Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The choice of model organisms in evo–devo

Abstract

Study of the model organisms of developmental biology was crucial in establishing evo–devo as a new discipline. However, it has been claimed that this limited sample of organisms paints a biased picture of the role of development in evolution. Consequently, judicious choice of new model organisms is necessary to provide a more balanced picture. The challenge is to determine the best criteria for choosing new model organisms, given limited resources.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic tree of the main animal taxa.
Figure 2: Model choice and phylogenetic position on a hypothetical tree for living and fossil taxa.

Similar content being viewed by others

References

  1. Hall, B. K. Evolutionary Developmental Biology (Kluwer Academic, Dordrecht, 1999).

    Book  Google Scholar 

  2. Raff, R. A. Evo–devo: the evolution of a new discipline. Nature Rev. Genet. 1, 74–79 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Wagner, G. P., Chiu, C.-H. & Laubichler, M. Developmental evolution as a mechanistic science: the inference from developmental mechanisms to evolutionary processes. Am. Zool. 40, 819–831 (2000).

    Google Scholar 

  4. Arthur, W. The emerging conceptual framework of evolutionary developmental biology. Nature 415, 757–764 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Hall, B. K. Evo–devo: evolutionary developmental mechanisms. Int. J. Dev. Biol. 47, 491–495 (2003).

    PubMed  Google Scholar 

  6. Baguñà, J. & Garcia-Fernàndez, J. Evo–devo: the long and winding road. Int. J. Dev. Biol. 47, 705–713 (2003).

    PubMed  Google Scholar 

  7. Gilbert, S. F. The morphogenesis of evolutionary developmental biology. Int. J. Dev. Biol. 47, 467–477 (2003).

    PubMed  Google Scholar 

  8. Rudel, D. & Sommer, R. J. The evolution of developmental mechanisms. Dev. Biol. 264, 15–37 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Mabee, P. M. Integrating evolution and development: the need for bioinformatics in evo–devo. Bioscience 56, 301–309 (2006).

    Article  Google Scholar 

  10. Müller, G. B. & Newman, S. A. The innovation triad: an evo–devo agenda. J. Exp. Zool. B Mol. Dev. Evol. 304B, 487–503 (2005).

    Article  Google Scholar 

  11. Minelli, A. The Development Of Animal Form. Ontogeny, Morphology, and Evolution (Cambridge Univ. Press, Cambridge, 2003).

    Book  Google Scholar 

  12. Hughes, C. L. & Kaufman, T. C. A diverse approach to arthropod development. Evol. Dev. 2, 6–8 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Bolker, J. A. Model systems in developmental biology. BioEssays 17, 451–455 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Bolker, J. A. & Raff, R. A. Beyond worms, flies, and mice: it's time to widen the scope of developmental biology. J. NIH Res. 9, 35–39 (1997).

    Google Scholar 

  15. Sommer, R. Genomic platforms for 'evo–devo'. Curr. Genom. 6, 569–570 (2005).

    Article  CAS  Google Scholar 

  16. Wagner, G. P. What is the promise of developmental evolution? Part I: Why is developmental biology necessary to explain evolutionary innovations? J. Exp. Zool. B Mol. Dev. Evol. 288, 95–98 (2000).

    Article  CAS  Google Scholar 

  17. Wagner, G. P. What is the promise of developmental evolution? Part II: A causal explanation of evolutionary innovations may be impossible. J. Exp. Zool. B Mol. Dev. Evol. 291, 305–309 (2001).

    Article  CAS  Google Scholar 

  18. Wagner, G. P. & Larsson, H. C. E. What is the promise of developmental evolution? Part III: The crucible of developmental evolution. J. Exp. Zool. B Mol. Dev. Evol. 300B, 1–4 (2003).

    Article  Google Scholar 

  19. Robert, J. S., Hall, B. K. & Olson, W. M. Bridging the gap between developmental systems theory and evolutionary developmental biology. BioEssays 23, 954–962 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Gilbert, S. F., Opitz, J. M. & Raff, R. A. Resynthesizing evolutionary and developmental biology. Dev. Biol. 173, 357–372 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Gilbert, S. F. Evo–Devo, Devo–Evo, and Devgen–Popgen. Biol. Philos. 18, 347–352 (2003).

    Article  Google Scholar 

  22. Arthur, W. Biased Embryos and Evolution (Cambridge Univ. Press, Cambridge, 2004).

    Book  Google Scholar 

  23. Arthur, W. The effect of development on the direction of evolution: toward a twenty-first century consensus. Evol. Dev. 6, 282–288 (2004).

    Article  PubMed  Google Scholar 

  24. Gould, S. J. The Structure Of Evolutionary Theory (Belknap, Cambridge, 2002).

    Google Scholar 

  25. Kutschera, U. & Niklas, K. J. The modern theory of biological evolution: an expanded synthesis. Naturwissenschaften 91, 255–276 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Jenner, R. A. in Evolving Pathways. Keynotes in Evolutionary Developmental Biology (eds Minelli, A. & Fusco, G.) (Cambridge Univ. Press, in the press).

  27. Ghiselin, M. T. Metaphysics and the Origin of Species (State Univ. New York Press, New York, 1997).

    Google Scholar 

  28. Sniegowski, P. D. & Murphy, H. A. Evolvability. Curr. Biol. 16, R831–R834 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Gibson, G. & Dworkin, I. Uncovering cryptic genetic variation. Nature Rev. Genet. 5, 681–690 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Leroi, A. M. The burden of the Bauplan. Trends Ecol. Evol. 13, 82–83 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Richardson, M. A naturalist's evo–devo. Nature Genet. 34, 351 (2003).

    Article  CAS  Google Scholar 

  32. Love, A. C. The return of the embryo. Biol. Philos. 20, 567–584 (2005).

    Article  Google Scholar 

  33. Burian, R. M. How the choice of experimental organism matters: epistemological reflections on an aspect of biological practice. J. Hist. Biol. 26, 351–367 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Kellogg, E. A. & Shaffer, H. B. Model organisms in evolutionary studies. Syst. Biol. 42, 409–414 (1993).

    Article  Google Scholar 

  35. Churchill, F. B. Life before model systems: general zoology at August Weismann's Institute. Am. Zool. 37, 260–268 (1997).

    Article  Google Scholar 

  36. Santini, F. & Stellwag, E. J. Phylogeny, fossils, and model systems in the study of evolutionary developmental biology. Mol. Phyl. Evol. 24, 379–383 (2002).

    Article  CAS  Google Scholar 

  37. Travis, J. Is it what we know or who we know? Choice of organism and robustness of inference in ecology and evolutionary biology. Am. Nat. 167, 303–314 (2006).

    PubMed  Google Scholar 

  38. Gest, H. Arabidopsis to zebrafish: a commentary on 'Rosetta stone' model systems in the biological sciences. Perspect. Biol. Med. 39, 77–85 (1995).

    Article  Google Scholar 

  39. Ankeney, R. A. Model organisms as models: understanding the 'Lingua Franca' of the human genome project. Philos. Sci. 68, S251–S261 (2001).

    Article  Google Scholar 

  40. Wilkins, A. S. The Evolution Of Developmental Pathways (Sinauer Associates, Sunderland, 2002).

    Google Scholar 

  41. Delsuc, F., Brinkmann, H., Chourrout, D. & Philippe, H. Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439, 965–968 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Jenner, R. A. Unburdening evo–devo: ancestral attraction, model organisms, and basal baloney. Dev. Genes Evol. 216, 385–394 (2006).

    Article  PubMed  Google Scholar 

  43. Gilbert, S. F. Ecological developmental biology: developmental biology meets the real world. Dev. Biol. 233, 1–12 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Hansen, T. F., Carter, A. J. R. & Pélabon, C. On adaptive accuracy and precision in natural populations. Am. Nat. 168, 168–181 (2006).

    Article  PubMed  Google Scholar 

  45. Gibson, G. Developmental evolution: the unbearable likeness of beings. Curr. Biol. 11, R345–R348 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Simpson, P. Evolution of development in closely related species of flies and worms. Nature Rev. Genet. 3, 907–917 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Flatt, T. The evolutionary genetics of canalization. Q. Rev. Biol. 80, 287–316 (2005).

    Article  PubMed  Google Scholar 

  48. Gibson, G. & Dworkin, I. Uncovering cryptic genetic variation. Nature Rev. Genet. 5, 681–690 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Haag, E. S. & Pilgrim, D. Harnessing Caenorhabditis genomics for evolutionary developmental biology. Curr. Genom. 6, 579–588 (2005).

    Article  CAS  Google Scholar 

  50. Darling, J. A. et al. Rising starlet: the starlet sea anemone, Nematostella vectensis. BioEssays 27, 211–221 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Gregory, T. R. Synergy between sequence and size in large-scale genomics. Nature Rev. Genet. 6, 699–708 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Gregory, T. R. The C-value enigma in plants and animals: a review of parallels and an appeal for partnership. Ann. Bot. 95, 133–146 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gregory, T. R. Variation across amphibian species in the size of the nuclear genome supports a pluralistic, hierarchical approach to the C-value enigma. Biol. J. Linn. Soc. 79, 329–339 (2003).

    Article  Google Scholar 

  54. Hardie, D. C. & Hebert, P. D. N. Genome-size evolution in fishes. Can. J. Fish. Aquat. Sci. 61, 1636–1646 (2004).

    Article  Google Scholar 

  55. Seo, H.-C. et al. Hox cluster disintegration with persistent anteroposterior order of expression in Oikopleura dioica. Nature 431, 67–71 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Patel, N. H. Times, space and genomes. Nature 431, 28–29 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Pagel, M., Venditti, C. & Meade, A. Large punctuational contribution of speciation to evolutionary divergence at the molecular level. Science 314, 119–121 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Webster, A. J., Payma, R. J. H. & Pagel, M. Molecular phylogenies link rates of evolution and speciation. Science 301, 478 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Venditti, C., Meade, A. & Pagel, M. Detecting the node-density artifact in phylogeny reconstruction. Syst. Biol. 55, 637–643 (2006).

    Article  PubMed  Google Scholar 

  60. Fitch, W. M. & Beintema, J. J. Correcting parsimonious trees for unseen nucleotide substitutions: the effect of dense branching as exemplified by ribonuclease. Mol. Biol. Evol. 7, 438–443 (1990).

    CAS  PubMed  Google Scholar 

  61. Ricklefs, R. E. Times, species, and the generation of trait variance in clades. Syst. Biol. 55, 151–159 (2006).

    Article  PubMed  Google Scholar 

  62. Jenner, R. A. When molecules and morphology clash: reconciling conflicting phylogenies of the Metazoa by considering secondary character loss. Evol. Dev. 6, 372–378 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Rokas, A. & Carroll, S. B. Bushes in the tree of life. PLoS Biol. 4, e352 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ronquist, F. Bayesian inference of character evolution. Trends Ecol. Evol. 19, 475–481 (2004).

    Article  PubMed  Google Scholar 

  65. Davies, T. J. & Savolainen, V. Neutral theory, phylogenies, and the relationship between phenotypic change and evolutionary rates. Evolution 60, 476–483 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Webster, B. L. et al. Mitogenomics and phylogenomics reveal priapulid worms as extant models of the ancestral ecdysozoan. Evol. Dev. 8, 502–510 (2006).

    Article  PubMed  Google Scholar 

  67. Cooper, G. M. et al. Quantitative estimates of sequence divergence for comparative analyses of mammalian genomes. Genome Res. 13, 813–820 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Philippe, H. & Telford, M. J. Large-scale sequencing and the new animal phylogeny. Trends Ecol. Evol. 21, 614–620 (2006).

    Article  PubMed  Google Scholar 

  69. Budd, G. E. & Jensen, S. A critical reappraisal of the fossil record of the bilaterian phyla. Biol. Rev. 75, 253–295 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Budd, G. E. Why are arthropods segmented? Evol. Dev. 3, 332–342 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Whiting, M. F., Bradler, S. & Maxwell, T. Loss and recovery of wings in stick insects. Nature 421, 264–267 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Yue, G. Liew, W. C. & Orban, L. The complete mitochondrial genome of a basal teleost, the Asian arowana (Scleropages formosus, Osteoglossidae). BMC Genomics 7, 242 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Krell, F. T. & Cranston, P. S. Which side of the tree is more basal? Syst. Entomol. 29, 279–281 (2004).

    Article  Google Scholar 

  74. Crisp, M. D. & Cook, L. G. Do early branching lineages signify ancestral traits? Trends Ecol. Evol. 20, 122–128 (2005).

    Article  PubMed  Google Scholar 

  75. Hong, R. L. & Sommer, R. J. Pristionchus pacificus: a well-rounded nematode. BioEssays 28, 651–659 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Pardi, F. & Goldman, N. Species choice for comparative genomics: being greedy works. PLoS Genet. 1, e71 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. McAuliffe, J. D., Jordan, M. I. & Pachter, L. Subtree power analysis and species selection for comparative genomics. Proc. Natl Acad. Sci. USA 102, 7900–7905 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Goodwin, S. B. Minimum phylogenetic coverage: an additional criterion to guide the selection of microbial pathogens for initial genomic sequencing efforts. Phytopathology 94, 800–804 (2004).

    Article  PubMed  Google Scholar 

  79. Pigliucci, M. Evolution of phenotypic plasticity: where are we going now? Trends Ecol. Evol. 20, 481–486 (2005).

    Article  PubMed  Google Scholar 

  80. Braendle, C. & Flatt, T. A role for genetic accommodation in evolution? BioEssays 28, 868–873 (2006).

    Article  PubMed  Google Scholar 

  81. Haag, E. S. & True, J. S. From mutants to mechanisms? Assessing the candidate gene paradigm in evolutionary biology. Evolution 55, 1077–1084 (2001).

    CAS  PubMed  Google Scholar 

  82. Zelhof, A. C., Hardy, R. W., Becker, A. & Zuker, C. S. Transforming the architecture of compound eyes. Nature 443, 696–699 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Stern, D. L. Evolutionary developmental biology and the problem of variation. Evolution 54, 1079–1091 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Emlen, D. J., Szafran, Q., Corley, L. S. & Dworkin, I. Insulin signaling and limb-patterning: candidate pathways for the origin and evolutionary diversification of beetle 'horns'. Heredity 97, 179–191 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Franz-Odendaal, T. A. & Hall, B. K. Modularity and sense organs in the blind cavefish, Astyanax mexicanus. Evol. Dev. 8, 94–100 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Azevedo, R. B. R. et al. The simplicity of metazoan cell lineages. Nature 433, 152–156 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Joron, M., Jiggins, C. D., Papanicolaou, A. & McMillan, W. O. Heliconius wing patterns: an evo–devo model for understanding phenotypic diversity. Heredity 97, 157–167 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Abouheif, E. & Wray, G. A. Evolution of the gene network underlying wing polyphenism in ants. Science 297, 249–252 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Extavour, C. G. Hold the germ cells, I'm on duty. BioEssays 26, 1263–1267 (2004).

    Article  PubMed  Google Scholar 

  90. Moczek, A. P. Integrating micro- and macroevolution of development through the study of horned beetles. Heredity 97, 168–178 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Laforsch, C. & Tollrian, R. Embryological aspects of inducible morphological defenses in Daphnia. J. Morph. 262, 701–707 (2004).

    Article  PubMed  Google Scholar 

  92. Shiga, Y., Yasumoto, R., Yamagata, H. & Hayashi, S. Evolving role of Antennapedia protein in arthropod limb patterning. Development 129, 3555–3561 (2002).

    CAS  PubMed  Google Scholar 

  93. Cristescu, M. E. A., Colbourne, J. K., Radivojac, J. & Lynch, M. A microsatellite-based genetic linkage map of the waterflea, Daphnia pulex: on the prospect of crustacean genomics. Genomics 88, 415–430 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Minelli, A. & Fusco, G. Water-flea males from the netherworld. Trends Ecol. Evol. 21, 474–476 (2006).

    Article  PubMed  Google Scholar 

  95. Davidson, E. H. & Erwin, D. H. Gene regulatory networks and the evolution of animal body plans. Science 311, 796–800 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Peel, A. D., Telford, M. J. & Akam, M. The evolution of hexapod engrailed-family genes: evidence for conservation and concerted evolution. Proc. R. Soc. Lond. B Biol. Sci. 273, 1733–1742 (2006).

    Article  CAS  Google Scholar 

  97. Richards, E. J. Inherited epigenetic variation — revisiting soft inheritance. Nature Rev. Genet. 7, 395–400 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Biémont, C. & Vieira, C. Junk DNA as an evolutionary force. Nature 443, 521–524 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Hall, B. K. Unlocking the black box between genotype and phenotype: cell condensations as morphogenetic (modular) units. Biol. Philos. 18, 219–247 (2003).

    Article  Google Scholar 

  100. Minelli, A. & Fusco, G. Evo–devo perspectives on segmentation: model organisms, and beyond. Trends Ecol. Evol. 19, 423–429 (2004).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

J. M. W. Slack, R. N. Kelsh, W. Arthur and an anonymous reviewer offered perceptive comments on the manuscript. We thank A. Moczek, J. Colbourne, P. Hebert, J. Finnerty, M. Hooge, B. Chick, P. Bryant, D. Adriaens and M. Mandica for permission to use the photos and thumbnails of their organisms. We gratefully acknowledge the UK Biotechnology and Biological Sciences Research Council for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald A. Jenner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

University of Bath Biodiversity Laboratory homepage

Glossary

Apomorphies

Evolutionarily derived characters, as opposed to primitive characters.

Basal taxa

'Basal' designates the relative proximity of a terminal taxon to a given ancestral (internal) node in a phylogeny, measured by the number of intervening nodes. The most basal taxon is separated by the smallest number of intervening nodes from the ancestral node, whereas progressively less basal taxa are separated from the ancestral node by increasing numbers of intervening nodes.

Big six

The most important developmental model animals: the mouse Mus musculus, the chick Gallus gallus, the frog Xenopus laevis, the zebrafish Danio rerio, the nematode Caenorhabditis elegans and the fly Drosophila melanogaster.

C-value paradox

The complex relationship between genome size and organismal complexity (considered a proxy for gene number). Large genomes do not necessarily imply large numbers of genes, or high organismal complexity.

Canalization

The ability of a developmental process to produce a stable phenotype despite environmental perturbations (environmental canalization), or despite genetic changes or having different genetic backgrounds (genetic canalization).

Cnidaria

A phylum of generally radially symmetrical animals, including jellyfish, sea anemones and corals.

Developmental and phenotypic plasticity

The capacity of developmental processes and the phenotype to change in different ways depending on environmental influences.

Ecdysozoa

A large clade of metazoans that includes arthropods, nematodes and priapulids. It receives its name from the periodic moulting of the cuticle that is characteristic of its subtaxa.

EST data

Sequence data that is obtained from expressed mRNA molecules, known as expressed sequence tags (ESTs).

Evolutionary developmental mechanisms

Developmental mechanisms or processes that can be modified during evolution, thereby affecting phenotypic evolution.

Evolvability

Evolvability is defined various ways. Commonly, it refers to the capacity of a trait or species to evolve, or the capacity of a population to respond to selection.

Genetic assimilation

The process whereby a particular phenotype that was induced by an environmental trigger comes under genetic control to become stably expressed in the absence of that trigger.

Idiographics

The study of unique individuals, such as species and their traits.

Maximum likelihood and Bayesian inference

Phylogenetic reconstruction methods that select optimal trees based on which trees render the data most plausible, given an explicitly chosen model of evolution. Bayesian inference can also explicitly incorporate a systematist's prior information about phylogeny.

Nodal distance

The distance between internal nodes or terminal taxa on a given phylogeny, measured as the number of intervening nodes.

Node density effect

An artefact of phylogenetic reconstruction that can cause a spurious relationship between the amount of evolutionary change that is inferred along a given set of branches and the number of nodes that are sampled along that path. See box 3.

Nomothetics

The study of laws of nature and law-like generalizations that can be formulated for classes of individuals.

Parsimony methods

A phylogenetic optimality criterion that selects trees on the basis of minimizing the number of character transformations that are required of the data.

Patristic distance

The distance between two terminal taxa or nodes, measured as the sum of the intervening branch lengths on a given phylogeny.

Phylomimicking mutations

Mutations that cause the phenotype of one taxon to resemble that of another taxon.

Placozoa

So far, Placozoa comprises a single described species, Trichoplax adhaerens. Morphologically, this is the simplest animal, with no fixed symmetry and just four somatic cell types.

Priapulida

Priapulida is a small phylum (18 living species described to date) of carnivorous worms with a fossil record extending back to the Cambrian.

Satellite species

Species that are sufficiently closely related to established model organisms so that experimental techniques can be efficiently transferred for developmental and genetic analyses. A given model can have several closely related satellite species.

Stem groups

Fossil taxa can be stem groups with respect to a crown group, itself defined as the least inclusive clade to contain all extant representatives of a taxon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jenner, R., Wills, M. The choice of model organisms in evo–devo. Nat Rev Genet 8, 311–314 (2007). https://doi.org/10.1038/nrg2062

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2062

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing