Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genome instability: a mechanistic view of its causes and consequences

Key Points

  • Genetic instability in the form of mutations and chromosome rearrangements is usually associated with pathological disorders, but it is also crucial for evolution and the generation of genetic diversity. In humans, genomic instability is often associated with premature ageing, predisposition to various types of cancer and with inherited diseases.

  • Two types of elements contribute to instability leading to rearrangements: suppressors, which function in trans and include replication, repair and S-phase checkpoint factors; and chromosomal sites, which act in cis as hotspots of instability, and include fragile sites and highly transcribed DNA sequences.

  • To preserve genome integrity and proper cell-cycle progression, eukaryotic cells have developed checkpoint functions that are constantly monitoring DNA integrity and that serve to coordinate replication with repair, chromosome segregation and cell-cycle progression. Among the cellular checkpoints, S-phase checkpoints are crucial for maintaining genome integrity as they respond to fork stalling and intra-S damage by preventing fork collapse.

  • Chromosomal rearrangements might be associated with breaks or ssDNA gaps generated by stalling and/or collapse of replication forks. This might be caused primarily by secondary DNA structures or by failure in the replication machinery, the S-phase checkpoint or the double-stranded-break repair machinery.

  • Fragile sites are specific DNA sequences that exhibit gaps, constrictions and breaks that arise following partial inhibition of DNA synthesis. They appear when replication progression is impaired, mainly at a DNA stem-loop or triplex that impairs fork progression, probably leading to fork stalling and the formation of DNA breaks that are responsible for rearrangements.

  • Transcription-associated recombination is linked to the ability of the RNA polymerase to interfere with fork progression, either by physically obstructing the fork or by promoting DNA synthesis-blocking lesions, whether or not mediated by R loops. This may also be the case for transcription-dependent AID-mediated rearrangements that involves immunoglobulin genes.

Abstract

Genomic instability in the form of mutations and chromosome rearrangements is usually associated with pathological disorders, and yet it is also crucial for evolution. Two types of elements have a key role in instability leading to rearrangements: those that act in trans to prevent instability — among them are replication, repair and S-phase checkpoint factors — and those that act in cis — chromosomal hotspots of instability such as fragile sites and highly transcribed DNA sequences. Taking these elements as a guide, we review the causes and consequences of instability with the aim of providing a mechanistic perspective on the origin of genomic instability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Replication fork progression and stalling.
Figure 2: Formation of double-stranded breaks and ssDNA gaps during replication.
Figure 3: Mechanisms of double-stranded break repair leading to different chromosome rearrangements.
Figure 4: Detection of genome instability and DNA breaks.
Figure 5: Models of double-stranded break formation at fragile sites.
Figure 6: DNA intermediates that are potentially associated with transcription-associated recombination.

Similar content being viewed by others

References

  1. Maizels, N. Immunoglobulin gene diversification. Annu. Rev. Genet. 39, 23–46 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. McMurray, M. A. & Gottschling, D. E. An age-induced switch to a hyper-recombinational state. Science 301, 1908–1911 (2003). This paper describes a strong increase in genomic instability that is linked to ageing in the budding yeast, S. cerevisiae . This constitutes a rational explanation for the association of high cancer risk with age in mammals.

    Article  CAS  PubMed  Google Scholar 

  3. Draviam, V. M., Xie, S. & Sorger, P. K. Chromosome segregation and genomic stability. Curr. Opin. Genet. Dev. 14, 120–125 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Gorgoulis, V. G. et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434, 907–913 (2005). This paper shows that the DNA-damage response is activated in a panel of human lung hyperplasias, whereas its inactivation leads to malignant transformation, pointing to a role of checkpoints as a natural anticancer barrier.

    Article  CAS  PubMed  Google Scholar 

  5. Friedberg, E. C. et al. DNA Repair and Mutagenesis 461–750 (American Society For Microbiology Press, Washington DC, 2006).

    Google Scholar 

  6. Myung, K., Datta, A. & Kolodner, R. D. Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae. Cell 104, 397–408 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Myung, K. & Kolodner, R. D. Suppression of genome instability by redundant S-phase checkpoint pathways in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 99, 4500–4507 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rudolph, C. J., Upton, A. L. & Lloyd, R. G. Replication fork stalling and cell cycle arrest in UV-irradiated Escherichia coli. Genes Dev. 21, 668–681 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cobb, J. A. et al. Replisome instability, fork collapse, and gross chromosomal rearrangements arise synergistically from Mec1 kinase and RecQ helicase mutations. Genes Dev. 19, 3055–3069 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sogo, J. M., Lopes, M. & Foiani, M. Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 297, 599–602 (2002). This paper presents electron microscopy visualization of RF intermediates in S. cerevisiae rad53 checkpoint mutants under replication stress induced by hydroxyurea, revealing long ssDNA accumulation and hemi-replicated molecules. HJ structures are observed as a consequence of fork reversal.

    Article  CAS  PubMed  Google Scholar 

  11. Cortes-Ledesma, F. & Aguilera, A. Double-strand breaks arising by replication through a nick are repaired by cohesin-dependent sister-chromatid exchange. EMBO Rep. 7, 919–926 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pages, V. & Fuchs, R. P. Uncoupling of leading- and lagging-strand DNA replication during lesion bypass in vivo. Science 300, 1300–1303 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Lopes, M., Foiani, M. & Sogo, J. M. Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol. Cell 21, 15–27 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Cordeiro-Stone, M., Makhov, A. M., Zaritskaya, L. S. & Griffith, J. D. Analysis of DNA replication forks encountering a pyrimidine dimer in the template to the leading strand. J. Mol. Biol. 289, 1207–1218 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Higgins, N. P., Kato, K. & Strauss, B. A model for replication repair in mammalian cells. J. Mol. Biol. 101, 417–425 (1976).

    Article  CAS  PubMed  Google Scholar 

  16. Seigneur, M., Bidnenko, V., Ehrlich, S. D. & Michel, B. RuvAB acts at arrested replication forks. Cell 95, 419–430 (1998). In this paper, the presence of linear DNA as evidence of DSBs in E. coli together with genetic data are used as a demonstration of the occurrence of fork reversal to a HJ structure in arrested RFs.

    Article  CAS  PubMed  Google Scholar 

  17. Heller, R. C. & Marians, K. J. Replisome assembly and the direct restart of stalled replication forks. Nature Rev. Mol. Cell Biol. 7, 932–943 (2006).

    Article  CAS  Google Scholar 

  18. Heller, R. C. & Marians, K. J. Replication fork reactivation downstream of a blocked nascent leading strand. Nature 439, 557–562 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Berdichevsky, A., Izhar, L. & Livneh, Z. Error-free recombinational repair predominates over mutagenic translesion replication in E. coli. Mol. Cell 10, 917–924 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Fabre, F., Chan, A., Heyer, W. D. & Gangloff, S. Alternate pathways involving Sgs1/Top3, Mus81/Mms4 and Srs2 prevent formation of toxic recombination intermediates from single-stranded gaps created by DNA replication. Proc. Natl Acad. Sci. USA 99, 16887–16892 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Klein, H. L. & Petes, T. D. Intrachromosomal gene conversion in yeast. Nature 289, 144–148 (1981).

    Article  CAS  PubMed  Google Scholar 

  22. Jackson, J. A. & Fink, G. R. Gene conversion between duplicated genetic elements in yeast. Nature 292, 306–311 (1981).

    Article  CAS  PubMed  Google Scholar 

  23. Aguilera, A. & Klein, H. L. Genetic control of intrachromosomal recombination in Saccharomyces cerevisiae. I. Isolation and genetic characterization of hyper-recombination mutations. Genetics 119, 779–790 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen, C., Umezu, K. & Kolodner, R. D. Chromosomal rearrangements occur in S. cerevisiae rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair. Mol. Cell 2, 9–22 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Chen, C. & Kolodner, R. D. Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nature Genet. 23, 81–85 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Marinus, M. G. & Konrad, E. B. Hyper-recombination in dam mutants of Escherichia coli K-12. Mol. Gen. Genet. 149, 273–277 (1976).

    Article  CAS  PubMed  Google Scholar 

  27. Hartwell, L. H. & Smith, D. Altered fidelity of mitotic chromosome transmission in cell cycle mutants of S. cerevisiae. Genetics 110, 381–395 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Zieg, J., Maples, V. F. & Kushner, S. R. Recombinant levels of Escherichia coli K-12 mutants deficient in various replication, recombination or repair genes. J. Bacteriol. 134, 958–966 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Tishkoff, D. X., Filosi, N., Gaida, G. M. & Kolodner, R. D. A novel mutation avoidance mechanism dependent on S. cerevisiae Rad27 is distinct from DNA mismatch repair. Cell 88, 253–263 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Prado, F., Cortes-Ledesma, F. & Aguilera, A. The absence of the yeast chromatin assembly factor Asf1 increases genomic instability and sister chromatid exchange. EMBO Rep. 5, 497–502 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Myung, K., Pennaneach, V., Kats, E. S. & Kolodner, R. D. Saccharomyces cerevisiae chromatin-assembly factors that act during DNA replication function in the maintenance of genome stability. Proc. Natl Acad. Sci. USA 100, 6640–6645 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gangloff, S., McDonald, J. P., Bendixen, C., Arthur, L. & Rothstein, R. The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: a potential eukaryotic reverse gyrase. Mol. Cell Biol. 14, 8391–8398 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lambert, S., Watson, A., Sheedy, D. M., Martin, B. & Carr, A. M. Gross chromosomal rearrangements and elevated recombination at an inducible site-specific replication fork barrier. Cell 121, 689–702 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Prado, F. & Aguilera, A. Impairment of replication fork progression mediates RNA polII transcription-associated recombination. EMBO J. 24, 1267–1276 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Takeuchi, Y., Horiuchi, T. & Kobayashi, T. Transcription-dependent recombination and the role of fork collision in yeast rDNA. Genes Dev. 17, 1497–1506 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Myung, K., Chen, C. & Kolodner, R. D. Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae. Nature 411, 1073–1076 (2001). In this paper, genetic analyses serve to define three groups of suppressors of the formation of GCRs in S. cerevisiae : S2011phase checkpoints, recombination factors and proteins that are involved in de novo telomere addition.

    Article  CAS  PubMed  Google Scholar 

  37. Ivessa, A. S. et al. The Saccharomyces cerevisiae helicase Rrm3p facilitates replication past nonhistone protein-DNA complexes. Mol. Cell 12, 1525–1536 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Schmidt, K. H. & Kolodner, R. D. Suppression of spontaneous genome rearrangements in yeast DNA helicase mutants. Proc. Natl Acad. Sci. USA 103, 18196–18201 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lengronne, A. & Schwob, E. The yeast CDK inhibitor Sic1 prevents genomic instability by promoting replication origin licensing in late G1. Mol. Cell 9, 1067–1078 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Mieczkowski, P. A., Mieczkowska, J. O., Dominska, M. & Petes, T. D. Genetic regulation of telomere–telomere fusions in the yeast Saccharomyces cerevisae. Proc. Natl Acad. Sci. USA 100, 10854–10859 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, Y. et al. Mutation in Rpa1 results in defective DNA double-strand break repair, chromosomal instability and cancer in mice. Nature Genet. 37, 750–755 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Shima, N. et al. A viable allele of Mcm4 causes chromosome instability and mammary adenocarcinomas in mice. Nature Genet. 39, 93–98 (2007). Together with reference 41, this paper demonstrates the existence of GIN in replication mutants ( Rpa1 and Mcm4 ) of mice, indicating that replication impairment is a source of GIN in mammals.

    Article  CAS  PubMed  Google Scholar 

  43. Schulz, V. P. & Zakian, V. A. The Saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation. Cell 76, 145–155 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Kobayashi, T. & Ganley, A. R. Recombination regulation by transcription-induced cohesin dissociation in rDNA repeats. Science 309, 1581–1584 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. De Piccoli, G. et al. Smc5–Smc6 mediate DNA double-strand-break repair by promoting sister-chromatid recombination. Nature Cell Biol. 8, 1032–1034 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Sutherland, G. R. Fragile sites on human chromosomes: demonstration of their dependence on the type of tissue culture medium. Science 197, 265–266 (1977).

    Article  CAS  PubMed  Google Scholar 

  47. Durkin, S. G. & Glover, T. W. Chromosome fragile sites. Annu. Rev. Genet. (2007).

  48. Yunis, J. J. & Soreng, A. L. Constitutive fragile sites and cancer. Science 226, 1199–1204 (1984).

    Article  CAS  PubMed  Google Scholar 

  49. Mirkin, S. M. Expandable DNA repeats and human disease. Nature 447, 932–940 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Shiraishi, T. et al. Sequence conservation at human and mouse orthologous common fragile regions, FRA3B/FHIT and Fra14A2/Fhit. Proc. Natl Acad. Sci. USA 98, 5722–5727 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cha, R. S. & Kleckner, N. ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones. Science 297, 602–606 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Lemoine, F. J., Degtyareva, N. P., Lobachev, K. & Petes, T. D. Chromosomal translocations in yeast induced by low levels of DNA polymerase a model for chromosome fragile sites. Cell 120, 587–598 (2005). In this paper, the elimination of Mec1 in budding yeast leads to RF collapse in specific regions of the genome, named replication slow zones. Reduced levels of the replicative polymerase α result in translocations and chromosome loss in a region containing two inverted copies of Ty. References 51 and 52 provide evidence of the existence of fragile sites in yeast with similar features to those of mammals.

    Article  CAS  PubMed  Google Scholar 

  53. Raveendranathan, M. et al. Genome-wide replication profiles of S-phase checkpoint mutants reveal fragile sites in yeast. EMBO J. 25, 3627–3639 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Samadashwily, G. M., Raca, G. & Mirkin, S. M. Trinucleotide repeats affect DNA replication in vivo. Nature Genet. 17, 298–304 (1997). In this paper, electrophoretic analyses of RF progression in an E. coli plasmid that contains trinucleotide repeats show that RF stalling depends on repeat length and orientation with respect to replication origins, suggesting that the formation of unusual DNA structures in the lagging-strand template is responsible for replication blockage and repeat expansions.

    Article  CAS  PubMed  Google Scholar 

  55. Freudenreich, C. H., Kantrow, S. M. & Zakian, V. A. Expansion and length-dependent fragility of CTG repeats in yeast. Science 279, 853–856 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Callahan, J. L., Andrews, K. J., Zakian, V. A. & Freudenreich, C. H. Mutations in yeast replication proteins that increase CAG/CTG expansions also increase repeat fragility. Mol. Cell Biol. 23, 7849–7860 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang, H. & Freudenreich, C. H. An AT-rich sequence in human common fragile site FRA16D causes fork stalling and chromosome breakage in S. cerevisiae. Mol. Cell 27, 367–379 (2007). In this paper, analysis of the replication intermediates formed in the human common fragile site FRA16D placed into a yeast artificial chromosome reveals that RF stalling and DSBs are responsible for the fragility of these sites.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gacy, A. M., Goellner, G., Juranic, N., Macura, S. & McMurray, C. T. Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell 81, 533–540 (1995).

    Article  CAS  PubMed  Google Scholar 

  59. Mitas, M., Yu, A., Dill, J. & Haworth, I. S. The trinucleotide repeat sequence d(CGG)15 forms a heat-stable hairpin containing Gsyn.Ganti base pairs. Biochemistry 34, 12803–12811 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Wells, R. D. Molecular basis of genetic instability of triplet repeats. J. Biol. Chem. 271, 2875–2878 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Moore, H., Greenwell, P. W., Liu, C. P., Arnheim, N. & Petes, T. D. Triplet repeats form secondary structures that escape DNA repair in yeast. Proc. Natl Acad. Sci. USA 96, 1504–1509 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Manley, K., Shirley, T. L., Flaherty, L. & Messer, A. Msh2 deficiency prevents in vivo somatic instability of the CAG repeat in Huntington disease transgenic mice. Nature Genet. 23, 471–473 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Richard, G. F., Goellner, G. M., McMurray, C. T. & Haber, J. E. Recombination-induced CAG trinucleotide repeat expansions in yeast involve the Mre11–Rad50–Xrs2 complex. EMBO J. 19, 2381–2390 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Leach, D. R., Okely, E. A. & Pinder, D. J. Repair by recombination of DNA containing a palindromic sequence. Mol. Microbiol. 26, 597–606 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Lobachev, K. S., Gordenin, D. A. & Resnick, M. A. The Mre11 complex is required for repair of hairpin-capped double-strand breaks and prevention of chromosome rearrangements. Cell 108, 183–193 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Kang, S., Jaworski, A., Ohshima, K. & Wells, R. D. Expansion and deletion of CTG repeats from human disease genes are determined by the direction of replication in E. coli. Nature Genet. 10, 213–218 (1995).

    Article  CAS  PubMed  Google Scholar 

  67. Freudenreich, C. H., Stavenhagen, J. B. & Zakian, V. A. Stability of a CTG/CAG trinucleotide repeat in yeast is dependent on its orientation in the genome. Mol. Cell Biol. 17, 2090–2098 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Maurer, D. J., O'Callaghan, B. L. & Livingston, D. M. Orientation dependence of trinucleotide CAG repeat instability in Saccharomyces cerevisiae. Mol. Cell Biol. 16, 6617–6622 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schweitzer, J. K. & Livingston, D. M. The effect of DNA replication mutations on CAG tract stability in yeast. Genetics 152, 953–963 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Lahiri, M., Gustafson, T. L., Majors, E. R. & Freudenreich, C. H. Expanded CAG repeats activate the DNA damage checkpoint pathway. Mol. Cell 15, 287–293 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Spiro, C. et al. Inhibition of FEN-1 processing by DNA secondary structure at trinucleotide repeats. Mol. Cell 4, 1079–1085 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Glover, T. W., Berger, C., Coyle, J. & Echo, B. DNA polymerase alpha inhibition by aphidicolin induces gaps and breaks at common fragile sites in human chromosomes. Hum. Genet. 67, 136–142 (1984).

    Article  CAS  PubMed  Google Scholar 

  73. Casper, A. M., Nghiem, P., Arlt, M. F. & Glover, T. W. ATR regulates fragile site stability. Cell 111, 779–789 (2002). This paper demonstrates the role of the replication checkpoint kinase ATR in the maintenance of fragile site stability.

    Article  CAS  PubMed  Google Scholar 

  74. Admire, A. et al. Cycles of chromosome instability are associated with a fragile site and are increased by defects in DNA replication and checkpoint controls in yeast. Genes Dev. 20, 159–173 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pelletier, R., Krasilnikova, M. M., Samadashwily, G. M., Lahue, R. & Mirkin, S. M. Replication and expansion of trinucleotide repeats in yeast. Mol. Cell Biol. 23, 1349–1357 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Krasilnikova, M. M. & Mirkin, S. M. Replication stalling at Friedreich's ataxia (GAA)n repeats in vivo. Mol. Cell Biol. 24, 2286–2295 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Schwartz, M. et al. Homologous recombination and nonhomologous end-joining repair pathways regulate fragile site stability. Genes Dev. 19, 2715–2726 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Aguilera, A. The connection between transcription and genomic instability. EMBO J. 21, 195–201 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ikeda, H. & Matsumoto, T. Transcription promotes recA-independent recombination mediated by DNA-dependent RNA polymerase in Escherichia coli. Proc. Natl Acad. Sci. USA 76, 4571–4575 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Voelkel-Meiman, K., Keil, R. L. & Roeder, G. S. Recombination-stimulating sequences in yeast ribosomal DNA correspond to sequences regulating transcription by RNA polymerase I. Cell 48, 1071–1079 (1987).

    Article  CAS  PubMed  Google Scholar 

  81. Thomas, B. J. & Rothstein, R. Elevated recombination rates in transcriptionally active DNA. Cell 56, 619–630 (1989).

    Article  CAS  PubMed  Google Scholar 

  82. Grimm, C., Schaer, P., Munz, P. & Kohli, J. The strong ADH1 promoter stimulates mitotic and meiotic recombination at the ADE6 gene of Schizosaccharomyces pombe. Mol. Cell Biol. 11, 289–298 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dul, J. L. & Drexler, H. Transcription stimulates recombination. II. Generalized transduction of Escherichia coli by phages T1 and T4. Virology 162, 471–477 (1988).

    Article  CAS  PubMed  Google Scholar 

  84. Nickoloff, J. A. & Reynolds, R. J. Transcription stimulates homologous recombination in mammalian cells. Mol. Cell Biol. 10, 4837–4845 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Brock, R. D. Differential mutation of the beta-galactosidase gene of Escherichia coli. Mutat. Res. 11, 181–186 (1971).

    CAS  PubMed  Google Scholar 

  86. Herman, R. K. & Dworkin, N. B. Effect of gene induction on the rate of mutagenesis by ICR-191 in Escherichia coli. J. Bacteriol. 106, 543–550 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Beletskii, A. & Bhagwat, A. S. Transcription-induced mutations: increase in C to T mutations in the nontranscribed strand during transcription in Escherichia coli. Proc. Natl Acad. Sci. USA 93, 13919–13924 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Datta, A. & Jinks-Robertson, S. Association of increased spontaneous mutation rates with high levels of transcription in yeast. Science 268, 1616–1619 (1995).

    Article  CAS  PubMed  Google Scholar 

  89. Green, P., Ewing, B., Miller, W., Thomas, P. J. & Green, E. D. Transcription-associated mutational asymmetry in mammalian evolution. Nature Genet. 33, 514–517 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Lindahl, T. Instability and decay of the primary structure of DNA. Nature 362, 709–715 (1993).

    Article  CAS  PubMed  Google Scholar 

  91. Frederico, L. A., Kunkel, T. A. & Shaw, B. R. A sensitive genetic assay for the detection of cytosine deamination: determination of rate constants and the activation energy. Biochemistry 29, 2532–2537 (1990).

    Article  CAS  PubMed  Google Scholar 

  92. Kim, N., Abdulovic, A. L., Gealy, R., Lippert, M. J. & Jinks-Robertson, S. Transcription-associated mutagenesis in yeast is directly proportional to the level of gene expression and influenced by the direction of DNA replication. DNA Repair (Amst) 6, 1285–1296 (2007).

    Article  CAS  Google Scholar 

  93. Garcia-Rubio, M., Huertas, P., Gonzalez-Barrera, S. & Aguilera, A. Recombinogenic effects of DNA-damaging agents are synergistically increased by transcription in Saccharomyces cerevisiae. New insights into transcription-associated recombination. Genetics 165, 457–466 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Fix, D. F. & Glickman, B. W. Asymmetric cytosine deamination revealed by spontaneous mutational specificity in an Ung strain of Escherichia coli. Mol. Gen. Genet. 209, 78–82 (1987).

    Article  CAS  PubMed  Google Scholar 

  95. Skandalis, A., Ford, B. N. & Glickman, B. W. Strand bias in mutation involving 5-methylcytosine deamination in the human HPRT gene. Mutat. Res. 314, 21–26 (1994).

    Article  CAS  PubMed  Google Scholar 

  96. Drolet, M. et al. Overexpression of RNase H partially complements the growth defect of an Escherichia coli delta topA mutant: R-loop formation is a major problem in the absence of DNA topoisomerase I. Proc. Natl Acad. Sci. USA 92, 3526–3530 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Masse, E. & Drolet, M. Escherichia coli DNA topoisomerase I inhibits R-loop formation by relaxing transcription-induced negative supercoiling. J. Biol. Chem. 274, 16659–16664 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Huertas, P. & Aguilera, A. Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol. Cell 12, 711–721 (2003). This paper shows that hyper-recombinant yeast THO mutants that are defective in mRNP biogenesis allow the co-transcriptional formation of R loops at particular DNA sequences.

    Article  CAS  PubMed  Google Scholar 

  99. Li, X. & Manley, J. L. Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability. Cell 122, 365–378 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Aguilera, A. Cotranscriptional mRNP assembly: from the DNA to the nuclear pore. Curr. Opin. Cell Biol. 17, 242–250 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Keene, J. D. RNA regulons: coordination of post-transcriptional events. Nature Rev. Genet. 8, 533–543 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Prado, F., Piruat, J. I. & Aguilera, A. Recombination between DNA repeats in yeast hpr1delta cells is linked to transcription elongation. EMBO J. 16, 2826–2835 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Luna, R. et al. Interdependence between transcription and mRNP processing and export, and its impact on genetic stability. Mol. Cell 18, 711–722 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Gallardo, M., Luna, R., Erdjument-Bromage, H., Tempst, P. & Aguilera, A. Nab2p and the Thp1p–Sac3p complex functionally interact at the interface between transcription and mRNA metabolism. J. Biol. Chem. 278, 24225–24232 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Fan, H. Y., Merker, R. J. & Klein, H. L. High-copy-number expression of Sub2p, a member of the RNA helicase superfamily, suppresses hpr1-mediated genomic instability. Mol. Cell Biol. 21, 5459–5470 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gomez-Gonzalez, B. & Aguilera, A. Activation-induced cytidine deaminase action is strongly stimulated by mutations of the THO complex. Proc. Natl Acad. Sci. USA 104, 8409–8414 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yu, K., Chedin, F., Hsieh, C. L., Wilson, T. E. & Lieber, M. R. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nature Immunol. 4, 442–451 (2003). This paper provides a molecular demonstration of the existence of R loops in the Ig S regions in vivo , which are important for CSR.

    Article  CAS  Google Scholar 

  108. Wierdl, M., Greene, C. N., Datta, A., Jinks-Robertson, S. & Petes, T. D. Destabilization of simple repetitive DNA sequences by transcription in yeast. Genetics 143, 713–721 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Krasilnikova, M. M., Samadashwily, G. M., Krasilnikov, A. S. & Mirkin, S. M. Transcription through a simple DNA repeat blocks replication elongation. EMBO J. 17, 5095–5102 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Grabczyk, E., Mancuso, M. & Sammarco, M. C. A persistent RNA.DNA hybrid formed by transcription of the Friedreich ataxia triplet repeat in live bacteria, and by T7 RNAP in vitro. Nucleic Acids Res. 35, 5351–5359 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. French, S. Consequences of replication fork movement through transcription units in vivo. Science 258, 1362–1365 (1992).

    Article  CAS  PubMed  Google Scholar 

  112. Mirkin, E. V. & Mirkin, S. M. Mechanisms of transcription-replication collisions in bacteria. Mol. Cell Biol. 25, 888–895 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wellinger, R. E., Prado, F. & Aguilera, A. Replication fork progression is impaired by transcription in hyper-recombinant yeast cells lacking a functional THO complex. Mol. Cell Biol. 26, 3327–3334 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Deshpande, A. M. & Newlon, C. S. DNA replication fork pause sites dependent on transcription. Science 272, 1030–1033 (1996). This paper uses two-dimensional-gel electrophoresis to identify RF pause sites in a transcriptionally active tRNA gene of S. cerevisiae.

    Article  CAS  PubMed  Google Scholar 

  115. Azvolinsky, A., Dunaway, S., Torres, J. Z., Bessler, J. B. & Zakian, V. A. The S. cerevisiae Rrm3p DNA helicase moves with the replication fork and affects replication of all yeast chromosomes. Genes Dev. 20, 3104–3116 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. McGlynn, P. & Lloyd, R. G. Modulation of RNA polymerase by (p)ppGpp reveals a RecG-dependent mechanism for replication fork progression. Cell 101, 35–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Trautinger, B. W., Jaktaji, R. P., Rusakova, E. & Lloyd, R. G. RNA polymerase modulators and DNA repair activities resolve conflicts between DNA replication and transcription. Mol. Cell 19, 247–258 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Brewer, B. J. & Fangman, W. L. A replication fork barrier at the 3′ end of yeast ribosomal RNA genes. Cell 55, 637–643 (1988).

    Article  CAS  PubMed  Google Scholar 

  119. Di Noia, J. M. & Neuberger, M. S. Molecular mechanisms of antibody somatic hypermutation. Annu. Rev. Biochem. 76, 1–22 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Daniels, G. A. & Lieber, M. R. RNA:DNA complex formation upon transcription of immunoglobulin switch regions: implications for the mechanism and regulation of class switch recombination. Nucleic Acids Res. 23, 5006–5011 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Reaban, M. E., Lebowitz, J. & Griffin, J. A. Transcription induces the formation of a stable RNA.DNA hybrid in the immunoglobulin alpha switch region. J. Biol. Chem. 269, 21850–21857 (1994).

    CAS  PubMed  Google Scholar 

  122. Duquette, M. L., Handa, P., Vincent, J. A., Taylor, A. F. & Maizels, N. Intracellular transcription of G-rich DNAs induces formation of G-loops, novel structures containing G4 DNA. Genes Dev. 18, 1618–1629 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bransteitter, R., Pham, P., Scharff, M. D. & Goodman, M. F. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc. Natl Acad. Sci. USA 100, 4102–4107 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Chaudhuri, J. et al. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 422, 726–730 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Xue, K., Rada, C. & Neuberger, M. S. The in vivo pattern of AID targeting to immunoglobulin switch regions deduced from mutation spectra in Msh2−/−Ung−/− mice. J. Exp. Med. 203, 2085–2094 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Nambu, Y. et al. Transcription-coupled events associating with immunoglobulin switch region chromatin. Science 302, 2137–2140 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Besmer, E., Market, E. & Papavasiliou, F. N. The transcription elongation complex directs activation-induced cytidine deaminase-mediated DNA deamination. Mol. Cell Biol. 26, 4378–4385 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Longerich, S. & Storb, U. The contested role of uracil DNA glycosylase in immunoglobulin gene diversification. Trends Genet. 21, 253–256 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Chaudhuri, J., Khuong, C. & Alt, F. W. Replication protein A interacts with AID to promote deamination of somatic hypermutation targets. Nature 430, 992–998 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Casellas, R. et al. Ku80 is required for immunoglobulin isotype switching. EMBO J. 17, 2404–2411 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Manis, J. P. et al. Ku70 is required for late B cell development and immunoglobulin heavy chain class switching. J. Exp. Med. 187, 2081–2089 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Petersen, S. et al. AID is required to initiate Nbs1/γ-H2AX focus formation and mutations at sites of class switching. Nature 414, 660–665 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Schrader, C. E., Guikema, J. E., Linehan, E. K., Selsing, E. & Stavnezer, J. Activation-induced cytidine deaminase-dependent DNA breaks in class switch recombination occur during G1 phase of the cell cycle and depend upon mismatch repair. J. Immunol. 179, 6064–6071 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Jankovic, M., Nussenzweig, A. & Nussenzweig, M. C. Antigen receptor diversification and chromosome translocations. Nature Immunol. 8, 801–808 (2007).

    Article  CAS  Google Scholar 

  135. Ramiro, A. R. et al. AID is required for c-Myc/IgH chromosome translocations in vivo. Cell 118, 431–438 (2004). This paper links CSR with chromosomal translocations involving Ig genes and the c-myc proto-oncogene, and shows that AID is required for these translocations.

    Article  CAS  PubMed  Google Scholar 

  136. Duquette, M. L., Huber, M. D. & Maizels, N. G-rich proto-oncogenes are targeted for genomic instability in B-cell lymphomas. Cancer Res. 67, 2586–2594 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Ramiro, A. et al. The role of activation-induced deaminase in antibody diversification and chromosome translocations. Adv. Immunol. 94, 75–107 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Ramiro, A. R. et al. Role of genomic instability and p53 in AID-induced C-Myc-IGH translocations. Nature 440, 105–109 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Yan, C. T. et al. IgH class switching and translocations use a robust non-classical end-joining pathway. Nature 449, 478–482 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Ward, J. D., Barber, L. J., Petalcorin, M. I., Yanowitz, J. & Boulton, S. J. Replication blocking lesions present a unique substrate for homologous recombination. EMBO J. 26, 3384–3396 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Tercero, J. A. & Diffley, J. F. Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint. Nature 412, 553–557 (2001). This paper describes a primary role for the S-phase checkpoint in preventing irreversible RF collapse. It shows that the checkpoint proteins Mec1 and Rad53 are required for the completion of DNA replication in the presence of the DNA-alkylating agent methyl methanesulphonate.

    Article  CAS  PubMed  Google Scholar 

  142. Lopes, M. et al. The DNA replication checkpoint response stabilizes stalled replication forks. Nature 412, 557–561 (2001).

    Article  CAS  PubMed  Google Scholar 

  143. Ivessa, A. S., Zhou, J. Q. & Zakian, V. A. The Saccharomyces Pif1p DNA helicase and the highly related Rrm3p have opposite effects on replication fork progression in ribosomal DNA. Cell 100, 479–489 (2000).

    Article  CAS  PubMed  Google Scholar 

  144. Katou, Y. et al. S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex. Nature 424, 1078–1083 (2003).

    Article  CAS  PubMed  Google Scholar 

  145. Calzada, A., Hodgson, B., Kanemaki, M., Bueno, A. & Labib, K. Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork. Genes Dev. 19, 1905–1919 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Franco, A. A., Lam, W. M., Burgers, P. M. & Kaufman, P. D. Histone deposition protein Asf1 maintains DNA replisome integrity and interacts with replication factor C. Genes Dev. 19, 1365–1375 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Su, T. T. Cellular responses to DNA damage: one signal, multiple choices. Annu. Rev. Genet. 40, 187–208 (2006).

    Article  CAS  PubMed  Google Scholar 

  148. Trenz, K., Smith, E., Smith, S. & Costanzo, V. ATM and ATR promote Mre11 dependent restart of collapsed replication forks and prevent accumulation of DNA breaks. EMBO J. 25, 1764–1774 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Liberi, G. et al. Rad51-dependent DNA structures accumulate at damaged replication forks in sgs1 mutants defective in the yeast ortholog of BLM RecQ helicase. Genes Dev. 19, 339–350 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S. & Bonner, W. M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273, 5858–5868 (1998).

    Article  CAS  PubMed  Google Scholar 

  151. Burma, S., Chen, B. P., Murphy, M., Kurimasa, A. & Chen, D. J. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J. Biol. Chem. 276, 42462–42467 (2001).

    Article  CAS  PubMed  Google Scholar 

  152. Strom, L., Lindroos, H. B., Shirahige, K. & Sjogren, C. Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol. Cell 16, 1003–1015 (2004).

    Article  PubMed  Google Scholar 

  153. Unal, E. et al. DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol. Cell 16, 991–1002 (2004).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Klein, K. Myung, A. Ramiro and F. Prado for comments on the manuscript and D. Haun for style supervision. We apologize to those whose publications could not be cited owing to space limitations. Research in A.A.'s laboratory is funded by grants from the Spanish Ministry of Science and Education (BFU2006-05260), Consolider Ingenio 2010 (CDS2007-015) and Junta de Andalucía (CVI102 and CVI624).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Aguilera.

Supplementary information

Supplementary information S1 (table)

A selection of eukaryotic genes with a role in the maintenance of genome integrity (PDF 343 kb)

Related links

Related links

DATABASES

OMIM

Burkitt's lymphoma

fragile X mental retardation syndrome

Friedrich's ataxia

Huntington disease

myotonic dystrophy

FURTHER INFORMATION

Andrés Aguilera's homepage

Glossary

Spindle mitotic checkpoint

A quality-control mechanism that blocks anaphase entry, arresting cell growth until all chromosomes are properly attached to the mitotic spindle to achieve their accurate segregation.

Replisome

A complex of proteins involved in DNA replication elongation that moves along the DNA as the nascent strands are synthesized.

DNA adduct

A DNA sequence that is covalently-bound to a chemical residue such as cisplatin or benzopyrene.

Loss-of-heterozygosity

(LOH). The loss of one of the alleles at a given locus as a result of a genomic change, such as mitotic deletion, gene conversion or chromosome missegregration.

Minisatellite

A class of repetitive sequences, 7–100 nucleotides each, that span 0.5–20 kb and are located throughout the genome, especially towards chromosome ends.

G loops

Structures that are formed during transcription that contain a stable mRNA–DNA hybrid on the transcribed strand and a G-quartet DNA on the Grich non-transcribed strand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguilera, A., Gómez-González, B. Genome instability: a mechanistic view of its causes and consequences. Nat Rev Genet 9, 204–217 (2008). https://doi.org/10.1038/nrg2268

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2268

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing