L. & Cheng, C. H. Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod. Proc. Natl Acad. Sci. USA 94, 3817–3822 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Christin, P. A., Salamin, N., Savolainen, V., Duvall, M. R. & Besnard, G. C4 Photosynthesis evolved in grasses via parallel adaptive genetic changes. Curr. Biol. 17, 1241–1247 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Perry, G. H. et al. Diet and the evolution of human amylase gene copy number variation. Nature Genet. 39, 1256–1260 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Colosimo, P. F. et al. Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles. Science 307, 1928–1933 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Hohenlohe, P. A., Bassham, S., Currey, M. & Cresko, W. A. Extensive linkage disequilibrium and parallel adaptive divergence across threespine stickleback genomes. Phil. Trans. R. Soc. B 367, 395–408 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hagen, D. W. Isolating mechanisms in threespine sticklebacks (Gasterosteus). J. Fish. Res. Bd. Canada 24, 1637–1692 (1967).

    Article  Google Scholar 

  48. Jones, F. C. et al. The genomic basis of adaptive evolution in threespine sticklebacks. Nature 484, 55–61 (2012). A genome-wide survey that reveals extensive evidence for collateral evolution in sticklebacks.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Hohenlohe, P. A. et al. Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet. 6, e1000862 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Chan, Y. F. et al. Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer. Science 327, 302–305 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Shapiro, M. D., Bell, M. A. & Kingsley, D. M. Parallel genetic origins of pelvic reduction in vertebrates. Proc. Natl Acad. Sci. USA 103, 13753–13758 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Christin, P. A. et al. Adaptive evolution of C4 photosynthesis through recurrent lateral gene transfer. Curr. Biol. 22, 445–449 (2012). A study showing that genes required for C 4 photosynthesis were acquired by lateral gene transfer at least four times in a genus of grass species.

    Article  CAS  PubMed  Google Scholar 

  53. Song, Y. et al. Adaptive introgression of anticoagulant rodent poison resistance by hybridization between old world mice. Curr. Biol. 21, 1296–1301 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Heliconius Genome Consortium. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487, 94–98 (2012). A sequencing study of Heliconius spp. genomes that reveals lateral exchange of chromosomal segments which control wing colour polymorphisms between species.

  55. Reed, R. D. et al. optix drives the repeated convergent evolution of butterfly wing pattern mimicry. Science 333, 1137–1141 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Durand, E. Y., Patterson, N., Reich, D. & Slatkin, M. Testing for ancient admixture between closely related populations. Mol. Biol. Evol. 28, 2239–2252 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Joron, M., Jiggins, C. D., Papanicolaou, A. & McMillan, W. O. Heliconius wing patterns: an evo–devo model for understanding phenotypic diversity. Heredity 97, 157–167 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Chevin, L. M., Martin, G. & Lenormand, T. Fisher's model and the genomics of adaptation: restricted pleiotropy, heterogenous mutation, and parallel evolution. Evolution 64, 3213–3231 (2010).

    Article  PubMed  Google Scholar 

  60. Yeung, A. T. et al. Swarming of Pseudomonas aeruginosa is controlled by a broad spectrum of transcriptional regulators, including MetR. J. Bacteriol. 191, 5592–5602 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Breidenstein, E. B., Khaira, B. K., Wiegand, I., Overhage, J. & Hancock, R. E. Complex ciprofloxacin resistome revealed by screening a Pseudomonas aeruginosa mutant library for altered susceptibility. Antimicrob. Agents Chemother. 52, 4486–4491 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Michaels, S. D. & Amasino, R. M. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11, 949–956 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Chanut-Delalande, H., Fernandes, I., Roch, F., Payre, F. & Plaza, S. Shavenbaby couples patterning to epidermal cell shape control. PLoS Biol. 4, e290 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Knecht, A. K., Hosemann, K. E. & Kingsley, D. M. Constraints on utilization of the EDA-signaling pathway in threespine stickleback evolution. Evol. Dev. 9, 141–154 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Haldane, J. B. S. A mathematical theory of natural and artificial selection, part V: selection and mutation. Proc. Camb. Philos. Soc. 28, 838–844 (1927).

    Article  Google Scholar 

  66. Orr, H. A. The population genetics of adaptation: the distribution of factors fixed during adaptive evolution. Evolution 52, 935–949 (1998).

    Article  PubMed  Google Scholar 

  67. Phillips, P. C. Epistasis — the essential role of gene interactions in the structure and evolution of genetic systems. Nature Rev. Genet. 9, 855–867 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Nachman, M. W. & Crowell, S. L. Estimate of the mutation rate per nucleotide in humans. Genetics 156, 297–304 (2000).

    PubMed  PubMed Central  CAS  Google Scholar 

  69. Kruglyak, L. & Nickerson, D. A. Variation is the spice of life. Nature Genet. 27, 234–236 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Cooper, T. F., Ostrowski, E. A. & Travisano, M. A negative relationship between mutation pleiotropy and fitness effect in yeast. Evol. Int. J. Org. Evol. 61, 1495–1499 (2007).

    Article  Google Scholar 

  71. Stern, D. L. Perspective: evolutionary developmental biology and the problem of variation. Evolution 54, 1079–1091 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Carroll, S. B. Evo–devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134, 25–36 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Nelson, M. D. et al. A bow-tie genetic architecture for morphogenesis suggested by a genome-wide RNAi screen in Caenorhabditis elegans. PLoS Genet. 7, e1002010 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Davidson, E. H. & Erwin, D. H. Gene regulatory networks and the evolution of animal body plans. Science 311, 796–800 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. McGrath, P. T. et al. Parallel evolution of domesticated Caenorhabditis species targets pheromone receptor genes. Nature 477, 321–325 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Rockman, M. V. The QTN program and the alleles that matter for evolution: all that's gold does not glitter. Evolution 66, 1–17 (2012).

    Article  PubMed  Google Scholar 

  77. Perutz, M. F. Species adaptation in a protein molecule. Mol. Biol. Evol. 1, 1–28 (1983).

    CAS  PubMed  Google Scholar 

  78. Kruglyak, L. The road to genome-wide association studies. Nature Rev. Genet. 9, 314–318 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Remington, D. L., Ungerer, M. C. & Purugganan, M. D. Map-based cloning of quantitative trait loci: progress and prospects. Genet. Res. 78, 213–218 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Seidel, H. S., Rockman, M. V. & Kruglyak, L. Widespread genetic incompatibility in C. elegans maintained by balancing selection. Science 319, 589–594 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. King, E. G. et al. Genetic dissection of a model complex trait using the Drosophila Synthetic Population Resource. Genome Res. 22, 1558–1566 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Yoon, H. S. & Baum, D. A. Transgenic study of parallelism in plant morphological evolution. Proc. Natl Acad. Sci. USA 101, 6524–6529 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ffrench-Constant, R. H. The molecular and population genetics of cyclodiene insecticide resistance. Insect Biochem. Mol. Biol. 24, 335–345 (1994).

    Article  CAS  PubMed  Google Scholar 

  84. Hemingway, J. & Ranson, H. Insecticide resistance in insect vectors of human disease. Annu. Rev. Entomol. 45, 371–391 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Ffrench-Constant, R. H., Pittendrigh, B., Vaughan, A. & Anthony, N. Why are there so few resistance-associated mutations in insecticide target genes? Phil. Trans. R. Soc. 353, 1685–1694 (1998).

    Article  CAS  Google Scholar 

  86. Herring, C. D. et al. Comparative genome sequencing of Escherichia coli allows observation of bacterial evolution on a laboratory timescale. Nature Genet. 38, 1406–1412 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Orr, H. A. The probability of parallel evolution. Evolution 59, 216–220 (2005). A population genetics model revealing that, despite the apparent complexity of parallel evolution, the probability of this type of evolution at the DNA level is a simple function of the number of beneficial mutations that are possible at a gene.

    Article  CAS  PubMed  Google Scholar 

  88. Boucher, C. A. et al. Ordered appearance of zidovudine resistance mutations during treatment of 18 human immunodeficiency virus-positive subjects. J. Infect. Dis. 165, 105–110 (1992).

    Article  CAS  PubMed  Google Scholar 

  89. Kellam, P., Boucher, C. A., Tijnagel, J. M. & Larder, B. A. Zidovudine treatment results in the selection of human immunodeficiency virus type 1 variants whose genotypes confer increasing levels of drug resistance. J. Gen. Virol. 75, 341–351 (1994).

    Article  CAS  PubMed  Google Scholar 

  90. Zhang, J. Parallel adaptive origins of digestive RNases in Asian and African leaf monkeys. Nature Genet. 38, 819–823 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Barrett, R. D., Rogers, S. M. & Schluter, D. Natural selection on a major armor gene in threespine stickleback. Science 322, 255–257 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Stern, D. L. & Frankel, N. The structure and evolution of cis-regulatory regions: the shavenbaby story. Phil. Trans. R. Soc. B (in the press).

  93. Segre, A. V., Murray, A. W. & Leu, J. Y. High-resolution mutation mapping reveals parallel experimental evolution in yeast. PLoS Biol. 4, e256 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Hittinger, C. T., Rokas, A. & Carroll, S. B. Parallel inactivation of multiple GAL pathway genes and ecological diversification in yeasts. Proc. Natl Acad. Sci. USA 101, 14144–14149 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Streisfeld, M. A. & Rausher, M. D. Genetic changes contributing to the parallel evolution of red floral pigmentation among Ipomoea species. New Phytol. 183, 751–763 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Johanson, U. et al. Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290, 344–347 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Kuittinen, H., Niittyvuopio, A., Rinne, P. & Savolainen, O. Natural variation in Arabidopsis lyrata vernalization requirement conferred by a FRIGIDA indel polymorphism. Mol. Biol. Evol. 25, 319–329 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Blasing, O. E., Westhoff, P. & Svensson, P. Evolution of C4 phosphoenolpyruvate carboxylase in Flaveria, a conserved serine residue in the carboxyl-terminal part of the enzyme is a major determinant for C4-specific characteristics. J. Biol. Chem. 275, 27917–27923 (2000).

    CAS  PubMed  Google Scholar 

  99. Besnard, G. et al. Phylogenomics of C4 photosynthesis in sedges (Cyperaceae): multiple appearances and genetic convergence. Mol. Biol. Evol. 26, 1909–1919 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Tishkoff, S. A. et al. Haplotype diversity and linkage disequilibrium at human G6PD: recent origin of alleles that confer malarial resistance. Science 293, 455–462 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Tishkoff, S. A. et al. Convergent adaptation of human lactase persistence in Africa and Europe. Nature Genet. 39, 31–40 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Protas, M. E. et al. Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism. Nature Genet. 38, 107–111 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Gross, J. B., Borowsky, R. & Tabin, C. J. A. Novel role for Mc1r in the parallel evolution of depigmentation in independent populations of the cavefish Astyanax mexicanus. PLoS Genet. 5, e1000326 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Sugawara, T. et al. Parallelism of amino acid changes at the RH1 affecting spectral sensitivity among deep-water cichlids from Lakes Tanganyika and Malawi. Proc. Natl Acad. Sci. USA 102, 5448–5453 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bricelj, V. M. et al. Sodium channel mutation leading to saxitoxin resistance in clams increases risk of PSP. Nature 434, 763–767 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Venkatesh, B. et al. Genetic basis of tetrodotoxin resistance in pufferfishes. Curr. Biol. 15, 2069–2072 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Shapiro, M. D. et al. Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature 428, 717–723 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Cresko, W. A. et al. Parallel genetic basis for repeated evolution of armor loss in Alaskan threespine stickleback populations. Proc. Natl Acad. Sci. USA 101, 6050–6055 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Soanes, C. & Stevenson, A. (eds) Oxford Dictionary of English 2nd edn (revised) (Oxford Univ. Press, 2006).

    Google Scholar 

Download references

Acknowledgements

The author thanks V. Orgogozo and the anonymous referees for many suggestions that improved this Review. He also thanks P. Andolfatto, O. Tenaillon and B. Gaut for providing images and raw data from their published work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Stern.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Glossary

Fitness

The potential evolutionary success of a genotype, defined as the reproductive success or the proportion of genes that an individual leaves in the gene pool of the next generation in a population. The individuals with the greatest fitness leave the highest number of surviving offspring.

Hybridization

Interbreeding of individuals from genetically distinct populations, regardless of the taxonomic status of the populations.

Operons

Loci consisting of two or more genes that are transcribed as a unit and expressed in a coordinated manner.

Epistasis

In the context of quantitative genetics: any genetic interaction in which the combined phenotypic effect of two or more loci is less than (negative epistasis) or greater than (positive epistasis) the sum of the effects at each individual locus.

Evolutionary trajectories

In the context of this Review: the series of mutations substituted during adaptation.

Trichomes

Thin, cuticular and non-sensory processes that are secreted by individual cells.

Enhancers

Regulatory DNA elements that usually bind several transcription factors; they can activate transcription from a promoter at a great distance and in an orientation-independent manner.

Paralogues

Genes in the same organism that have evolved from a gene duplication, usually with a subsequent, and sometimes subtle, divergence of function.

Pleiotropic

Pertaining to a gene having multiple developmental roles or to a mutation having multiple phenotypic effects.

Resequencing

Determination of an exact DNA sequence by comparison with a known reference.

cis-regulatory loci

Genetic loci containing transcription factor-binding sites and other non-coding DNA elements that are sufficient to activate transcription in a defined spatial and/or temporal expression domain.

Slippage

A mutagenic process during DNA replication whereby the presence of several identical base pairs in a series causes the DNA polymerase to add or omit one base by sliding over the template.

Dauer

A developmentally arrested, immature, long-lived and non-feeding form of Caenorhabditis elegans that forms under conditions of food scarcity and high population density; it resumes development when food levels increase.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stern, D. The genetic causes of convergent evolution. Nat Rev Genet 14, 751–764 (2013). https://doi.org/10.1038/nrg3483

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3483

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing