Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The evolution of cell types in animals: emerging principles from molecular studies

Key Points

  • Cell types in animals evolved by step-wise diversification into sister cell types, which is analogous to the evolution of species or genes. We can identify homologous cell types between species by comparing molecular fingerprints, which represent the unique aspects of the gene expression profile of a specific cell type.

  • Molecular fingerprint comparisons recently allowed the identification of homologous cell types in distantly related phyla, for example: motor neurons that are conserved across insects, vertebrates, nematodes and annelids; photoreceptors that are conserved across the animal kingdom; and blood cells in various bilaterian animals.

  • Ancient cell types are multifunctional, for example: the light-sensitive and locomotor steering rudder cell of sponges and cnidarians; the epithelial muscle cells in cnidarians; and the photosensitive–neurosecretory 'protoneuron'.

  • During cell type evolution, the multiple functions of ancient cell types are distributed in a complementary manner to descendant sister cell types. This major principle of cell type evolution is referred to here as functional segregation.

  • Cell type functional segregation explains the evolutionary emergence of axonal circuits in nervous-system evolution. For example, the wiring of the vertebrate retina and of the nose–hypothalamus–pituitary axis may have arisen by the functional segregation of sister cell types.

  • Functional divergence is a second important principle of cell type evolution. Here, cellular functions are retained in both descendant cell types but modified in different directions. Cell type functional divergence often involves gene duplication.

  • The acquisition of new functions can occur via the co-option of differentiation genes that were previously used by other cell types or by the de novo emergence of genes that are added to existing gene batteries.

  • In many cases, the development of cell types recapitulates the evolution of cell types. However, highly divergent developmental paths frequently generate homologous cell types that are shared between species, which indicate that cell type development is more plastic than cell type identity.

Abstract

Cell types are fundamental units of multicellular life but their evolution is obscure. How did the first cell types emerge and become distinct in animal evolution? What were the sets of cell types that existed at important evolutionary nodes that represent eumetazoan or bilaterian ancestors? How did these ancient cell types diversify further during the evolution of organ systems in the descending evolutionary lines? The recent advent of cell type molecular fingerprinting has yielded initial insights into the evolutionary interrelationships of cell types between remote animal phyla and has allowed us to define some first principles of cell type diversification in animal evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cell typogenesis: homologous cell types and sister cell types.
Figure 2: Homologous cell types identified by molecular fingerprints.
Figure 3: Ancient multifunctional cell types.
Figure 4: Modes of cell type diversification.
Figure 5: The evolution of neuronal circuits by functional segregation.

Similar content being viewed by others

References

  1. Leys, S. P. & Degnan, B. M. Cytological basis of photoresponsive behavior in a sponge larva. Biol. Bull. 201, 323–338 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Vickaryous, M. K. & Hall, B. K. Human cell type diversity, evolution, development, and classification with special reference to cells derived from the neural crest. Biol. Rev. Camb. Philos. Soc. 81, 425–455 (2006).

    Article  PubMed  Google Scholar 

  3. Valentine, J. W. in Keywords and Concepts in Evolutionary Devlopmental Biology (eds Hall, B. K. & Olson, W. M.) 35–53 (Harvard Univ. Press, Cambridge, 2003).

    Google Scholar 

  4. Arendt, D. Evolution of eyes and photoreceptor cell types. Int. J. Dev. Biol. 47, 563–571 (2003).

    PubMed  Google Scholar 

  5. Willmer, E. N. Cytology and Evolution (Academic Press, New York and London, 1970).

    Google Scholar 

  6. Salvini-Plawen, L. V. & Mayr, E. in Evolutionary Biology Vol. 10 (eds Hecht, M. K., Steere, W. C. & Wallace, B.) 207–263 (Plenum, New York, 1977).

    Book  Google Scholar 

  7. Arendt, D., Tessmar-Raible, K., Snyman, H., Dorresteijn, A. W. & Wittbrodt, J. Ciliary photoreceptors with a vertebrate-type opsin in an invertebrate brain. Science 306, 869–871 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Royuela, M., Fraile, B., Arenas, M. I. & Paniagua, R. Characterization of several invertebrate muscle cell types: a comparison with vertebrate muscles. Microsc. Res. Tech. 48, 107–115 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Seipel, K. & Schmid, V. Evolution of striated muscle: jellyfish and the origin of triploblasty. Dev. Biol. 282, 14–26 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Arendt, D. Genes and homology in nervous system evolution: comparing gene functions, expression patterns, and cell type molecular fingerprints. Theory Biosci. 124, 185–197 (2005). A conceptual review that discusses the different levels of homology in evolutionary developmental biology research; it introduces the concept of molecular fingerprints for cell type comparisons.

    Article  CAS  PubMed  Google Scholar 

  11. Seipel, K., Yanze, N. & Schmid, V. Developmental and evolutionary aspects of the basic helix–loop–helix transcription factors Atonal-like 1 and Achaete-scute homolog 2 in the jellyfish. Dev. Biol. 269, 331–345 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Tessmar-Raible, K. et al. Conserved sensory–neurosecretory cell types in annelid and fish forebrain: insights into hypothalamus evolution. Cell 129, 1389–1400 (2007). This paper unravels striking similarities in the regional specification and cell type inventory of the developing brain neurosecretory system in annelids and vertebrates.

    Article  CAS  PubMed  Google Scholar 

  13. Putnam, N. H. et al. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317, 86–94 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Lee, S. K. & Pfaff, S. L. Transcriptional networks regulating neuronal identity in the developing spinal cord. Nature Neurosci. 4, S1183–S1191 (2001).

    Article  Google Scholar 

  15. Wienholds, E. et al. MicroRNA expression in zebrafish embryonic development. Science 309, 310–311 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Raible, F. et al. Vertebrate-type intron-rich genes in the marine annelid Platynereis dumerilii. Science 310, 1325–1326 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Kortschak, R. D., Samuel, G., Saint, R. & Miller, D. J. EST analysis of the cnidarian Acropora millepora reveals extensive gene loss and rapid sequence divergence in the model invertebrates. Curr. Biol. 13, 2190–2195 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Koyanagi, M., Terakita, A., Kubokawa, K. & Shichida, Y. Amphioxus homologs of Go-coupled rhodopsin and peropsin having 11-cis- and all-trans-retinals as their chromophores. FEBS Lett. 531, 525–528 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Altincicek, B. & Vilcinskas, A. Analysis of the immune-related transcriptome of a lophotrochozoan model, the marine annelid Platynereis dumerilii. Front. Zool. 4, 18 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Thor, S. & Thomas, J. Motor neuron specification in worms, flies and mice: conserved and 'lost' mechanisms. Curr. Opin. Genet. Dev. 12, 558–564 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Denes, A. S. et al. Molecular architecture of annelid nerve cord supports common origin of nervous system centralization in bilateria. Cell 129, 277–288 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Rusten, T. E., Cantera, R., Kafatos, F. C. & Barrio, R. The role of TGFβ signaling in the formation of the dorsal nervous system is conserved between Drosophila and chordates. Development 129, 3575–3584 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Dufour, H. D. et al. Precraniate origin of cranial motoneurons. Proc. Natl Acad. Sci. USA 103, 8727–8732 (2006). A pioneering study that elucidates the homology between motor neurons in the brain of adult ascidians and in the hindbrain of vertebrates, exemplifying the cell type comparative approach.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Isoldi, M. C., Rollag, M. D., Castrucci, A. M. & Provencio, I. Rhabdomeric phototransduction initiated by the vertebrate photopigment melanopsin. Proc. Natl Acad. Sci. USA 102, 1217–1221 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Koyanagi, M., Kubokawa, K., Tsukamoto, H., Shichida, Y. & Terakita, A. Cephalochordate melanopsin: evolutionary linkage between invertebrate visual cells and vertebrate photosensitive retinal ganglion cells. Curr. Biol. 15, 1065–1069 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Plachetzki, D. C., Degnan, B. M. & Oakley, T. H. The origins of novel protein interactions during animal opsin evolution. PLoS ONE 2, e1054 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Suga, H., Schmid, V. & Gehring, W. J. Evolution and functional diversity of jellyfish opsins. Curr. Biol. 18, 51–55 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Arendt, D., Tessmar, K., de Campos-Baptista, M. I., Dorresteijn, A. & Wittbrodt, J. Development of pigment-cup eyes in the polychaete Platynereis dumerilii and evolutionary conservation of larval eyes in Bilateria. Development 129, 1143–1154 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Eichinger, L. et al. The genome of the social amoeba Dictyostelium discoideum. Nature 435, 43–57 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Velarde, R. A., Sauer, C. D., Walden, K. K., Fahrbach, S. E. & Robertson, H. M. Pteropsin: a vertebrate-like non-visual opsin expressed in the honey bee brain. Insect Biochem. Mol. Biol. 35, 1367–1377 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Blackshaw, S. & Snyder, S. H. Encephalopsin: a novel mammalian extraretinal opsin discretely localized in the brain. J. Neurosci. 19, 3681–3690 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Arendt, D. & Wittbrodt, J. Reconstructing the eyes of Urbilateria. Phil. Trans. R. Soc. Lond. Biol. Sci. B 356, 1545–1563 (2001).

    Article  CAS  Google Scholar 

  33. Lamb, T. D., Collin, S. P. & Pugh, E. N. Jr. Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup. Nature Rev. Neurosci. 8, 960–976 (2007). An essential read for those interested in vertebrate eye evolution. The authors discuss the evolution of retinal cell types with a special emphasis on opsins and on bipolar cells.

    Article  CAS  Google Scholar 

  34. Salo, E. et al. Genetic network of the eye in Platyhelminthes: expression and functional analysis of some players during planarian regeneration. Gene 287, 67–74 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Candiani, S., Holland, N. D., Oliveri, D., Parodi, M. & Pestarino, M. Expression of the amphioxus Pit-1 gene (AmphiPOU1F1/Pit-1) exclusively in the developing preoral organ, a putative homolog of the vertebrate adenohypophysis. Brain Res. Bull. 75, 324–330 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. de Velasco, B. et al. Specification and development of the pars intercerebralis and pars lateralis, neuroendocrine command centers in the Drosophila brain. Dev. Biol. 302, 309–323 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Hartenstein, V. The neuroendocrine system of invertebrates: a developmental and evolutionary perspective. J. Endocrinol. 190, 555–570 (2006). A comprehensive review of the anatomy and hormone release of neuroendocrine systems in various invertebrates. It also provides a detailed comparison of neuroendocrine-system specification in vertebrates and insects.

    Article  CAS  PubMed  Google Scholar 

  38. Tessmar-Raible, K. The evolution of neurosecretory centers in bilaterian forebrains: insights from protostomes. Semin. Cell Dev. Biol. 18, 492–501 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Lacalli, T. Mucus secretion and transport in amphioxus larvae: organization and ultrastructure of the food trapping system, and implications for head evolution. Acta Zool. Stockholm 89, 219–230 (2008).

    Article  Google Scholar 

  40. Kozmik, Z. et al. Pax–Six–Eya–Dach network during amphioxus development: conservation in vitro but context specificity in vivo. Dev. Biol. 306, 143–159 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Welsch, L. T. & Welsch, U. Histologische und elekronmikroskopische Untersuchungen an der präoralen Wimpergrube von Saccoglossus horsti (Hemichordata) und der Hatschekschen Grube von Branchiostoma lanceolatum (Acrania). Ein Beirag zur phylogenetischen Entwicklung der Adenohypophyse. Zool. Jahrb. Anat. 100, 564–578 (1978).

    Google Scholar 

  42. Yasui, K., Zhang, S., Uemura, M. & Saiga, H. Left–right asymmetric expression of BbPtx, a Ptx-related gene, in a lancelet species and the developmental left-sidedness in deuterostomes. Development 127, 187–195 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Nozaki, M. & Gorbman, A. The question of functional homology of Hatschek's pit of amphioxus (Branchiostoma belcheri) and the vertebrate adenohypophysis. Zool. Sci. 9, 387–395 (1992).

    CAS  Google Scholar 

  44. Hartenstein, V. Blood cells and blood cell development in the animal kingdom. Annu. Rev. Cell Dev. Biol. 22, 677–712 (2006). An excellent survey of blood cell types in various bilaterians. Hartenstein speculates on how the diverse cell types of the immune system in extant animals have evolved from common evolutionary precursors.

    Article  CAS  PubMed  Google Scholar 

  45. Evans, C. J., Hartenstein, V. & Banerjee, U. Thicker than blood: conserved mechanisms in Drosophila and vertebrate hematopoiesis. Dev. Cell 5, 673–690 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Palmer, C., Diehn, M., Alizadeh, A. A. & O'Brown, P. Cell-type specific gene expression profiles of leukocytes in human peripheral blood. BMC Genomics 7, 115 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Li, J. et al. cDNA microarray analysis reveals fundamental differences in the expression profiles of primary human monocytes, monocyte-derived macrophages, and alveolar macrophages. J. Leukoc. Biol. 81, 328–335 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Franc, N. C., Heitzler, P., Ezekowitz, R. A. & White, K. Requirement for croquemort in phagocytosis of apoptotic cells in Drosophila. Science 284, 1991–1994 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Fadok, V. A. et al. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405, 85–90 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Pancer, Z. & Cooper, M. D. The evolution of adaptive immunity. Annu. Rev. Immunol. 24, 497–518 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Pancer, Z. Dynamic expression of multiple scavenger receptor cysteine-rich genes in coelomocytes of the purple sea urchin. Proc. Natl Acad. Sci. USA 97, 13156–13161 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Smith, L. C., Shih, C. S. & Dachenhausen, S. G. Coelomocytes express SpBf, a homologue of factor B, the second component in the sea urchin complement system. J. Immunol. 161, 6784–6793 (1998).

    CAS  PubMed  Google Scholar 

  53. Gross, P. S., Clow, L. A. & Smith, L. C. SpC3, the complement homologue from the purple sea urchin, Strongylocentrotus purpuratus, is expressed in two subpopulations of the phagocytic coelomocytes. Immunogenetics 51, 1034–1144 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Crozatier, M., Ubeda, J. M., Vincent, A. & Meister, M. Cellular immune response to parasitization in Drosophila requires the EBF orthologue collier. PLoS Biol. 2, E196 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Hartenstein, V. & Mandal, L. The blood/vascular system in a phylogenetic perspective. Bioessays 28, 1203–1210 (2006).

    Article  PubMed  Google Scholar 

  56. Sugino, K. et al. Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nature Neurosci. 9, 99–107 (2006). Pioneering work on the classification of neuron types in the vertebrate telencephalon, based on expression profiling.

    Article  CAS  PubMed  Google Scholar 

  57. Blackshaw, S., Fraioli, R. E., Furukawa, T. & Cepko, C. L. Comprehensive analysis of photoreceptor gene expression and the identification of candidate retinal disease genes. Cell 107, 579–589 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Vigh, B. et al. The system of cerebrospinal fluid-contacting neurons. Its supposed role in the nonsynaptic signal transmission of the brain. Histol. Histopathol. 19, 607–628 (2004). This is one of the many excellent reviews by Vigh on the system of cerebrospinal fluid-contacting neurons in vertebrates and the supposed evolutionary origin of such neurons from an ancient 'protoneuron'.

    CAS  PubMed  Google Scholar 

  59. Leys, S. P., Cronin, T. W., Degnan, B. M. & Marshall, J. N. Spectral sensitivity in a sponge larva. J. Comp. Physiol. A. Neuroethol. Sens. Neural Behav. Physiol. 188, 199–202 (2002).

    Article  PubMed  Google Scholar 

  60. Nordstrom, K., Wallen, R., Seymour, J. & Nilsson, D. A simple visual system without neurons in jellyfish larvae. Proc. R. Soc. Lond. B 270, 2349–2354 (2003).

    Article  Google Scholar 

  61. Mackie, G. O. Neuroid conduction and the evolution of conducting tissues. Q. Rev. Biol. 45, 319–332 (1970).

    Article  CAS  PubMed  Google Scholar 

  62. Clark, J. Note on the infusoria flagellata and the spongiae ciliatae. Am. J. Sci. 1, 113–114 (1866).

    Google Scholar 

  63. Philippe, H. et al. Phylogenomics of eukaryotes: impact of missing data on large alignments. Mol. Biol. Evol. 21, 1740–1752 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Lang, B. F., O'Kelly, C., Nerad, T., Gray, M. W. & Burger, G. The closest unicellular relatives of animals. Curr. Biol. 12, 1773–1778 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. King, N. et al. The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451, 783–788 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu, I. S. C. et al. Developmental expression of a novel murine homeobox gene (Chx10): evidence for roles in determination of the neuroretina and inner nuclear layer. Neuron 13, 377–393 (1994).

    Article  CAS  PubMed  Google Scholar 

  67. Chow, R. L. et al. Vsx1, a rapidly evolving paired-like homeobox gene expressed in cone bipolar cells. Mech. Dev. 109, 315–322 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Livne-bar, I. et al. Chx10 is required to block photoreceptor differentiation but is dispensable for progenitor proliferation in the postnatal retina. Proc. Natl Acad. Sci. USA 103, 4988–4993 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dorval, K. M., Bobechko, B. P., Fujieda, H., Chen, S. & Zack, D. J. Chx10 targets a subset of photoreceptor genes. J. Biol. Chem. 281, 744–751 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Braasch, I., Schartl, M. & Volff, J. N. Evolution of pigment synthesis pathways by gene and genome duplication in fish. BMC Evol. Biol. 7, 74 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Kasahara, M., Suzuki, T. & Pasquier, L. D. On the origins of the adaptive immune system: novel insights from invertebrates and cold-blooded vertebrates. Trends Immunol. 25, 105–111 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Kasahara, M. The 2R hypothesis: an update. Curr. Opin. Immunol. 19, 547–552 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Buck, L. B. The molecular architecture of odor and pheromone sensing in mammals. Cell 100, 611–618 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Vogel, C. & Chothia, C. Protein family expansions and biological complexity. PLoS Comput. Biol. 2, e48 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Ding, G. et al. Insights into the coupling of duplication events and macroevolution from an age profile of animal transmembrane gene families. PLoS Comput. Biol. 2, e102 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Collin, S. P. & Trezise, A. E. The origins of colour vision in vertebrates. Clin. Exp. Optom. 87, 217–223 (2004).

    Article  PubMed  Google Scholar 

  77. Collin, S. P. et al. Ancient colour vision: multiple opsin genes in the ancestral vertebrates. Curr. Biol. 13, R864–R865 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Plachetzki, D. C., Serb, J. M. & Oakley, T. H. New insights into the evolutionary history of photoreceptor cells. Trends Ecol. Evol. 20, 465–467 (2005).

    Article  PubMed  Google Scholar 

  79. Plachetzki, D. C. & Oakley, T. H. Key transitions during the evolution of animal phototransduction: novelty, ''tree-thinking'', co-option, and co-duplication. Integr. Comp. Biol. 47, 759–769 (2007). An account of the excellent conceptual work of Oakley and colleagues on cell type evolution. Cell type is one of many hierarchical levels of character evolution that evolves according to common principles.

    Article  CAS  PubMed  Google Scholar 

  80. Nordstrom, K., Larsson, T. A. & Larhammar, D. Extensive duplications of phototransduction genes in early vertebrate evolution correlate with block (chromosome) duplications. Genomics 83, 852–872 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Oakley, T. H., Plachetzki, D. C. & Rivera, A. S. Furcation, field-splitting, and the evolutionary origins of novelty in arthropod photoreceptors. Arthropod Struct. Dev. 36, 386–400 (2007).

    Article  PubMed  Google Scholar 

  82. Force, A. et al. Preservation of duplicate genes by complementary degenerative mutations. Genetics 151, 1531–1545 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lynch, M. The frailty of adaptive hypotheses for the origins of organismal complexity. Proc. Natl Acad. Sci. USA 104 (Suppl. 1), 8597–8604 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Serb, J. M. & Oakley, T. H. Hierarchical phylogenetics as a quantitative analytical framework for evolutionary developmental biology. Bioessays 27, 1158–1166 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Nuchter, T., Benoit, M., Engel, U., Ozbek, S. & Holstein, T. W. Nanosecond-scale kinetics of nematocyst discharge. Curr. Biol. 16, R316–R318 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Hwang, J. S. et al. The evolutionary emergence of cell type-specific genes inferred from the gene expression analysis of Hydra. Proc. Natl Acad. Sci. USA 104, 14735–14740 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Miljkovic-Licina, M., Gauchat, D. & Galliot, B. Neuronal evolution: analysis of regulatory genes in a first-evolved nervous system, the hydra nervous system. Biosystems 76, 75–87 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Prud'homme, B. et al. Repeated morphological evolution through cis-regulatory changes in a pleiotropic gene. Nature 440, 1050–1053 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Purschke, G., Arendt, D., Hausen, H. & Müller, M. C. M. Photoreceptor cells and eyes in Annelida. Arthropod Struct. Dev. 35, 211–230 (2006).

    Article  PubMed  Google Scholar 

  90. Haeckel, E. Die Gastraea-Theorie, die phylogenetische Classification des Thierreiches und die Homologie der Keimblätter. Jena Z. Naturwiss. 8, 1–55 (1874).

    Google Scholar 

  91. Tian, H., Schlager, B., Xiao, H. & Sommer, R. J. Wnt signaling induces vulva development in the nematode Pristionchus pacificus. Curr. Biol. 18, 142–146 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Hudson, C. & Yasuo, H. A signalling relay involving Nodal and Delta ligands acts during secondary notochord induction in Ciona embryos. Development 133, 2855–2864 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Yasuo, H. & Hudson, C. FGF8/17/18 functions together with FGF9/16/20 during formation of the notochord in Ciona embryos. Dev. Biol. 302, 92–103 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Smith, J. C. Making mesoderm — upstream and downstream of Xbra. Int. J. Dev. Biol. 45, 219–224 (2001).

    CAS  PubMed  Google Scholar 

  95. Penn, B. H., Bergstrom, D. A., Dilworth, F. J., Bengal, E. & Tapscott, S. J. A. MyoD-generated feed-forward circuit temporally patterns gene expression during skeletal muscle differentiation. Genes. Dev. 18, 2348–2353 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sandmann, T. et al. A core transcriptional network for early mesoderm development in Drosophila melanogaster. Genes. Dev. 21, 436–449 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cripps, R. M. & Olson, E. N. Control of cardiac development by an evolutionarily conserved transcriptional network. Dev. Biol. 246, 14–28 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Oota, S. & Saitou, N. Phylogenetic relationship of muscle tissues deduced from superimposition of gene trees. Mol. Biol. Evol. 16, 856–867 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Gans, C. & Northcutt, R. G. Neural crest and the origin of vertebrates: a new head. Science 220, 268–273 (1983).

    Article  CAS  PubMed  Google Scholar 

  100. Sauka-Spengler, T., Meulemans, D., Jones, M. & Bronner-Fraser, M. Ancient evolutionary origin of the neural crest gene regulatory network. Dev. Cell 13, 405–420 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Martinez-Morales, J. R., Henrich, T., Ramialison, M. & Wittbrodt, J. New genes in the evolution of the neural crest differentiation program. Genome Biol. 8, R36 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Rychel, A. L. & Swalla, B. J. Development and evolution of chordate cartilage. J. Exp. Zoolog. B Mol. Dev. Evol. 308, 325–335 (2007).

    Article  CAS  Google Scholar 

  103. Couly, G. F., Coltey, P. M. & Le Douarin, N. M. The triple origin of skull in higher vertebrates: a study in quail-chick chimeras. Development 117, 409–429 (1993).

    Article  CAS  PubMed  Google Scholar 

  104. Donoghue, P. C. J. & Sansom, I. J. Origin and early evolution of vertebrate skeletonization. Microsc. Res. Tech. 59, 352–372 (2002). An exceptional review on the evolution of skeletal systems in the deuterostomes.

    Article  PubMed  Google Scholar 

  105. Meulemans, D. & Bronner-Fraser, M. Insights from amphioxus into the evolution of vertebrate cartilage. PLoS ONE 2, e787 (2007). The authors define a hierarchy of gene regulatory networks that specifies cell types in the neural crest. The conservation of each level of this network hierarchy is investigated in the basal chordate amphioxus.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Gehring, W. J. & Ikeo, K. Pax6: mastering eye morphogenesis and eye evolution. Trends Genet. 15, 371–377 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Carl, M., Loosli, F. & Wittbrodt, J. Six3 inactivation reveals its essential role for the formation and patterning of the vertebrate eye. Development 129, 4057–4063 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Manavathi, B. et al. Repression of Six3 by a corepressor regulates rhodopsin expression. Proc. Natl Acad. Sci. USA 104, 13128–13133 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ma, Q. Transcriptional regulation of neuronal phenotype in mammals. J. Physiol. 575, 379–387 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tanabe, Y., William, C. & Jessell, T. M. Specification of motor neuron identity by the MNR2 homeodomain protein. Cell 95, 67–80 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. Pattyn, A. et al. Coordinated temporal and spatial control of motor neuron and serotonergic neuron generation from a common pool of CNS progenitors. Genes Dev. 17, 729–737 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chen, C. L. et al. Runx1 determines nociceptive sensory neuron phenotype and is required for thermal and neuropathic pain. Neuron 49, 365–377 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Kramer, I. et al. A role for Runx transcription factor signaling in dorsal root ganglion sensory neuron diversification. Neuron 49, 379–393 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Marmigere, F. et al. The Runx1/AML1 transcription factor selectively regulates development and survival of TrkA nociceptive sensory neurons. Nature Neurosci. 9, 180–187 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Bushati, N. & Cohen, S. M. microRNA functions. Annu. Rev. Cell Dev. Biol. 23, 175–205 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Moroz, L. L. et al. Neuronal transcriptome of aplysia: neuronal compartments and circuitry. Cell 127, 1453–1467 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gorbman, A. Olfactory origins and evolution of the brain-pituitary endocrine system: facts and speculation. Gen. Comp. Endocrinol. 97, 171–178 (1995). A review on the comparative anatomy and evolutionary origin of the vertebrate pituitary. The pituitary is deduced from an olfactory precursor structure in vertebrate ancestors.

    Article  CAS  PubMed  Google Scholar 

  118. Toro, S. & Varga, Z. M. Equivalent progenitor cells in the zebrafish anterior preplacodal field give rise to adenohypophysis, lens, and olfactory placodes. Semin. Cell Dev. Biol. 18, 534–542 (2007).

    Article  PubMed  Google Scholar 

  119. Muske, L. E. Evolution of gonadotropin-releasing hormone (GnRH) neuronal systems. Brain Behav. Evol. 42, 215–230 (1993).

    Article  CAS  PubMed  Google Scholar 

  120. Yoon, H., Enquist, L. W. & Dulac, C. Olfactory inputs to hypothalamic neurons controlling reproduction and fertility. Cell 123, 669–682 (2005).

    Article  CAS  PubMed  Google Scholar 

  121. Hennig, W. Phylogenetic Systematics (Univ. of Illinois Press, Urbana, 1966).

    Google Scholar 

  122. Page, R. D. & Charleston, M. A. From gene to organismal phylogeny: reconciled trees and the gene tree/species tree problem. Mol. Phylogenet. Evol. 7, 231–240 (1997).

    Article  CAS  PubMed  Google Scholar 

  123. Green, P., Hartenstein, A. Y. & Hartenstein, V. The embryonic development of the Drosophila visual system. Cell Tissue Res. 273, 583–598 (1993).

    Article  CAS  PubMed  Google Scholar 

  124. Ruiz, M. S. & Anadon, R. Some considerations on the fine structure of rhabdomeric photoreceptors in the amphioxus, Branchiostoma lanceolatum (Cephalochordata). J. Hirnforsch 32, 159–164 (1991).

    CAS  PubMed  Google Scholar 

  125. Leonhardt, H. in Handbuch der mikroskopischen Anatomie des Menschen Vol. 4 (eds Oksche, A. & Vollrath, L.) 177–666 (Springer, Heidelberg, 1980).

    Google Scholar 

  126. Seipel, K. & Schmid, V. Mesodermal anatomies in cnidarian polyps and medusae. Int. J. Dev. Biol. 50, 589–599 (2006).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank G. Jekely, D. Nilsson, F. Spitz and the three unknown referees for helpful comments on earlier versions of the manuscript, and the members of the Arendt laboratory for various valuable discussions.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Detlev Arendt's homepage

Glossary

Opsins

A family of G-protein-coupled receptors that function as light-sensitive photopigments.

Urbilaterian

The last common ancestor of all bilaterians.

Nematocyte

A venomous cell that evolved for catching prey and for predator defence by releasing the nematocyst, which is a miniature cellular weapon, in one of the fastest movements in the animal kingdom.

Cnidarian

Radially symmetrical animal that has a sac-like body with only one opening. The group includes jellyfish, corals, hydra and anemones

Amphioxus

The common name for the cephalochordate Branchiostoma lanceolatus, the most basal living invertebrate that is related to vertebrates.

Ascidian

A group of sessile animals with swimming larvae that are the closest living invertebrate relatives of the vertebrates.

Eumetazoa

All animals (metazoa) except sponges.

Ostracod

The ostracoda are a group of crustaceans known as seed shrimps.

Subfunctionalization

The process whereby a pair of duplicated genes becomes permanently preserved because the two gene copies have reciprocally lost essential subfunctions by acquiring complementary degenerative mutations.

Horizontal gene transfer

The transfer of genetic material between the genomes of two organisms that does not occur through parent–progeny transmission.

Notochord

A rod-shaped structure that runs along the dorsal axis of the embryo, separating the muscle blocks. The notochord is one of the defining features of the phylum Chordata, which vertebrates belong to.

Neural crest

A migratory cell population that arises at the lateral extremities of the embryonic neural plate, and which differentiates into various cell types, depending on the location. These cells include endothelial cells, smooth and skeletal muscle cells, bone, adrenal medulla, and cells of the sensory and autonomic nervous systems.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arendt, D. The evolution of cell types in animals: emerging principles from molecular studies. Nat Rev Genet 9, 868–882 (2008). https://doi.org/10.1038/nrg2416

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2416

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing