Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic and genomic analyses of the division of labour in insect societies

Key Points

  • With a rich and well understood natural history and a long tradition of being used to address fundamental issues in development, neuroscience, behaviour, ecology and evolution, social insects are now emerging as important model systems for genetic and genomic analyses of complex traits, namely, the remarkably diverse and intricate systems of division of labour exhibited by the ants, bees, wasps and termites.

  • Hereditary effects on division of labour are more pervasive than previously supposed. The genes that underlie hereditary effects on division of labour have yet to be identified.

  • Hereditary effects on division of labour raise the spectre of conflict between those that are reproducing and those that are not, but it seems that mechanisms have evolved in many species to minimize conflict while still preserving genetic diversity and its potential benefits to colony life.

  • Hereditary effects on one form of division of labour, that is, queen–worker caste determination, have another cost: decreased caste-ratio flexibility. Some findings suggest that environmental factors mitigate this genetic bias, but more research is needed.

  • Hereditary effects on another form of division of labour, that is, worker–worker specialization, benefit colonies by increased efficiency of division of labour or increased colony homeostasis.

  • Molecular analyses of candidate genes and gene expression profiling reveal that the same set of highly conserved molecular pathways (for example, insulin) are involved in the regulation of different forms of division of labour, even across distantly related social insect taxa that evolved eusociality independently.

  • Some of these pathways are related to the fundamental processes of nutrition, metabolism and reproduction, supporting the idea that life-history traits of solitary insects that are related to these processes could have served as evolutionary precursors to eusociality.

  • The sequencing of the first social insect genome, that of the honeybee, has led to several important findings, including the discovery that the molecular basis of queen–worker caste determination involves insulin signalling and epigenetic regulation.

  • We predict that there will be whole genome sequences for 10–20 social insect species and their relatives within the next 10 years, and these could be strategically chosen to span the full range of sociality — from solitary to eusocial — to provide powerful resources to study the mechanisms and evolution of division of labour.

Abstract

Division of labour — individuals specializing in different activities — features prominently in the spectacular success of the social insects. Until recently, genetic and genomic analyses of division of labour were limited to just a few species. However, research on an ever-increasing number of species has provided new insight, from which we highlight two results. First, heritable influences on division of labour are more pervasive than previously imagined. Second, different forms of division of labour, in lineages in which eusociality has arisen independently, have evolved through changes in the regulation of highly conserved molecular pathways associated with several basic life-history traits, including nutrition, metabolism and reproduction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Caste and division of labour in insect societies.
Figure 2: Fruits of sociality.

Similar content being viewed by others

References

  1. Maynard Smith, J. & Szathmáry, E. The Major Transitions in Evolution (W. H. Freeman Spektrum, New York, 1995).

    Google Scholar 

  2. Oster, G. F. & Wilson, E. O. Caste and Ecology in the Social Insects 352 (Princeton Univ. Press, Princeton, New Jersey, 1978).

    Google Scholar 

  3. Holldobler, B. & Wilson, E. O. The Ants (Belknap Press of Harvard Univ. Press, Cambridge, Massachusetts, 1990).

    Book  Google Scholar 

  4. Robinson, G. E., Grozinger, C. M. & Whitfield, C. W. Sociogenomics: social life in molecular terms. Nature Rev. Genet. 6, 257–270 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Oldroyd, B. P. & Fewell, J. H. Genetic diversity promotes homeostasis in insect colonies. Trends Ecol. Evol. 22, 408–413 (2007). A review of evidence supporting various hypotheses for the adaptive significance of genetic diversity among workers in social insect colonies, including workforce efficiency and increased disease resistance.

    Article  PubMed  Google Scholar 

  6. Sumner, S. Determining the molecular basis of sociality in insects: progress, prospects and potential in sociogenomics. Ann. Zool. Fenn. 43, 423–442 (2006).

    Google Scholar 

  7. Wilson, E. O. The Insect Aocieties (Belknap Press of Harvard Univ. Press, Cambridge, Massachusetts, 1971).

    Google Scholar 

  8. Wilfert, L., Gadau, J. & Schmid-Hempel, P. Variation in genomic recombination rates among animal taxa and the case of social insects. Heredity 98, 189–197 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Kronauer, D. J. C., Johnson, R. A. & Boomsma, J. J. The evolution of multiple mating in army ants. Evolution 61, 413–422 (2007).

    Article  PubMed  Google Scholar 

  10. Hughes, W. O. H., Ratnieks, F. L. W. & Oldroyd, B. P. Multiple paternity or multiple queens: two routes to greater intracolonial genetic diversity in the eusocial Hymenoptera. J. Evol. Biol. 21, 1090–1095 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Helms Cahan, S. et al. Extreme genetic differences between queens and workers in hybridizing Pogonomyrmex harvester ants. Proc. R. Soc. Lond., B, Biol. Sci. 269, 1871–1877 (2002). One of three papers that simultaneously reported genetic caste determination in Pogonomyrmex ants, now one of the most intensively studied systems of genetic caste determination.

    Article  Google Scholar 

  12. Helms Cahan, S. & Vinson, S. B. Reproductive division of labor between hybrid and nonhybrid offspring in a fire ant hybrid zone. Evolution 57, 1562–1570 (2003).

    Article  PubMed  Google Scholar 

  13. Anderson, K. E., Linksvayer, T. A. & Smith, C. R. The causes and consequences of genetic caste determination in ants (Hymenoptera: Formicidae). Myrm. News 11, 119–132 (2008).

    Google Scholar 

  14. Anderson, K. E. et al. Distribution and evolution of genetic caste determination in Pogonomyrmex seed-harvester ants. Ecology 87, 2171–2184 (2006).

    Article  PubMed  Google Scholar 

  15. Schwander, T. et al. Maternal effect on female caste determination in a social insect. Curr. Biol. 18, 265–269 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Pearcy, M., Aron, S., Doums, C. & Keller, L. Conditional use of sex and parthenogenesis for worker and queen production in ants. Science 306, 1780–1783 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Fournier, D. et al. Clonal reproduction by males and females in the little fire ant. Nature 435, 1230–1234 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Hayashi, Y., Lo, N., Miyata, H. & Kitade, O. Sex-linked genetic influence on caste determination in a termite. Science 318, 985–987 (2007). The first study to extend genetic caste determination to a non-hymenopteran (non-haplodiploid) social insect.

    Article  CAS  PubMed  Google Scholar 

  19. Moritz, R. F. A. et al. Rare royal families in honeybees, Apis mellifera. Naturwissenschaften 92, 488–491 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Hughes, W. O. H. & Boomsma, J. J. Genetic royal cheats in leaf-cutting ant societies. Proc. Natl Acad. Sci. USA 105, 5150–5153 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Page, R. E. J., Robinson, G. E. & Fondrk, M. K. Genetic specialists, kin recognition and nepotism in honey-bee colonies. Nature 338, 576–579 (1989).

    Article  Google Scholar 

  22. Tilley, C. A. & Oldroyd, B. P. Unequal subfamily proportions among honey bee queen and worker brood. Anim. Behav. 54, 1483–1490 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Crozier, R. H. & Pamilo, P. Evolution of Social Insect Colonies: Sex Allocation and Kin Selection 306 (Oxford Univ. Press, Oxford, 1996).

    Google Scholar 

  24. Neumann, P. & Moritz, R. F. A. The Cape honeybee phenomenon: the sympatric evolution of a social parasite in real time? Behav. Ecol. Sociobiol. 52, 271–281 (2002).

    Article  Google Scholar 

  25. Lattorff, H. M. G., Moritz, R. F. A., Crewe, R. M. & Solignac, M. Control of reproductive dominance by the thelytoky gene in honeybees. Biol. Lett. 3, 292–295 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Beekman, M. & Oldroyd, B. P. When workers disunite: intraspecific parasitism by eusocial bees. Ann. Rev. Entomol. 53, 19–37 (2008).

    Article  CAS  Google Scholar 

  27. Queller, D. C. et al. Unrelated helpers in a social insect. Nature 405, 784–787 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Rissing, S. W., Pollock, G. B., Higgins, M. R., Haven, R. H. & Smith, D. R. Foraging specialization without relatedness or dominance among co-founding ant queens. Nature 338, 420–422 (1989).

    Article  Google Scholar 

  29. Julian, G. E. & Fewell, J. H. Genetic variation and task specialization in the desert leaf-cutter ant, Acromyrmex versicolor. Anim. Behav. 68, 1–8 (2004).

    Article  Google Scholar 

  30. Gotzek, D. & Ross, K. G. Genetic regulation of colony social organization in fire ants: an integrative overview. Q. Rev. Biol. 82, 201–226 (2007).

    Article  PubMed  Google Scholar 

  31. Page, R. E. & Robinson, G. E. The genetics of division of labor in honey bee colonies. Adv. Insect Physiol. 23, 117–169 (1991). Reviews research by N. W. Calderone and ` P. C. Frumhoff, who first detected genotypic biases in the tendency of workers in a colony to specialize on particular tasks; these studies opened the study of the genetic basis of division of labour in social insects.

    Article  Google Scholar 

  32. Hunt, G. J. et al. Behavioral genomics of honeybee foraging and nest defense. Naturwissenschaften 94, 247–267 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Mattila, H. R. & Seeley, T. D. Genetic diversity in honey bee colonies enhances productivity and fitness. Science 317, 362–364 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Beye, M. et al. Unusually high recombination rate detected in the sex locus region of the honey bee (Apis mellifera). Genetics 153, 1701–1708 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kerr, W. E. Genetic determinants of castes in the genus Melipona. Genetics 35, 143–152 (1950).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Anderson, K. E., Holldobler, B., Fewell, J. H., Mott, B. M. & Gadau, J. Population-wide lineage frequencies predict genetic load in the seed-harvester ant Pogonomyrmex. Proc. Natl Acad. Sci. USA 103, 13433–13438 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hughes, W. O. H. & Boomsma, J. J. Genetic polymorphism in leaf-cutting ants is phenotypically plastic. Proc. R. Soc. B 274, 1625–1630 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hartfelder, K. et al. Physiological and genetic mechanisms underlying caste development, reproduction and division of labor in stingless bees. Apidologie 37, 144–163 (2006).

    Article  CAS  Google Scholar 

  39. Smith, C. R. et al. Caste determination in a polymorphic social insect: nutritional, social and genetic factors. Am. Nat. 15 Aug 2008 (doi:10.1086/590961).

  40. Keller, L. Uncovering the biodiversity of genetic and reproductive systems: time for a more open approach — American Society of Naturalists E. O. Wilson award winner address. Am. Nat. 169, 1–8 (2007).

    Article  PubMed  Google Scholar 

  41. Robinson, G. E. Beyond nature and nurture. Science 304, 397–399 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Fitzpatrick, M. J. et al. Candidate genes for behavioural ecology. Trends Ecol. Evol. 20, 96–104 (2005). Describes how to select candidate genes for behaviour, drawing on several notable successes in various animals.

    Article  PubMed  Google Scholar 

  43. Wheeler, D. E., Buck, N. & Evans, J. D. Expression of insulin pathway genes during the period of caste determination in the honey bee, Apis mellifera. Insect Mol. Biol. 15, 597–602 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Patel, A. et al. The making of a queen: TOR pathway is a key player in diphenic caste development. PLoS One 2, e509 (2007). Prominent example of the use of RNAi to manipulate caste determination in honeybees.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhou, X. G., Oi, F. M. & Scharf, M. E. Social exploitation of hexamerin: RNAi reveals a major caste-regulatory factor in termites. Proc. Natl Acad. Sci. USA 103, 4499–4504 (2006). Prominent example of the use of RNAi to manipulate caste determination in termites.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Scharf, M. E., Buckspan, C. E., Grzymala, T. L. & Zhou, X. Regulation of polyphenic caste differentiation in the termite Reticulitermes flavipes by interaction of intrinsic and extrinsic factors. J. Exp. Biol. 210, 4390–4398 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Grozinger, C. M., Fan, Y., Hoover, S. E. R. & Winston, M. L. Genome-wide analysis reveals differences in brain gene expression patterns associated with caste and reproductive status in honey bees. Mol. Ecol. 16, 4837–4848 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Toth, A. L. & Robinson, G. E. Evo–devo and the evolution of social behavior. Trends Genet. 23, 334–341 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Nelson, M., Ihle, K., Fondrk, M. K., Page, R. E. & Amdam, G. V. The gene vitellogenin has multiple coordinating effects on social organization. PLoS Biol. 5, e62 (2007). Prominent example of the use of RNAi to manipulate worker–worker division of labour.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ament, S. A., Corona, M., Pollock, H. S. & Robinson, G. E. Insulin signaling pathways are involved in the regulation of worker division of labor in honey bee colonies. Proc. Natl Acad. Sci. USA 105, 4226–4231 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ismail, N., Robinson, G. E. & Fahrbach, S. E. Stimulation of muscarinic receptors mimics experience-dependent plasticity in the honey bee brain. Proc. Natl Acad. Sci. USA 103, 207–211 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Ikeya, T., Galic, M., Belawat, P., Nairz, K. & Hafen, E. Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Curr. Biol. 12, 1293–1300 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Hoffman, E. A. & Goodisman, M. A. D. Gene expression and the evolution of phenotypic diversity in social wasps. BMC Biol. 5, 23 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Toth, A. L. et al. Wasp gene expression supports an evolutionary link between maternal behavior and eusociality. Science 318, 441–444 (2007). Outlines ideas from W. M. Wheeler, H. E. Evans, M. J. West-Eberhard and J. H. Hunt on the evolution of eusociality from maternal behaviour, and provides the first supporting molecular evidence. Also demonstrates the benefits of combining 'next-generation' sequencing with an important model social species that had been little studied from molecular or genetic perspectives.

    Article  CAS  PubMed  Google Scholar 

  55. Ben-Shahar, Y., Robichon, A., Sokolowski, M. B. & Robinson, G. E. Influence of gene action across different time scales on behavior. Science 296, 741–744 (2002). Reports on the first gene found to have a causal effect on worker–worker division of labour.

    Article  CAS  PubMed  Google Scholar 

  56. Ingram, K. K., Oefner, P. & Gordon, D. M. Task-specific expression of the foraging gene in harvester ants. Mol. Ecol. 14, 813–818 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Ruppell, O., Pankiw, T. & Page, R. E. Pleiotropy, epistasis and new QTL: the genetic architecture of honey bee foraging behavior. J. Hered. 95, 481–491 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Page, R. E. & Amdam, G. V. The making of a social insect: developmental architectures of social design. Bioessays 29, 334–343 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ben-Shahar, Y., Dudek, N. L. & Robinson, G. E. Phenotypic deconstruction reveals involvement of manganese transporter malvolio in honey bee division of labor. J. Exp. Biol. 207, 3281–3288 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Scharf, M. E., Wu-Scharf, D., Zhou, X., Pittendrigh, B. R. & Bennett, G. W. Gene expression profiles among immature and adult reproductive castes of the termite Reticulitermes flavipes. Insect Mol. Biol. 14, 31–34 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Zhou, X. G., Tarver, M. R. & Scharf, M. E. Hexamerin-based regulation of juvenile hormone-dependent gene expression underlies phenotypic plasticity in a social insect. Development 134, 601–610 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Zhou, X. G., Song, C., Grzymala, T. L. & Scharf, M. E. Juvenile hormone and colony conditions differentially influence cytochrome P450 gene expression in the termite Reticulitermes flavipes. Insect Mol. Biol. 15, 749–761 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Lienard, M. A., Lassance, J. M. X. S., Paulmier, I., Picimbon, J. F. & Lofstedt, C. Differential expression of cytochrome c oxidase subunit III gene in castes of the termite Reticulitermes santonensis. J. Insect Physiol. 52, 551–557 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Fujita, A., Miura, T. & Matsumoto, T. Differences in cellulose digestive systems among castes in two termite lineages. Physiol. Entomol. 33, 73–82 (2008).

    Article  CAS  Google Scholar 

  65. Hojo, M., Morioka, M., Matsumoto, T. & Miura, T. Identification of soldier caste-specific protein in the frontal gland of nasute termite Nasutitermes takasagoensis (Isoptera:Termitidae). Insect Biochem. Mol. Biol. 35, 347–354 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. West-Eberhard, M. J. in Natural History and Evolution of Paper Wasps (eds Turillazzi, S. & West-Eberhard, M. J.) 290–317 (Oxford Univ. Press, New York, 1996).

    Google Scholar 

  67. Linksvayer, T. A. & Wade, M. J. The evolutionary origin and elaboration of sociality in the aculeate Hymenoptera: maternal effects, sib-social effects, and heterochrony. Q. Rev. Biol. 80, 317–336 (2005).

    Article  PubMed  Google Scholar 

  68. Hunt, J. H. et al. A diapause pathway underlies the gyne phenotype in Polistes wasps, revealing an evolutionary route to caste-containing insect societies. Proc. Natl Acad. Sci. USA 104, 14020–14025 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Amdam, G. V., Nilsen, K. A., Norberg, K., Fondrk, M. K. & Hartfelder, K. Variation in endocrine signaling underlies variation in social life history. Am. Nat. 170, 37–46 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Amdam, G. V., Norberg, K., Fondrk, M. K. & Page, R. E. Reproductive ground plan may mediate colony-level selection effects on individual foraging behavior in honey bees. Proc. Natl Acad. Sci. USA 101, 11350–11355 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Amdam, G. V., Norberg, K., Hagen, A. & Omholt, S. W. Social exploitation of vitellogenin. Proc. Natl Acad. Sci. USA 100, 1799–1802 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Corona, M. et al. Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity. Proc. Natl Acad. Sci. USA 104, 7128–7133 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Amdam, G. V., Csondes, A., Fondrk, M. K. & Page, R. E. Complex social behaviour derived from maternal reproductive traits. Nature 439, 76–78 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Oldroyd, B. P. & Beekman, M. Effects of selection for honey bee worker reproduction on foraging traits. PLoS Biol. 6, e56 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Robinson, G. E. & Vargo, E. L. Juvenile hormone in adult eusocial hymenoptera: gonadotropin and behavioral pacemaker. Arch. Insect Biochem. Physiol. 35, 559–583 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Sullivan, J. P. et al. Juvenile hormone paces behavioral development in the adult worker honey bee. Horm. Behav. 37, 1–14 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. O'Donnell, S. & Jeanne, R. L. Methoprene accelerates age polyethism in workers of a social wasp (Polybia occidentalis). Physiol. Entomol. 18, 189–194 (1993).

    Article  CAS  Google Scholar 

  78. Giray, T. Giovanetti, M. & West-Eberhard, M. J. Juvenile hormone, reproduction, and worker behavior in the neotropical social wasp Polistes canadensis. Proc. Natl Acad. Sci. USA 102, 3330–3335 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Amdam, G. V. & Omholt, S. W. The hive bee to forager transition in honeybee colonies: the double repressor hypothesis. J. Theor. Biol. 223, 451–464 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Elekonich, M. M. et al. Larval juvenile hormone treatment affects pre-adult development, but not adult age at onset of foraging in worker honey bees (Apis mellifera). J. Insect Physiol. 49, 359–366 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Elekonich, M. M. & Robinson, G. E. Organizational and activational effects of hormones on insect behavior. J. Insect Physiol. 46, 1509–1515 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Bloch, G., Wheeler, D. E. & Robinson, G. E. in Hormones, Brain and Behavior Vol. II (ed. Pfaff, D.) 195–235 (Academic, London, 2002).

    Book  Google Scholar 

  83. Whitfield, C. W., Cziko, A. M. & Robinson, G. E. Gene expression profiles in the brain predict behavior in individual honey bees. Science 302, 296–299 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Whitfield, C. W. et al. Genomic dissection of behavioral maturation in the honey bee. Proc. Natl Acad. Sci. USA 103, 16068–16075 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sen Sarma, M., Whitfield, C. W. & Robinson, G. E. Species differences in brain gene expression profiles associated with adult behavioral maturation in honey bees. BMC Genomics 8, 202 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Whitfield, C. W. et al. Thrice out of Africa: ancient and recent expansions of the honey bee, Apis mellifera. Science 314, 642–645 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Foster, K. R., Wenseleers, T. & Ratnieks, F. L. W. Kin selection is the key to altruism. Trends Ecol. Evol. 21, 57–60 (2006).

    Article  PubMed  Google Scholar 

  88. Wilson, E. O. & Holldobler, B. Eusociality: origin and consequences. Proc. Natl Acad. Sci. USA 102, 13367–13371 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lehmann, L., Keller, L., West, S. & Roze, D. Group selection and kin selection: two concepts but one process. Proc. Natl Acad. Sci. USA 104, 6736–6739 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Robinson, G. E., Fahrbach, S. E. & Winston, M. L. Insect societies and the molecular biology of social behavior. Bioessays 19, 1099–1108 (1997).

    Article  CAS  PubMed  Google Scholar 

  91. Le Conte, Y. & Hefetz, A. Primer pheromones in social Hymenoptera. Annu. Rev. Entomol. 53, 523–542 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Pankiw, T., Huang, Z., Winston, M. L. & Robinson, G. E. Queen mandibular gland pheromone influences worker honey bee (Apis mellifera L.) foraging ontogeny and juvenile hormone titers. J. Insect Physiol. 44, 685–692 (1998).

    Article  PubMed  Google Scholar 

  93. Grozinger, C. M., Sharabash, N. M., Whitfield, C. W. & Robinson, G. E. Pheromone-mediated gene expression in the honey bee brain. Proc. Natl Acad. Sci. USA 100, 14519–14525 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Alaux, C. & Robinson, G. E. Releaser pheromone provokes immediate-early gene and slow behavioral response. J. Chem. Ecol. 33, 1346–1350 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Schwartz, M. P., Richards, M. H. & Danforth, B. N. Changing paradigms in insect social evolution: insights from Halictinae and Allodapine bees. Annu. Rev. Entomol. 52, 127–150 (2007).

    Article  CAS  Google Scholar 

  96. Hines, H. M., Hunt, J. H., O'Connor, T. K., Gillespie, J. J. & Cameron, S. A. Multigene phylogeny reveals eusociality evolved twice in vespid wasps. Proc. Natl Acad. Sci. USA 104, 3295–3299 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Brady, S. G., Schultz, T. R., Fisher, B. L. & Ward, P. S. Evaluating alternative hypotheses for the early evolution and diversification of ants. Proc. Natl Acad. Sci. USA 103, 18172–18177 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Foster, W. A. Soldier aphids go cuckoo. Trends Ecol. Evol. 17, 199–200 (2002).

    Article  Google Scholar 

  99. Duffy, J. E., Morrison, C. L. & Rios, R. Multiple origins of eusociality among sponge-dwelling shrimps (Synalpheus). Evolution 54, 503–516 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Faulkes, C. G. & Bennett, N. C. Family values: group dynamics and social control of reproduction in African mole-rats. Trends Ecol. Evol. 16, 184–190 (2001).

    Article  PubMed  Google Scholar 

  101. Honey Bee Genome Sequencing Consortium. Insights into social insects from the genome of the honey bee Apis mellifera. Nature 443, 931–948 (2006).

  102. Goodisman, M. A. D., Kovacs, J. L. & Hunt, B. G. Functional genetics and genomics in ants (Hymenoptera: Formicidae): the interplay of genes and social life. Myrmecol. News 11, 107–117 (2008).

    Google Scholar 

  103. Tsutsui, N. D., Suarez, A. V., Spagna, J. C. & Johnston, S. The evolution of genome size in ants. BMC Evol. Biol. 8, 64 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Seeley, T. D. & Tarpy, D. R. Queen promiscuity lowers disease within honeybee colonies. Proc. R. Soc. Lond., B, Biol. Sci. 274, 67–72 (2007).

    Article  Google Scholar 

  105. Judice, C. C. et al. Gene expression profiles underlying alternative caste phenotypes in a highly eusocial bee, Melipona quadrifasciata. Insect Mol. Biol. 15, 33–44 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Cristino, A. S. et al. Caste development and reproduction: a genome-wide analysis of hallmarks of insect eusociality. Insect Mol. Biol. 15, 703–714 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sinha, S., Ling, X., Whitfield, C. W., Zhai, C. & Robinson, G. E. Genome scan for cis-regulatory DNA motifs associated with social behavior in honey bees. Proc. Natl Acad. Sci. USA 103, 16352–16357 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kucharski, R., Maleszka, J., Foret, S. & Maleszka, R. Nutritional control of reproductive status in honeybees via DNA methylation. Science 319, 1827–1830 (2008). First demonstration of a function for DNA methylation in a social insect.

    Article  CAS  PubMed  Google Scholar 

  109. Beukeboom, L. W., Kamping, A. & van de Zande, L. Sex determination in the haplodiploid wasp Nasonia vitripennis (Hymenoptera: Chalcidoidea): a critical consideration of models and evidence. Semin. Cell Dev. Biol. 18, 371–378 (2007).

    Article  PubMed  Google Scholar 

  110. Beye, M., Hasselmann, M., Fondrk, M. K., Page, R. E. & Omholt, S. W. The gene csd is the primary signal for sexual development in the honeybee and encodes an SR-type protein. Cell 114, 419–429 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Hasselmann, M. et al. Evidence for the evolutionary nascence of a novel sex determination pathway in honeybees. Nature 454, 519–522 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Currie, C. R., Scott, J. A., Summerbell, R. C. & Malloch, D. Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398, 701–704 (1999).

    Article  CAS  Google Scholar 

  113. Termite: queen and workers. Online photo. Encyclopedia Britannica Online. [online] (2008).

  114. Hölldobler, B. Territoriality in ants. Proc. Am. Philos. Soc. 123, 211–218 (1979).

    Google Scholar 

  115. Barron, A. B., Maleszka, R., Vander Meer, R. K. & Robinson, G. E. Octopamine modulates honey bee dance behavior. Proc. Natl Acad. Sci. 104, 1703–1707 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. McInnes, D. A. & Tschinkel, W. R. Queen dimorphism and reproductive strategies in the fire ant Solenopsis geminata (Hymenoptera: Formicidae). Behav. Ecol. Sociobiol. 36, 367–375 (1995).

    Article  Google Scholar 

  117. Fersch, R., Buschinger, A. & Heinze, J. Queen polymorphism in the Australian ant Monomorium sp.10. Insectes Soc. 47, 280–284 (2000).

    Article  Google Scholar 

  118. Hora, R. R. et al. Small queens in the ant Ectatomma tuberculatum: a new case of social parasitism. Behav. Ecol. Sociobiol. 59, 285–292 (2005).

    Article  Google Scholar 

  119. Fjerdingstad, E. J. Control of body size of Lasius niger ant sexuals — worker interests, genes and environment. Mol. Ecol. 14, 3123–3132 (2005).

    Article  PubMed  Google Scholar 

  120. Bargum, K., Boomsma, J. J. & Sundstrom, L. A genetic component to size in queens of the ant, Formica truncorum. Behav. Ecol. Sociobiol. 57, 9–16 (2004). Genetic differences in queen size might also reflect genetic differences in division of labour in multi-queen societies, but this has not yet been shown.

    Article  Google Scholar 

  121. Buschinger, A. & Schreiber, M. Queen polymorphism and queen-morph related facultative polygyny in the ant, Myrmecina graminicola (Hymenoptera, Formicidae). Insect. Soc. 49, 344–353 (2002).

    Article  Google Scholar 

  122. Winter, U. & Buschinger, A. Genetically mediated queen polymorphism and caste determination in the slave-making ant, Harpagoxenus sublaevis (Hymenoptera, Formicidae). Entomol. Gen. 11, 125–137 (1986).

    Article  Google Scholar 

  123. Ohkawara, K., Nakayama, M., Satoh, A., Trindl, A. & Heinze, J. Clonal reproduction and genetic caste differences in a queen-polymorphic ant, Vollenhovia emeryi. Biol. Lett. 2, 359–363 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Abbot, P. & Chhatre, V. Kin structure provides no explanation for intruders in social aphids. Mol. Ecol. 16, 3659–3670 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Hughes, W. O. H., Sumner, S., Van Borm, S. & Boomsma, J. J. Worker caste polymorphism has a genetic basis in Acromyrmex leaf-cutting ants. Proc. Natl Acad. Sci. USA 100, 9394–9397 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Fraser, V. S., Kaufmann, B., Oldroyd, B. P. & Crozier, R. H. Genetic influence on caste in the ant Camponotus consobrinus. Behav. Ecol. Sociobiol. 47, 188–194 (2000).

    Article  Google Scholar 

  127. Rheindt, F. E., Strehl, C. P. & Gadau, J. A genetic component in the determination of worker polymorphism in the Florida harvester ant Pogonomyrmex badius. Insectes Soc. 52, 163–168 (2005).

    Article  Google Scholar 

  128. Jaffe, R., Kronauer, D. J. C., Kraus, F. B., Boomsma, J. J. & Moritz, R. F. A. Worker caste determination in the army ant Eciton burchellii. Biol. Lett. 3, 513–516 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Schwander, T., Rosset, H. & Chapuisat, M. Division of labor and worker size polymorphism in ant colonies: the impact of social and genetic factors. Behav. Ecol. Sociobiol. 59, 215–221 (2005).

    Article  Google Scholar 

  130. Stuart, R. J. & Page, R. E. J. Genetic component to division of labor among workers of a Leptothoracine ant. Naturwissenschaften 78, 375–377 (1991).

    Article  Google Scholar 

  131. Snyder, L. E. The genetics of social behavior in a polygynous ant. Naturwissenschaften 79, 525–527 (1992).

    Article  Google Scholar 

  132. O'Donnell, S. Genetic effects on task performance, but not on age polyethism, in a swarm-founding eusocial wasp. Anim. Behav. 55, 417–426 (1998).

    Article  CAS  PubMed  Google Scholar 

  133. Robinson, G. E. & Page, R. E. J. Genetic determination of guarding and undertaking in honey-bee colonies. Nature 333, 356–358 (1988).

    Article  Google Scholar 

  134. Frumhoff, P. C. & Baker, J. A genetic component to division of labour within honey bee colonies. Nature 333, 358–361 (1988).

    Article  Google Scholar 

  135. Goodisman, M. A. D. & Crozier, R. H. Association between caste and genotype in the termite Mastotermes darwiniensis Froggatt (Isoptera: Mastotermitidae). Aust. J. Entomol. 42, 1–5 (2003).

    Article  Google Scholar 

  136. Tian, H. S., Vinson, S. B. & Coates, C. J. Differential gene expression between alate and dealate queens in the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae). Insect Biochem. Mol. Biol. 34, 937–949 (2004).

    Article  CAS  Google Scholar 

  137. Evans, J. D. & Wheeler, D. E. Differential gene expression between developing queens and workers in the honey bee, Apis mellifera. Proc. Natl Acad. Sci. USA 96, 5575–5580 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Corona, M., Estrada, E. & Zurita, M. Differential expression of mitochondrial genes between queens and workers during caste determination in the honeybee Apis mellifera. J. Exp. Biol. 202, 929–938 (1999).

    CAS  PubMed  Google Scholar 

  139. Drapeau, M. D., Albert, S., Kucharski, R., Prusko, C. & Maleszka, R. Evolution of the Yellow/Major Royal Jelly Protein family and the emergence of social behavior in honey bees. Genome Res. 16, 1385–1394 (2006). A prominent example of a gene involved in worker–worker division of labour, but not through direct effects on the brain. Royal jelly is fed to larvae by 'nurse' honeybees, who produce it in their hypopharyngeal glands.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Barchuk, A. R. et al. Molecular determinants of caste differentiation in the highly eusocial honeybee Apis mellifera. BMC Dev. Biol. 7, 70 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Pereboom, J. J. M., Jordan, W. C., Sumner, S., Hammond, R. L. & Bourke, A. F. G. Differential gene expression in queen–worker caste determination in bumble-bees. Proc. R. Soc. Lond., B, Biol. Sci. 272, 1145–1152 (2005).

    Article  CAS  Google Scholar 

  142. Weil, T., Rehli, M. & Korb, J. Molecular basis for the reproductive division of labour in a lower termite. BMC Genomics 8, 198 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Graff, J., Jemielity, S., Parker, J. D., Parker, K. M. & Keller, L. Differential gene expression between adult queens and workers in the ant Lasius niger. Mol. Ecol. 16, 675–683 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Sumner, S., Pereboom, J. J. M. & Jordan, W. C. Differential gene expression and phenotypic plasticity in behavioural castes of the primitively eusocial wasp, Polistes canadensis. Proc. R. Soc. B 273, 19–26 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. Liu, N. N. & Zhang, L. CYP4AB1, CYP4AB2, and Gp-9 gene overexpression associated with workers of the red imported fire ant, Solenopsis invicta Buren. Gene 327, 81–87 (2004).

    Article  CAS  PubMed  Google Scholar 

  146. Ohashi, K., Natori, S. & Kubo, T. Expression of amylase and glucose oxidase in the hypopharyngeal gland with an age-dependent role change of the worker honeybee (Apis mellifera L.). Eur. J. Biochem. 265, 127–133 (1999).

    Article  CAS  PubMed  Google Scholar 

  147. Toma, D. P., Bolch, G., Moore, D. & Robinson, G. E. Changes in period mRNA levels in the brain and division of labor in honey bee colonies. Proc. Natl. Acad. Sci. USA 97, 6914–6919 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Shapira, M., Thompson, C. K., Soreq, H. & Robinson, G. E. Changes in neuronal acetylcholinesterase gene expression and division of labor in honeybee colonies. J. Mol. Neurosci. 17, 1–12 (2001).

    Article  CAS  PubMed  Google Scholar 

  149. Kucharski, R. & Maleszka, R. Molecular profiling of behavioural development: differential expression of mRNAs for inositol 1,4,5-trisphosphate 3-kinase isoforms in naive and experienced honeybees (Apis mellifera). Mol. Brain Res. 99, 92–101 (2002).

    Article  CAS  PubMed  Google Scholar 

  150. Thompson, G. J., Kucharski, R., Maleszka, R. & Oldroyd, B. P. Towards a molecular definition of worker sterility: differential gene expression and reproductive plasticity in honey bees. Insect Mol. Biol. 15, 637–644 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wolschin, F. & Amdam, G. V. Comparative proteomics reveal characteristics of life-history transitions in a social insect. Proteome Sci. 5, 10 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kutsukake, M. et al. Venomous protease of aphid soldier for colony defense. Proc. Natl Acad. Sci. USA 101, 11338–11343 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the students participating in the reading group of the Illinois Social Insect Training Initiative for helpful and stimulating discussion during the conception of this Review, and S. A. Cameron, C. M. Grozinger, members of the Suarez and Robinson laboratories, and three anonymous reviewers for comments that improved the manuscript. Research by the authors was supported by grants from the National Institutes of Health, the National Science Foundation, the United States Department of Agriculture and Burroughs Wellcome Trust (G.E.R.), the Illinois Sociogenomics Initiative (G.E.R.), the National Science Foundation (A.V.S.) and the University of Illinois Graduate College (C.R.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gene E. Robinson.

Related links

Related links

FURTHER INFORMATION

Andrew Suarez's homepage

Gene Robinson's homepage

Amy Toth's homepage

BeeBase

BeeSpace

Glossary

Division of labour

A social system in which individuals specialize in specific occupations. In insect societies, queens mostly reproduce, whereas workers engage in all tasks related to colony growth and development. Young workers tend to work in the nest, whereas older individuals forage outside the nest.

Queen

Individual(s) that produces most or all of the offspring in a social insect colony.

Worker

Individual that performs all tasks related to the growth and development of a social insect colony; engage in little, if any, personal reproduction.

Caste

Term used to describe a group of individuals in social insect colonies that specializes to some extent in specific occupations as a result of division of labour. Social insect castes can be associated with differences in age, anatomy and morphology.

Eusocial

Traditionally defined as social species that show three features: extreme asymmetries in reproduction, with some individuals reproducing a great deal and others little or not at all; overlapping generations of adults in the nest; and cooperative care of offspring.

Age polyethism

Change in behaviour with age; a term used primarily to describe behavioural maturation in some species of social insect workers.Results in age-related division of labour at the colony level.

Superorganism

A metaphor for a colony of social insects that highlights three key characteristics: first, the colony functions as a single, highly integrated unit; second, natural selection acts on the colony; and third, a relative lack of competition among individuals.

Polyandry

Multiple mating by females.

Social hybridogenesis

Only hybrid matings can produce workers; non-hybrid matings produce queens. It is similar to hybridogenesis in solitary species, whereby hybrid matings produce viable hybrid offspring, but the germ line is purely parental.

Thelytokous parthenogenesis

Production of females from unfertilized eggs (asexual reproduction).

Haplodiploid

A genetic system in which females develop from fertilized, diploid eggs and males develop from unfertilized, haploid eggs. In Hymenoptera (ants, bees and wasps), sex determination can occur through a single locus (although multiple loci exist in some species); heterozygotes are female and hemizygotes are male.

Kin selection

W. D. Hamilton's theory to explain the evolution of the hallmark of social life: altruistic cooperation (performing acts that are costly to the benefactor but that benefit others). For example, by helping a relative, an individual increases its fitness by increasing the number of copies of its genes in the population.

Colony-level selection

A special form of group (family) selection, first described by Charles Darwin, to explain the evolution of sterile workers in insect societies.

Diapause

Dormancy owing to unfavourable environmental conditions.

Storage proteins

Circulating lipoproteins used by insects to store nutrients.

Gynes

In insect societies, females that are destined to become queens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, C., Toth, A., Suarez, A. et al. Genetic and genomic analyses of the division of labour in insect societies. Nat Rev Genet 9, 735–748 (2008). https://doi.org/10.1038/nrg2429

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2429

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing