Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genome-wide approaches to studying chromatin modifications

Key Points

  • Chromatin modifications have been shown to have a profound impact on the regulation of gene expression.

  • Epigenomes consist of the ensemble of all chromatin modifications in any given cell type, including DNA methylation, post-translational histone modifications, nucleosome positioning, histone variants, noncoding RNAs and three-dimensional chromatin architecture.

  • New technologies, which allow for the profiling of chromatin modifications on a genome-wide scale, are providing researchers with comprehensive views of epigenomes.

  • Genome-scale data sets for epigenetic phenomena allow for the use of bioinformatic methods to study epigenetics.

  • Different functional regions of the genome are associated with distinct patterns of histone modifications and these patterns, in turn, can be used to annotate the functional elements in the genome.

Abstract

Over two metres of DNA is packaged into each nucleus in the human body in a manner that still allows for gene regulation. This remarkable feat is accomplished by the wrapping of DNA around histone proteins in repeating units of nucleosomes to form a structure known as chromatin. This chromatin structure is subject to various modifications that have profound influences on gene expression. Recently developed techniques to study chromatin modifications at a genome-wide scale are now allowing researchers to probe the complex components that make up epigenomes. Here we review genome-wide approaches to studying epigenomic structure and the exciting findings that have been obtained using these technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genome-wide methods for studying DNA methylation.
Figure 2: Chromatin immunoprecipitation combined with DNA microarrays (ChIP–chip).
Figure 3: Chromatin immunoprecipitation combined with serial analysis of gene expression (ChIP–SAGE).
Figure 4: Chromatin immunoprecipitation combined with high-throughput sequencing techniques (ChIP–Seq).
Figure 5: Characteristics of epigenomes.

Similar content being viewed by others

References

  1. Goldberg, A. D., Allis, C. D. & Bernstein, E. Epigenetics: a landscape takes shape. Cell 128, 635–638 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Ptashne, M. On the use of the word 'epigenetic'. Curr. Biol. 17, R233–R236 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Bird, A. Perceptions of epigenetics. Nature 447, 396–398 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Bernstein, B. E., Meissner, A. & Lander, E. S. The mammalian epigenome. Cell 128, 669–681 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Orlando, V. & Paro, R. Mapping Polycomb-repressed domains in the bithorax complex using in vivo formaldehyde cross-linked chromatin. Cell 75, 1187–1198 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Blat, Y. & Kleckner, N. Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the centric region. Cell 98, 249–259 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Ren, B. et al. Genome-wide location and function of DNA binding proteins. Science 290, 2306–2309 (2000). This paper introduced the ChIP–chip technique, used here to map Gal4 and Ste12 binding sites in the yeast genome.

    Article  CAS  PubMed  Google Scholar 

  8. Bernstein, B. E. et al. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc. Natl Acad. Sci. USA 99, 8695–8700 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Robyr, D. et al. Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases. Cell 109, 437–446 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Robyr, D. & Grunstein, M. Genomewide histone acetylation microarrays. Methods 31, 83–89 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Bernstein, B. E., Liu, C. L., Humphrey, E. L., Perlstein, E. O. & Schreiber, S. L. Global nucleosome occupancy in yeast. Genome Biol. 5, R62 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lee, C. K., Shibata, Y., Rao, B., Strahl, B. D. & Lieb, J. D. Evidence for nucleosome depletion at active regulatory regions genome-wide. Nature Genet. 36, 900–905 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Ozsolak, F., Song, J. S., Liu, X. S. & Fisher, D. E. High-throughput mapping of the chromatin structure of human promoters. Nature Biotechnol. 25, 244–248 (2007). This study mapped nucleosome positions across 3,700 promoters in seven human cell lines using MNase digestion followed by hybridization to tiling microarrays.

    Article  CAS  Google Scholar 

  14. Impey, S. et al. Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell 119, 1041–1054 (2004).

    CAS  PubMed  Google Scholar 

  15. Roh, T. Y., Ngau, W. C., Cui, K., Landsman, D. & Zhao, K. High-resolution genome-wide mapping of histone modifications. Nature Biotechnol. 22, 1013–1016 (2004).

    Article  CAS  Google Scholar 

  16. Wei, C. L. et al. A global map of p53 transcription-factor binding sites in the human genome. Cell 124, 207–219 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Johnson, D. S., Mortazavi, A., Myers, R. M. & Wold, B. Genome-wide mapping of in vivo protein–DNA interactions. Science 316, 1497–1502 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Robertson, G. et al. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nature Methods 4, 651–657 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007). Together with Reference 17, these studies were the first to demonstrate how ChIP–Seq can be used to profile histone modifications and DNA-binding sites across the entire human genome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Feinberg, A. P. Phenotypic plasticity and the epigenetics of human disease. Nature 447, 433–440 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Esteller, M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nature Rev. Genet. 8, 286–298 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Gardiner-Garden, M. & Frommer, M. CpG islands in vertebrate genomes. J. Mol. Biol. 196, 261–282 (1987).

    Article  CAS  PubMed  Google Scholar 

  25. Takai, D. & Jones, P. A. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc. Natl Acad. Sci. USA 99, 3740–3745 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ng, H. H. & Bird, A. DNA methylation and chromatin modification. Curr. Opin. Genet. Dev. 9, 158–163 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Ioshikhes, I. P. & Zhang, M. Q. Large-scale human promoter mapping using CpG islands. Nature Genet. 26, 61–63 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Bell, A. C., West, A. G. & Felsenfeld, G. The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell 98, 387–396 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Hark, A. T. et al. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405, 486–489 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Tate, P. H. & Bird, A. P. Effects of DNA methylation on DNA-binding proteins and gene expression. Curr. Opin. Genet. Dev. 3, 226–231 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Robertson, K. D. & Wolffe, A. P. DNA methylation in health and disease. Nature Rev. Genet. 1, 11–19 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Baylin, S. B. & Herman, J. G. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet. 16, 168–174 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Jones, P. A. & Laird, P. W. Cancer epigenetics comes of age. Nature Genet. 21, 163–167 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Zilberman, D. & Henikoff, S. Genome-wide analysis of DNA methylation patterns. Development 134, 3959–3965 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Bird, A. P. & Southern, E. M. Use of restriction enzymes to study eukaryotic DNA methylation: I. The methylation pattern in ribosomal DNA from Xenopus laevis. J. Mol. Biol. 118, 27–47 (1978).

    Article  CAS  PubMed  Google Scholar 

  36. Selker, E. U. et al. The methylated component of the Neurospora crassa genome. Nature 422, 893–897 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Khulan, B. et al. Comparative isoschizomer profiling of cytosine methylation: the HELP assay. Genome Res. 16, 1046–1055 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lippman, Z. et al. Role of transposable elements in heterochromatin and epigenetic control. Nature 430, 471–476 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Yan, P. S. et al. Dissecting complex epigenetic alterations in breast cancer using CpG island microarrays. Cancer Res. 61, 8375–8380 (2001).

    CAS  PubMed  Google Scholar 

  40. Hatada, I. et al. A microarray-based method for detecting methylated loci. J. Hum. Genet. 47, 448–451 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Rollins, R. A. et al. Large-scale structure of genomic methylation patterns. Genome Res. 16, 157–163 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Frommer, M. et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl Acad. Sci. USA 89, 1827–1831 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Herman, J. G., Graff, J. R., Myohanen, S., Nelkin, B. D. & Baylin, S. B. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl Acad. Sci. USA 93, 9821–9826 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Eads, C. A. et al. MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res. 28, e32 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Meissner, A. et al. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res. 33, 5868–5877 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Adorjan, P. et al. Tumour class prediction and discovery by microarray-based DNA methylation analysis. Nucleic Acids Res. 30, e21 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gitan, R. S., Shi, H., Chen, C. M., Yan, P. S. & Huang, T. H. Methylation-specific oligonucleotide microarray: a new potential for high-throughput methylation analysis. Genome Res. 12, 158–164 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dupont, J. M., Tost, J., Jammes, H. & Gut, I. G. De novo quantitative bisulfite sequencing using the pyrosequencing technology. Anal. Biochem. 333, 119–127 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Mockler, T. C. et al. Applications of DNA tiling arrays for whole-genome analysis. Genomics 85, 1–15 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Bibikova, M. et al. High-throughput DNA methylation profiling using universal bead arrays. Genome Res. 16, 383–393 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rakyan, V. K. et al. DNA methylation profiling of the human major histocompatibility complex: a pilot study for the human epigenome project. PLoS Biol. 2, e405 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Eckhardt, F. et al. DNA methylation profiling of human chromosomes 6, 20 and 22. Nature Genet. 38, 1378–1385 (2006). The follow-up study from the Human Epigenome Project consortium, which profiled DNA methylation on three human chromosomes for several healthy tissues and primary cells by sequencing bisulphite-treated DNA.

    Article  CAS  PubMed  Google Scholar 

  53. Keshet, I. et al. Evidence for an instructive mechanism of de novo methylation in cancer cells. Nature Genet. 38, 149–153 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Weber, M. et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nature Genet. 37, 853–862 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Zhang, X. et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126, 1189–1201 (2006). The first comprehensive map of DNA methylation for an entire genome, produced by performing mCIP combined with tiling microarrays with 35 bp resolution.

    Article  CAS  PubMed  Google Scholar 

  56. Zilberman, D., Gehring, M., Tran, R. K., Ballinger, T. & Henikoff, S. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nature Genet. 39, 61–69 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Shen, L. et al. Genome-wide profiling of DNA methylation reveals a class of normally methylated CpG island promoters. PLoS Genet. 3, 2023–2036 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Weber, M. et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nature Genet. 39, 457–466 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Das, R. et al. Computational prediction of methylation status in human genomic sequences. Proc. Natl Acad. Sci. USA 103, 10713–10716 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fang, F., Fan, S., Zhang, X. & Zhang, M. Q. Predicting methylation status of CpG islands in the human brain. Bioinformatics 22, 2204–2209 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Bock, C. et al. CpG island methylation in human lymphocytes is highly correlated with DNA sequence, repeats, and predicted DNA structure. PLoS Genet. 2, e26 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bock, C., Walter, J., Paulsen, M. & Lengauer, T. CpG island mapping by epigenome prediction. PLoS Comput. Biol. 3, e110 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Roth, S. Y. & Allis, C. D. Chromatin condensation: does histone H1 dephosphorylation play a role? Trends Biochem. Sci. 17, 93–98 (1992).

    Article  CAS  PubMed  Google Scholar 

  64. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Turner, B. M. Histone acetylation and an epigenetic code. Bioessays 22, 836–845 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Schreiber, S. L. & Bernstein, B. E. Signaling network model of chromatin. Cell 111, 771–778 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Li, B., Carey, M. & Workman, J. L. The role of chromatin during transcription. Cell 128, 707–719 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Schubeler, D. et al. The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev. 18, 1263–1271 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Liu, C. L. et al. Single-nucleosome mapping of histone modifications in S. cerevisiae. PLoS Biol. 3, e328 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pokholok, D. K. et al. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122, 517–527 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Bernstein, B. E. et al. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120, 169–181 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Koch, C. M. et al. The landscape of histone modifications across 1% of the human genome in five human cell lines. Genome Res. 17, 691–707 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Heintzman, N. D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nature Genet. 39, 311–318 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Kim, T. H. et al. A high-resolution map of active promoters in the human genome. Nature 436, 876–880 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Roh, T. Y., Cuddapah, S., Cui, K. & Zhao, K. The genomic landscape of histone modifications in human T cells. Proc. Natl Acad. Sci. USA 103, 15782–15787 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Roh, T. Y., Cuddapah, S. & Zhao, K. Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping. Genes Dev. 19, 542–552 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Guenther, M. G., Levine, S. S., Boyer, L. A., Jaenisch, R. & Young, R. A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77–88 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ng, H. H., Robert, F., Young, R. A. & Struhl, K. Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol. Cell 11, 709–719 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Martens, J. H. et al. The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J. 24, 800–812 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Boyer, L. A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Lee, T. I. et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125, 301–313 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Squazzo, S. L. et al. Suz12 binds to silenced regions of the genome in a cell-type-specific manner. Genome Res. 16, 890–900 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Stock, J. K. et al. Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells. Nature Cell Biol. 9, 1428–1435 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Roh, T. Y., Wei, G., Farrell, C. M. & Zhao, K. Genome-wide prediction of conserved and nonconserved enhancers by histone acetylation patterns. Genome Res. 17, 74–81 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Meneghini, M. D., Wu, M. & Madhani, H. D. Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin. Cell 112, 725–736 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Raisner, R. M. et al. Histone variant H2A.Z marks the 5′ ends of both active and inactive genes in euchromatin. Cell 123, 233–248 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang, H., Roberts, D. N. & Cairns, B. R. Genome-wide dynamics of Htz1, a histone H2A variant that poises repressed/basal promoters for activation through histone loss. Cell 123, 219–231 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Guillemette, B. et al. Variant histone H2A.Z is globally localized to the promoters of inactive yeast genes and regulates nucleosome positioning. PLoS Biol. 3, e384 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Li, B. et al. Preferential occupancy of histone variant H2AZ at inactive promoters influences local histone modifications and chromatin remodeling. Proc. Natl Acad. Sci. USA 102, 18385–18390 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Guillemette, B. & Gaudreau, L. Reuniting the contrasting functions of H2A.Z. Biochem. Cell Biol. 84, 528–535 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Mito, Y., Henikoff, J. G. & Henikoff, S. Histone replacement marks the boundaries of cis-regulatory domains. Science 315, 1408–1411 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Mito, Y., Henikoff, J. G. & Henikoff, S. Genome-scale profiling of histone H3.3 replacement patterns. Nature Genet. 37, 1090–1097 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Suto, R. K., Clarkson, M. J., Tremethick, D. J. & Luger, K. Crystal structure of a nucleosome core particle containing the variant histone H2A.Z. Nature Struct. Biol. 7, 1121–1124 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Jin, C. & Felsenfeld, G. Nucleosome stability mediated by histone variants H3.3 and H2A.Z. Genes Dev. 21, 1519–1529 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lohr, D. & Lopez, J. GAL4/GAL80-dependent nucleosome disruption/deposition on the upstream regions of the yeast GAL1–10 and GAL80 genes. J. Biol. Chem. 270, 27671–27678 (1995).

    Article  CAS  PubMed  Google Scholar 

  99. Straka, C. & Horz, W. A functional role for nucleosomes in the repression of a yeast promoter. EMBO J. 10, 361–368 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yuan, G. C. et al. Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309, 626–630 (2005). This study profiled nucleosome positions at high resolution across most of chromosome 3 of the S. cerevisiae genome with MNase digestion followed by hybridization to DNA microarrays.

    Article  CAS  PubMed  Google Scholar 

  101. Lee, W. et al. A high-resolution atlas of nucleosome occupancy in yeast. Nature Genet. 39, 1235–1244 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Johnson, S. M., Tan, F. J., McCullough, H. L., Riordan, D. P. & Fire, A. Z. Flexibility and constraint in the nucleosome core landscape of Caenorhabditis elegans chromatin. Genome Res. 16, 1505–1516 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Albert, I. et al. Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature 446, 572–576 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Barski, A. et al. Response: mapping nucleosome positions using ChIP-Seq data. Cell 131, 832–833 (2007).

    Article  CAS  Google Scholar 

  105. Schmid, C. D. & Bucher, P. ChIP–Seq data reveal nucleosome architecture of human promoters. Cell 131, 831–832 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Satchwell, S. C., Drew, H. R. & Travers, A. A. Sequence periodicities in chicken nucleosome core DNA. J. Mol. Biol. 191, 659–675 (1986).

    Article  CAS  PubMed  Google Scholar 

  107. Segal, E. et al. A genomic code for nucleosome positioning. Nature 442, 772–778 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ioshikhes, I. P., Albert, I., Zanton, S. J. & Pugh, B. F. Nucleosome positions predicted through comparative genomics. Nature Genet. 38, 1210–1215 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Peckham, H. E. et al. Nucleosome positioning signals in genomic DNA. Genome Res. 17, 1170–1177 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gilbert, N. et al. Chromatin architecture of the human genome: gene-rich domains are enriched in open chromatin fibers. Cell 118, 555–566 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Crawford, G. E. et al. Identifying gene regulatory elements by genome-wide recovery of DNase hypersensitive sites. Proc. Natl Acad. Sci. USA 101, 992–997 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Weil, M. R., Widlak, P., Minna, J. D. & Garner, H. R. Global survey of chromatin accessibility using DNA microarrays. Genome Res. 14, 1374–1381 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Crawford, G. E. et al. DNase-chip: a high-resolution method to identify DNase I hypersensitive sites using tiled microarrays. Nature Methods 3, 503–509 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Crawford, G. E. et al. Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS). Genome Res. 16, 123–131 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Xi, H. et al. Identification and characterization of cell type-specific and ubiquitous chromatin regulatory structures in the human genome. PLoS Genet. 3, e136 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nagy, P. L., Cleary, M. L., Brown, P. O. & Lieb, J. D. Genomewide demarcation of RNA polymerase II transcription units revealed by physical fractionation of chromatin. Proc. Natl Acad. Sci. USA 100, 6364–6369 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hogan, G. J., Lee, C. K. & Lieb, J. D. Cell cycle-specified fluctuation of nucleosome occupancy at gene promoters. PLoS Genet. 2, e158 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Giresi, P. G., Kim, J., McDaniell, R. M., Iyer, V. R. & Lieb, J. D. FAIRE (formaldehyde-assisted isolation of regulatory elements) isolates active regulatory elements from human chromatin. Genome Res. 17, 877–885 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Liu, X. S. Getting started in tiling microarray analysis. PLoS Comput. Biol. 3, 1842–1844 (2007).

    CAS  PubMed  Google Scholar 

  120. Ji, H. & Wong, W. H. TileMap: create chromosomal map of tiling array hybridizations. Bioinformatics 21, 3629–3636 (2005).

    Article  CAS  PubMed  Google Scholar 

  121. Johnson, W. E. et al. Model-based analysis of tiling-arrays for ChIP–chip. Proc. Natl Acad. Sci. USA 103, 12457–12462 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Marinescu, V. D. et al. START: an automated tool for serial analysis of chromatin occupancy data. Bioinformatics 22, 999–1001 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Kent, W. J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hodges, E. et al. Genome-wide in situ exon capture for selective resequencing. Nature Genet. 39, 1522–1527 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Spilianakis, C. G. & Flavell, R. A. Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nature Immunol. 5, 1017–1027 (2004).

    Article  CAS  Google Scholar 

  126. Spilianakis, C. G., Lalioti, M. D., Town, T., Lee, G. R. & Flavell, R. A. Interchromosomal associations between alternatively expressed loci. Nature 435, 637–645 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Lanctot, C., Cheutin, T., Cremer, M., Cavalli, G. & Cremer, T. Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nature Rev. Genet. 8, 104–115 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002). This paper introduced the chromosome conformation capture (3C) technique.

    Article  CAS  PubMed  Google Scholar 

  129. Zhao, Z. et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nature Genet. 38, 1341–1347 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Simonis, M. et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nature Genet. 38, 1348–1354 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Dostie, J. et al. Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res. 16, 1299–1309 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hall, I. M. et al. Establishment and maintenance of a heterochromatin domain. Science 297, 2232–2237 (2002).

    Article  CAS  PubMed  Google Scholar 

  133. Volpe, T. A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Grewal, S. I. & Elgin, S. C. Transcription and RNA interference in the formation of heterochromatin. Nature 447, 399–406 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Cam, H. P. et al. Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome. Nature Genet. 37, 809–819 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Rinn, J. L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 1311–1323 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kim, T. H. & Ren, B. Genome-wide analysis of protein–DNA interactions. Annu. Rev. Genomics Hum. Genet. 7, 81–102 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. van Steensel, B. & Henikoff, S. Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nature Biotechnol. 18, 424–428 (2000).

    Article  CAS  Google Scholar 

  139. Eissenberg, J. C. & Elgin, S. C. The HP1 protein family: getting a grip on chromatin. Curr. Opin. Genet. Dev. 10, 204–210 (2000).

    Article  CAS  PubMed  Google Scholar 

  140. Tamaru, H. & Selker, E. U. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414, 277–283 (2001).

    Article  CAS  PubMed  Google Scholar 

  141. Vire, E. et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439, 871–874 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. O'Neill, L. P., VerMilyea, M. D. & Turner, B. M. Epigenetic characterization of the early embryo with a chromatin immunoprecipitation protocol applicable to small cell populations. Nature Genet. 38, 835–841 (2006).

    Article  CAS  PubMed  Google Scholar 

  143. Dahl, J. A. & Collas, P. Q2C hIP, a quick and quantitative chromatin immunoprecipitation assay, unravels epigenetic dynamics of developmentally regulated genes in human carcinoma cells. Stem Cells 25, 1037–1046 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Wolffe, A. P. & Hayes, J. J. Chromatin disruption and modification. Nucleic Acids Res. 27, 711–720 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Zhao laboratory for helpful discussions. We apologize to those whose work was not included here owing to space limitations. Research in the authors' laboratory is supported by the Intramural Research Program of the US National Institutes of Health, National Heart, Lung and Blood Institute.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Keji Zhao's homepage

Human Epigenome Project

Illumina

MAT

RMAP

TileMap

Glossary

Chromatin immunoprecipitation

A technique to isolate individual chromatin fragments using an antibody that is specific to a feature of the chromatin fragments (for example, a DNA-binding protein, a particular histone modification, or DNA methylation).

ChIP–chip

The combination of ChIP experiments with DNA microarrays to profile protein targeting or chromatin modifications over large genomic regions.

Serial analysis of gene expression

A sequence-based quantitative technique that is used to determine mRNA levels. cDNA is generated from an mRNA sample, digested with a four-base cutter and ligated to an adaptor containing a class II restriction enzyme that releases a 14 to 21 bp fragment. The short fragments are concatenated together, cloned into a sequencing vector and sequenced.

ChIP–Seq

The combination of ChIP experiments with high-throughput sequencing to quantitatively analyse protein targeting or chromatin modifications across the entire genome.

Tiling microarrays

DNA microarrays with densely spaced or overlapping probes that allow for high-resolution genomic mapping.

Fluorescence in situ hybridization

A technique that involves the fluorescent labelling of single-stranded DNA probes that then target specific regions of chromosomes and allow for the visualization of these regions within the cell.

3C

Chromosome conformation capture. A technique that is used to study the long-distance interactions between genomic regions, which in turn can be used to study the three-dimensional architecture of chromosomes within a cell nucleus.

4C

Either chromosome conformation capture-on-chip or circular chromosome conformation capture. These techniques allow the profiling of many interactions throughout a genome with a specific locus.

5C

Chromosome conformation capture carbon copy. A high-throughput extension of 3C that pairs the 3C technology with DNA microarrays or high-throughput sequencing. This technique allows the profiling of many chromatin interactions in parallel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schones, D., Zhao, K. Genome-wide approaches to studying chromatin modifications. Nat Rev Genet 9, 179–191 (2008). https://doi.org/10.1038/nrg2270

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2270

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing