Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

How important are transposons for plant evolution?

Key Points

  • Transposable elements (TEs) are the single most variable components of plant genomes. Even closely related plants can harbour widely different populations of TEs.

  • TEs can cause a broad array of changes in gene composition and function. These changes range from simple insertional mutations to genetic reprogramming, gene movement and the evolution of novel functional protein-coding sequences.

  • To restrain TE activity, plants have a potent response that results in epigenetic silencing of these elements. This can in turn result in epigenetic as well as genetic variation in plant gene function.

  • The changes caused by TEs are a potentially rich source of variation on which selection can operate. Given the large numbers of plant TEs on evidence for ongoing activity of these selfish genetic elements, it is a reasonable hypothesis that TEs have played an important part in plant adaptation.

  • Despite the possibilities raised by experimental evidence of the kinds of changes that TEs can cause, there is only limited and anecdotal evidence that TEs have in fact been important players in adaptive evolution of plants.

  • Recent advances in genomics and phenomics have made it possible systematically to assess the part that TEs have played. It is only through the systematic identification of large numbers of alleles with important effects on phenotype that it will be possible to determine the relative role that TEs have had in the generation of meaningful genetic variation in plants.

  • Domesticated plant species provide us with an ideal model for understanding this process. These species have been under strong, recent directional selection, often have well-characterized TEs, have been extensively characterized with respect to trait variation and can be readily compared to wild relatives.

Abstract

For decades, transposable elements have been known to produce a wide variety of changes in plant gene expression and function. This has led to the idea that transposable element activity has played a key part in adaptive plant evolution. This Review describes the kinds of changes that transposable elements can cause, discusses evidence that those changes have contributed to plant evolution and suggests future strategies for determining the extent to which these changes have in fact contributed to plant adaptation and evolution. Recent advances in genomics and phenomics for a range of plant species, particularly crops, have begun to allow the systematic assessment of these questions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural and functional changes that can be caused by transposable elements.
Figure 2: Transposable element insertions associated with changes in grape colour.
Figure 3: Effects of transposable element insertions on expression tissue specificity and cold inducibility.
Figure 4: Retroposition of the IQD12 gene at the SUN locus results in ectopic expression in the fruit.
Figure 5: Epigenetic regulation of plant genes.

Similar content being viewed by others

References

  1. Bennetzen, J. L., Ma, J. & Devos, K. M. Mechanisms of recent genome size variation in flowering plants. Ann. Bot. 95, 127–132 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dooner, H. K. & Weil, C. F. Give-and-take: interactions between DNA transposons and their host plant genomes. Curr. Opin. Genet. Dev. 17, 486–492 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Feschotte, C. Transposable elements and the evolution of regulatory networks. Nature Rev. Genet. 9, 397–405 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Tollis, M. & Boissinot, S. The evolutionary dynamics of transposable elements in eukaryote genomes. Genome Dyn. 7, 68–91 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Candela, H. & Hake, S. The art and design of genetic screens: maize. Nature Rev. Genet. 9, 192–203 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Hsing, Y. et al. A rice gene activation/knockout mutant resource for high throughput functional genomics. Plant Mol. Biol. 63, 351–364 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Settles, A. M. et al. Sequence-indexed mutations in maize using the UniformMu transposon-tagging population. BMC Genomics 8, 116 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Singer, T., Yordan, C. & Martienssen, R. A. Robertson's mutator transposons in A. thaliana are regulated by the chromatin-remodeling gene decrease in DNA methylation (DDM1). Genes Dev. 15, 591–602 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tsukahara, S. et al. Bursts of retrotransposition reproduced in Arabidopsis. Nature 461, 423–426 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Wang, H. Y. et al. Transpositional reactivation of two LTR retrotransposons in rice-Zizania recombinant inbred lines (RILs). Hereditas 147, 264–277 (2010).

    Article  PubMed  Google Scholar 

  11. McClintock, B. The significance of responses of the genome to challenge. Science 226, 792–801 (1984).

    Article  CAS  PubMed  Google Scholar 

  12. Lin, C. et al. Dramatic genotypic difference in, and effect of genetic crossing on, tissue culture-induced mobility of retrotransposon Tos17 in rice. Plant Cell Rep. 31, 2057–2063 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Naito, K. et al. Dramatic amplification of a rice transposable element during recent domestication. Proc. Natl Acad. Sci. USA 103, 17620–17625 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ungerer, M. C., Strakosh, S. C. & Zhen, Y. Genome expansion in three hybrid sunflower species is associated with retrotransposon proliferation. Curr. Biol. 16, R872–873 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Kalendar, R., Tanskanen, J., Immonen, S., Nevo, E. & Schulman, A. H. Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc. Natl Acad. Sci. USA 97, 6603–6607 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wessler, S. R. Turned on by stress. Plant retrotransposons. Curr. Biol. 6, 959–961 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Maumus, F. et al. Potential impact of stress activated retrotransposons on genome evolution in a marine diatom. BMC Genomics 10, 624 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Kawase, M., Fukunaga, K. & Kato, K. Diverse origins of waxy foxtail millet crops in East and Southeast Asia mediated by multiple transposable element insertions. Mol. Genet. Genom. 274, 131–140 (2005). This comprehensive analysis of hundreds of accessions of foxtail millet demonstrates that all known 'sticky' accessions in this species are the result of TE-induced mutations of the waxy locus.

    Article  CAS  Google Scholar 

  19. Bhattacharyya, M. K., Smith, A. M., Ellis, T. H., Hedley, C. & Martin, C. The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme. Cell 60, 115–122 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Kobayashi, S., Goto-Yamamoto, N. & Hirochika, H. Retrotransposon-induced mutations in grape skin color. Science 304, 982 (2004).

    Article  PubMed  Google Scholar 

  21. Cadle-Davidson, M. M. & Owens, C. L. Genomic amplification of the Gret1 retroelement in white-fruited accessions of wild vitis and interspecific hybrids. Theor. Appl. Genet. 116, 1079–1094 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Shimazaki, M., Fujita, K., Kobayashi, H. & Suzuki, S. Pink-colored grape berry is the result of short insertion in intron of color regulatory gene. PLoS ONE 6, e21308 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yao, J., Dong, Y. & Morris, B. A. Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor. Proc. Natl Acad. Sci. USA 98, 1306–1311 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Clegg, M. T. & Durbin, M. L. Tracing floral adaptations from ecology to molecules. Nature Rev. Genet. 4, 206–215 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Clegg, M. T. & Durbin, M. L. Flower color variation: a model for the experimental study of evolution. Proc. Natl Acad. Sci. USA 97, 7016–7023 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Park, K. I. et al. A bHLH regulatory gene in the common morning glory, Ipomoea purpurea, controls anthocyanin biosynthesis in flowers, proanthocyanidin and phytomelanin pigmentation in seeds, and seed trichome formation. Plant J. 49, 641–654 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Glover, D., Durbin, M., Huttley, G. & Clegg, M. T. Genetic diversity in the common morning glory. Plant Species Biol. 11, 41–50 (1996).

    Article  Google Scholar 

  28. Doebley, J. F., Gaut, B. S. & Smith, B. D. The molecular genetics of crop domestication. Cell 127, 1309–1321 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Pelsy, F. Molecular and cellular mechanisms of diversity within grapevine varieties. Heredity 104, 331–340 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Izawa, T., Konishi, S., Shomura, A. & Yano, M. DNA changes tell us about rice domestication. Curr. Opin. Plant Biol. 12, 185–192 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Freeling, M. et al. Fractionation mutagenesis and similar consequences of mechanisms removing dispensable or less-expressed DNA in plants. Curr. Opin. Plant Biol. 15, 131–139 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Weigel, D. Natural variation in Arabidopsis: from molecular genetics to ecological genomics. Plant Physiol. 158, 2–22 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Hamilton, J. P. & Buell, C. R. Advances in plant genome sequencing. Plant J. 70, 177–190 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Feuillet, C. & Eversole, K. Plant science. Solving the maze. Science 326, 1071–1072 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Doi, K., Yasui, H. & Yoshimura, A. Genetic variation in rice. Curr. Opin. Plant Biol. 11, 144–148 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Huang, X. et al. A map of rice genome variation reveals the origin of cultivated rice. Nature 490, 497–501 (2012). This is an example of the scale of analysis that is now possible using modern sequencing technology. Sequencing data from hundreds of accessions of wild and domesticated rice has made high-resolution genome-wide association studies (GWASs) for many agronomic traits in cultivated and wild rice possible.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu, X. et al. Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nature Biotech. 30, 105–111 (2012).

    Article  CAS  Google Scholar 

  38. He, Z. et al. Two evolutionary histories in the genome of rice: the roles of domestication genes. PLoS Genet. 7, e1002100 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kloeckener-Gruissem, B. & Freeling, M. Transposon-induced promoter scrambling: a mechanism for the evolution of new alleles. Proc. Natl Acad. Sci. USA 92, 1836–1840 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Greene, B., Walko, R. & Hake, S. Mutator insertions in an intron of the maize knotted1 gene result in dominant suppressible mutations. Genetics 138, 1275–1285 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Bharathan, G. et al. Homologies in leaf form inferred from KNOXI gene expression during development. Science 296, 1858–1860 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Salvi, S. et al. Toward positional cloning of Vgt1, a QTL controlling the transition from the vegetative to the reproductive phase in maize. Plant Mol. Biol. 48, 601–613 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Salvi, S. et al. Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc. Natl Acad. Sci. USA 104, 11376–11381 (2007). This is the first demonstration that insertion of a TE into a conserved non-coding sequence can affect an agronomically important trait. This analysis also demonstrates that even TE insertions that are distant from plant genes can have important effects on gene expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chia, J. M. et al. Maize HapMap2 identifies extant variation from a genome in flux. Nature Genet. 44, 803–807 (2012). This paper provides a comprehensive view of extant genetic variation in maize and relates it to variation in agronomically important traits in a species that has an order of magnitude more genetic diversity than humans. Because of the density of the data now available, this analysis makes it possible for high-resolution GWASs to be carried out in maize for the first time.

    Article  CAS  PubMed  Google Scholar 

  45. Freeling, M. & Subramaniam, S. Conserved noncoding sequences (CNSs) in higher plants. Curr. Opin. Plant Biol. 12, 126–132 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Liu, S. et al. Mu transposon insertion sites and meiotic recombination events co-localize with epigenetic marks for open chromatin across the maize genome. PLoS Genet. 5, e1000733 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Vollbrecht, E. et al. Genome-wide distribution of transposed Dissociation elements in maize. Plant Cell 22, 1667–1685 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pan, X., Li, Y. & Stein, L. Site preferences of insertional mutagenesis agents in Arabidopsis. Plant Physiol. 137, 168–175 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Naito, K. et al. Unexpected consequences of a sudden and massive transposon amplification on rice gene expression. Nature 461, 1130–1134 (2009). This study demonstrates that rapid and recent amplification of a family of TEs can have substantial effects on expression of nearby genes by introducing stress-responsiveness. It also provides evidence that MITEs may have adapted to minimize the negative effects of transposition by avoiding insertion into exons.

    Article  CAS  PubMed  Google Scholar 

  50. Dooner, H. K., Robbins, T. P. & Jorgensen, R. A. Genetic and developmental control of anthocyanin biosynthesis. Annu. Rev. Genet. 25, 173–199 (1991).

    Article  CAS  PubMed  Google Scholar 

  51. Selinger, D. A. & Chandler, V. L. Major recent and independent changes in levels and patterns of expression have occurred at the b gene, a regulatory locus in maize. Proc. Natl Acad. Sci. USA 96, 15007–15012 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Selinger, D. A. & Chandler, V. L. B-Bolivia, an allele of the maize b1 gene with variable expression, contains a high copy retrotransposon-related sequence immediately upstream. Plant Physiol. 125, 1363–1379 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Walker, E. L., Robbins, T. P., Bureau, T. E., Kermicle, J. & Dellaporta, S. L. Transposon-mediated chromosomal rearrangements and gene duplications in the formation of the maize R-r complex. EMBO J. 14, 2350–2363 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Butelli, E. et al. Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell 24, 1242–1255 (2012). This paper provides an example of the programmatic changes that can be introduced by TE insertion. In this case, insertion of a retroelement provided both cold inducibility and tissue specificity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Studer, A., Zhao, Q., Ross-Ibarra, J. & Doebley, J. Identification of a functional transposon insertion in the maize domestication gene tb1. Nature Genet. 43, 1160–1163 (2011). This paper demonstrates that a key mutation permitting domestication of maize involved a retroelement insertion many kilobases upstream of a gene that enhanced that gene's expression.

    Article  CAS  PubMed  Google Scholar 

  56. Mhiri, C. et al. The promoter of the tobacco Tnt1 retrotransposon is induced by wounding and by abiotic stress. Plant Mol. Biol. 33, 257–266 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Ivashuta, S. et al. Genotype-dependent transcriptional activation of novel repetitive elements during cold acclimation of alfalfa (Medicago sativa). Plant J. 31, 615–627 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Ito, H. et al. An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature 472, 115–119 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Grandbastien, M. et al. Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae. Cytogenet. Genome Res. 110, 229–241 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Buchmann, R. C., Asad, S., Wolf, J. N., Mohannath, G. & Bisaro, D. M. Geminivirus AL2 and L2 proteins suppress transcriptional gene silencing and cause genome-wide reductions in cytosine methylation. J. Virol. 83, 5005–5013 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang, Q. & Dooner, H. K. Dynamic evolution of bz orthologous regions in the Andropogoneae and other grasses. Plant J. 72, 212–221 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Swigonova, Z. et al. Close split of sorghum and maize genome progenitors. Genome Res. 14, 1916–1923 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yu, C., Zhang, J. & Peterson, T. Genome rearrangements in maize induced by alternative transposition of reversed ac/ds termini. Genetics 188, 59–67 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Navarro, A. & Barton, N. H. Chromosomal speciation and molecular divergence—accelerated evolution in rearranged chromosomes. Science 300, 321–324 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Guillen, Y. & Ruiz, A. Gene alterations at Drosophila inversion breakpoints provide prima facie evidence for natural selection as an explanation for rapid chromosomal evolution. BMC Genomics 13, 53 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Joron, M. et al. Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry. Nature 477, 203–206 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lowry, D. B. & Willis, J. H. A widespread chromosomal inversion polymorphism contributes to a major life-history transition, local adaptation, and reproductive isolation. PLoS Biol. 8, e1000500 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Ammiraju, J. S. et al. Dynamic evolution of Oryza genomes is revealed by comparative genomic analysis of a genus-wide vertical data set. Plant Cell 20, 3191–3209 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hurwitz, B. L. et al. Rice structural variation: a comparative analysis of structural variation between rice and three of its closest relatives in the genus Oryza. Plant J. 63, 990–1003 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Piegu, B. et al. Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res. 16, 1262–1269 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Vielle-Calzada, J. P. et al. The Palomero genome suggests metal effects on domestication. Science 326, 1078 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Ledford, H. Halfway point for 1,001 genomes quest. Nature 477, 14 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Hu, T. T. et al. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nature Genet. 43, 476–481 (2011).

    Article  PubMed  CAS  Google Scholar 

  74. Woodhouse, M. R., Pedersen, B. & Freeling, M. Transposed genes in Arabidopsis are often associated with flanking repeats. PLoS Genet. 6, e1000949 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Yang, S. et al. Repetitive element-mediated recombination as a mechanism for new gene origination in Drosophila. PLoS Genet. 4, e3 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Bhutkar, A., Russo, S. M., Smith, T. F. & Gelbart, W. M. Genome-scale analysis of positionally relocated genes. Genome Res. 17, 1880–1887 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Abrouk, M. et al. Grass microRNA gene paleohistory unveils new insights into gene dosage balance in subgenome partitioning after whole-genome duplication. Plant Cell 24, 1776–1792 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. van der Knaap, E., Sanyal, A., Jackson, S. A. & Tanksley, S. D. High-resolution fine mapping and fluorescence in situ hybridization analysis of sun, a locus controlling tomato fruit shape, reveals a region of the tomato genome prone to DNA rearrangements. Genetics 168, 2127–2140 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Xiao, H., Jiang, N., Schaffner, E., Stockinger, E. J. & van der Knaap, E. A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319, 1527–1530 (2008). This study provides the first evidence in plants that retrotransposon-mediated retrotransposition can result in functional reprogramming patterns of gene expression.

    Article  CAS  PubMed  Google Scholar 

  80. Freeling, M. et al. Many or most genes in Arabidopsis transposed after the origin of the order Brassicales. Genome Res. 18, 1924–1937 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang, Y. H. & Warren, J. T. Jr. Mutations in retrotransposon AtCOPIA4 compromises resistance to Hyaloperonospora parasitica in Arabidopsis thaliana. Genet. Mol. Biol. 33, 135–140 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yi, H. & Richards, E. J. A cluster of disease resistance genes in Arabidopsis is coordinately regulated by transcriptional activation & RNA silencing. Plant Cell 19, 2929–2939 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jiang, N., Bao, Z., Zhang, X., Eddy, S. R. & essler, S. R. Pack-MULE transposable elements mediate gene evolution in plants. Nature 431, 569–573 (2004). In this paper, it is shown that TEs can capture, duplicate and combine thousands of gene fragments in rice, raising the possibility that TEs may be an important source of new genes in plants.

    Article  CAS  PubMed  Google Scholar 

  84. Juretic, N., Hoen, D. R., Huynh, M. L., Harrison, P. M. & Bureau, T. E. The evolutionary fate of MULE-mediated duplications of host gene fragments in rice. Genome Res. 15, 1292–1297 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hanada, K. et al. The functional role of pack-MULEs in rice inferred from purifying selection and expression profile. Plant Cell 21, 25–38 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Du, C., Fefelova, N., Caronna, J., He, L. & Dooner, H. K. The polychromatic Helitron landscape of the maize genome. Proc. Natl Acad. Sci. USA 106, 19916–19921 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang, W. et al. High rate of chimeric gene origination by retroposition in plant genomes. Plant Cell 18, 1791–1802 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Muehlbauer, G. J. et al. A hAT superfamily transposase recruited by the cereal grass genome. Mol. Genet. Genom. 275, 553–563 (2006).

    Article  CAS  Google Scholar 

  89. Hudson, M. E., Lisch, D. R. & Quail, P. H. The FHY3 and FAR1 genes encode transposase-related proteins involved in regulation of gene expression by the phytochrome A-signaling pathway. Plant J. 34, 453–471 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Li, G. et al. Coordinated transcriptional regulation underlying the circadian clock in Arabidopsis. Nature Cell Biol. 13, 616–622 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Lin, R. et al. Transposase-derived transcription factors regulate light signaling in Arabidopsis. Science 318, 1302–1305 (2007). This is the first demonstration that a plant transposase can take on a new functional role as a transcription factor. This study also showed that a family of exapted transposases has a key role in light signalling in plants.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ouyang, X. et al. Genome-wide binding site analysis of FAR-RED ELONGATED HYPOCOTYL3 reveals its novel function in Arabidopsis development. Plant Cell 23, 2514–2535 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Joly-Lopez, Z., Forczek, E., Hoen, D. R., Juretic, N. & Bureau, T. E. A. Gene family derived from transposable elements during early angiosperm evolution has reproductive fitness benefits in Arabidopsis thaliana. PLoS Genet. 8, e1002931 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cowan, R. K., Hoen, D. R., Schoen, D. J. & Bureau, T. E. MUSTANG is a novel family of domesticated transposase genes found in diverse angiosperms. Mol. Biol. Evol. 22, 2084–2089 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Bundock, P. & Hooykaas, P. An Arabidopsis hAT-like transposase is essential for plant development. Nature 436, 282–284 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Donoghue, M. T., Keshavaiah, C., Swamidatta, S. H. & Spillane, C. Evolutionary origins of Brassicaceae specific genes in Arabidopsis thaliana. BMC Evol. Biol. 11, 47 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Charlesworth, B., Borthwick, H., Bartolome, C. & Pignatelli, P. Estimates of the genomic mutation rate for detrimental alleles in Drosophila melanogaster. Genetics 167, 815–826 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Brookfield, J. F. The ecology of the genome — mobile DNA elements and their hosts. Nature Rev. Genet. 6, 128–136 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Lisch, D. Epigenetic regulation of transposable elements in plants. Annu. Rev. Plant Biol. 60, 43–66 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Slotkin, R. K. & Martienssen, R. Transposable elements and the epigenetic regulation of the genome. Nature Rev. Genet. 8, 272–285 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Kinoshita, Y. et al. Control of FWA gene silencing in Arabidopsis thaliana by SINE-related direct repeats. Plant J. 49, 38–45 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Fujimoto, R. et al. Evolution and control of imprinted FWA genes in the genus Arabidopsis. PLoS Genet. 4, e1000048 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Jeddeloh, J. A., Stokes, T. L. & Richards, E. J. Maintenance of genomic methylation requires a SWI2/SNF2-like protein. Nature Genet. 22, 94–97 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Saze, H. & Kakutani, T. Heritable epigenetic mutation of a transposon-flanked Arabidopsis gene due to lack of the chromatin-remodeling factor DDM1. EMBO J. 26, 3641–3652 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Liu, J. He, Y., Amasino, R. & Chen, X. siRNAs targeting an intronic transposon in the regulation of natural flowering behavior in Arabidopsis. Genes Dev. 18, 2873–2878 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Strange, A. et al. Major-effect alleles at relatively few loci underlie distinct vernalization and flowering variation in Arabidopsis accessions. PLoS ONE 6, e19949 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lister, R. et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133, 523–536 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gehring, M., Bubb, K. L. & Henikoff, S. Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science 324, 1447–1451 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zemach, A. et al. Local DNA hypomethylation activates genes in rice endosperm. Proc. Natl Acad. Sci. USA 107, 18729–18734 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kashkush, K., Feldman, M. & Levy, A. A. Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nature Genet. 33, 102–106 (2003). This paper shows that read-out transcription from retroelements in plants can have substantial effects on gene expression. It also demonstrates that naturally occurring variation in methylation of retroelements can result in differences in expression and tissue specificity of genes.

    Article  CAS  PubMed  Google Scholar 

  111. Jiang, N., Jordan, I. K. & Wessler, S. R. Dasheng and RIRE2. A nonautonomous long terminal repeat element and its putative autonomous partner in the rice genome. Plant Physiol. 130, 1697–1705 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ammiraju, J. S. et al. Evolutionary dynamics of an ancient retrotransposon family provides insights into evolution of genome size in the genus Oryza. Plant J. 52, 342–351 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Kashkush, K. & Khasdan, V. Large-scale survey of cytosine methylation of retrotransposons and the impact of readout transcription from long terminal repeats on expression of adjacent rice genes. Genetics 177, 1975–1985 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. He, G. et al. Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell 22, 17–33 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hollister, J. D. & Gaut, B. S. Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res. 19, 1419–1428 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hollister, J. D. et al. Transposable elements and small RNAs contribute to gene expression divergence between Arabidopsis thaliana and Arabidopsis lyrata. Proc. Natl Acad. Sci. USA 108, 2322–2327 (2011). Evidence is provided in this paper that silencing of TEs near genes can result in an overall reduction in gene expression. This suggests that although there is a benefit to silencing TEs, there is also a substantial potential cost, and it raises the possibility that TEs can have global effects on host gene function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lu, C. et al. Miniature inverted-repeat transposable elements (MITEs) have been accumulated through amplification bursts and play important roles in gene expression and species diversity in Oryza sativa. Mol. Biol. Evol. 29, 1005–1017 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Furbank, R. T. & Tester, M. Phenomics—technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 16, 635–644 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Brachi, B., Morris, G. P. & Borevitz, J. O. Genome-wide association studies in plants: the missing heritability is in the field. Genome Biol. 12, 232 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Van de Peer, Y., Fawcett, J. A., Proost, S., Sterck, L. & Vandepoele, K. The flowering world: a tale of duplications. Trends Plant Sci. 14, 680–688 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Treangen, T. J. & Salzberg, S. L. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nature Rev. Genet. 13, 36–46 (2012).

    Article  CAS  Google Scholar 

  122. Tarailo-Graovac, M. & Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinformatics 25, 4.10.1–4.10.14 (2009).

    Google Scholar 

Download references

Acknowledgements

The author apologizes to the many authors whose work he was unable to include owing to space constraints. The author is supported by a grant from the US National Science Foundation (DBI 031726).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Damon Lisch is supported by a grant from the US National Science Foundation (DBI 031726).

Related links

Related links

FURTHER INFORMATION

Damon Lisch's homepage

1001 Genomes Project

The Australian Plant Phenomics Facility

CoGe: ANKoCG

Genetic Information Research Institute

Genotype to Phenotype (iPG2P)

Gramene QTL Database

International Rice Functional Genomics Consortium

iPlant Collaborative

Maize transposable element database

Panzea

Plant Repeat Databases at Michigan State

PlantGDB

RepeatMasker homepage

Rice Diversity

Sequenced plant genomes — CoGePedia

The UniformMu Transposon Resource

The VAST lab: Variation and Abiotic Stress Tolerance — RIL populations resource

Glossary

Transposable elements

(TEs). Stretches of DNA that are competent to integrate into new positions in the genome, that are competent to increase their copy number over time and that rely on one or more enzymatic function provided by an autonomous element.

Epigenetic variation

Heritable differences in the expression of a gene in the absence of changes in the DNA sequence of that gene. It is often associated with changes in cytosine methylation and histone modification. Cryptic epigenetic variation refers to epigenetic variation that is only manifest under specific conditions.

Phenomics

The objective and systematic acquisition of high-quality phenotypic data, allowing for phenotypic features to be analysed on a continuum together with molecular data, such as gene expression profiles or causative genomic mutations.

Class I elements

A transposable element that uses a 'copy-and-paste' transposition mechanism involving an RNA intermediate.

Class II elements

A transposable element that transposes via a 'cut-and-paste' mechanism in which the DNA of the element is physically transposed from one position in the genome to another.

Comparative genomics

The discipline devoted to comparing related genomes, focusing on large-scale changes in the overall structure and composition of genomes, chromosomal segments and genes.

Recombinant inbred lines

(RILs). Strains that are derived from crosses between two or more parental strains, followed by recombination of chromosomes and inbreeding to homozygosity. Typically, RILs are carefully genotyped at many loci. A panel of RILs can be a stable resource for quantitative trait locus mapping.

Exaptation

The process by which a trait takes on a new function. For a transposable element, this would imply a shift from facilitating replication of the transposable element to providing an adaptive function for the host.

Retroposition

The process by which mRNA from a gene is reverse-transcribed by a retrotransposon-encoded reverse transcriptase and then integrated at a new position by a retrotransposon-encoded integrase. Typically, this process involves the loss of intron sequences and the presence of a new insertion flanked by short target site duplications.

Transduplication

The process by which a transposable element incorporates a gene or gene fragment and duplicates and transposes it to a new position.

Helitron

A class of transposable element that transposes by a 'rolling circle' mechanism, a process that is frequently associated with the capture of short portions of host coding sequence.

Retrogenes

Genes that have arisen through the reverse transcription of an mRNA.

KA/KS

KA and KS are the rates of substitution at nonsynonymous sites and synonymous sites, respectively. The ratio KA/KS is often used to infer selection: KA/KS <1 indicates a functional constraint; KA/KS = 1 indicates a lack of functional constraint; and KA/KS >1 indicates positive Darwinian selection.

Transposase

An enzyme that is encoded by a gene carried by an autonomous class II transposable element and that catalyses the transposition reaction.

Syntenic

A term that describes the presence of collinear homologous DNA sequences in related chromosomal regions, implying a common ancestor. The presence of syntenic, conserved sequences over long periods of time suggests continued function, particularly in plants, which exhibit a high rate of DNA elimination.

Autonomous element

A transposable element that encodes the genes necessary for its own transposition.

Epialleles

Alternative chromatin states at a given locus, defined with respect to individuals in the population for a given time point and tissue type. Epialleles vary greatly in their stability and they affect gene expression levels or patterns rather than gene products.

Genome-wide association study

A study in which associations between genetic variation and a phenotype or trait of interest are identified by genotyping cases and controls for a set of genetic variants that capture variation across the entire genome.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lisch, D. How important are transposons for plant evolution?. Nat Rev Genet 14, 49–61 (2013). https://doi.org/10.1038/nrg3374

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3374

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research