Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Human laminopathies: nuclei gone genetically awry

Key Points

  • Over 180 mutations have been reported in the genes of the nuclear lamina, in particular LMNA, causing diseases termed 'laminopathies.' The number of identified laminopathies has steadily increased in recent years, currently including 13 known conditions.

  • LMNA encodes lamin A and lamin C, which are important components of the nuclear lamina, a dynamic protein meshwork that lies inside the inner nuclear membrane.

  • The nuclear lamina has a vital role, not only in maintenance of nuclear shape and structure, but also in transcriptional regulation, nuclear pore positioning and function, and heterochromatin organization.

  • The laminopathies show many overlapping phenotypes, which could represent a spectrum of disease rather than a set of completely distinct clinical entities. These phenotypes include skeletal and cardiac myopathies, lipodystrophies, neuropathies, skeletal dysplasias and characteristics of premature ageing.

  • As research unveils increasingly complex roles of the lamina in a diverse array of nuclear processes, evidence indicates that laminopathy phenotypes might result from a complex combination of cellular defects. These include fragile, mechanically unstable nuclei, loss of peripheral heterochromatin and other epigenetic changes, altered transcription, disrupted DNA replication, deficient DNA repair and impaired differentiation.

  • Hope for successful therapeutic strategies for the laminopathies has been mainly provided by promising work in Hutchinson–Gilford progeria syndrome, for which studies have focused on the use of farnesyltransferase inhibitors, RNAi and modified oligonucleotides.

  • Continued use of the array of mouse models of laminopathies that are currently available, the generation of new models, and further advances in cellular imaging promise to further correlate the numerous genotype–phenotype relationships among the laminopathies.

  • Future research also promises a deeper exploration into the potential links between the phenotypes of these rare diseases and the much more common conditions of atherosclerosis and ageing.

Abstract

Few genes have generated as much recent interest as LMNA, LMNB1 and LMNB2, which encode the components of the nuclear lamina. Over 180 mutations in these genes are associated with at least 13 known diseases — the laminopathies. In particular, the study of LMNA, its products and the phenotypes that result from its mutation have provided important insights into subjects ranging from transcriptional regulation, the cell biology of the nuclear lamina and mechanisms of ageing. Recent studies have begun the difficult task of correlating the genotypes of laminopathies with their phenotypes, and potential therapeutic strategies using existing drugs, modified oligonucleotides and RNAi are showing real promise for the treatment of these diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and function of the nuclear lamina.
Figure 2: The LMNA gene and lamin A.
Figure 3: Lamin A and progerin: post-translational processing.
Figure 4: Potential mechanisms of disease.

Similar content being viewed by others

References

  1. Gruenbaum, Y., Margalit, A., Goldman, R. D., Shumaker, D. K. & Wilson, K. L. The nuclear lamina comes of age. Nature Rev. Mol. Cell Biol. 6, 21–31 (2005).

    Article  CAS  Google Scholar 

  2. Lin, F. & Worman, H. J. Structural organization of the human gene encoding nuclear lamin A and nuclear lamin C. J. Biol. Chem. 268, 16321–16326 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Wydner, K. L., McNeil, J. A., Lin, F., Worman, H. J. & Lawrence, J. B. Chromosomal assignment of human nuclear envelope protein genes LMNA, LMNB1, and LBR by fluorescence in situ hybridization. Genomics 32, 474–478 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Hutchinson, C. J. Lamins: building blocks or regulators of gene expression. Nature Rev. Mol. Cell Biol. 3, 848–858 (2002).

    Article  CAS  Google Scholar 

  5. Burke, B., Mounkes, L. C. & Stewart, C. L. The nuclear envelope in muscular dystrophy and cardiovascular diseases. Traffic 2, 675–683 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Beck, L. A., Hosick, T. J. & Sinensky, M. Isoprenylation is required for the processing of the lamin A precursor. J. Cell Biol. 110, 1489–1499 (1990). The first demonstration that farnesylation is required for the processing of prelamin A to lamin A.

    Article  CAS  PubMed  Google Scholar 

  7. Boyartchuk, V. L., Ashby, M. N. & Rine, J. Modulation of ras and a-factor function by carboxyl-terminal proteolysis. Science 275, 1796–1800 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Sinensky, M. et al. The processing pathway of prelamin A. J. Cell. Sci. 107, 61–67 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Bergo, M. O. et al. Zmpste24 deficiency in mice causes spontaneous bone fractures, muscle weakness, and a prelamin A processing defect. Proc. Natl Acad. Sci. USA 99, 13049–13054 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dai, Q. et al. Mammalian prenylcysteine carboxyl methyltransferase is in the endoplasmic reticulum. J. Biol. Chem. 273, 15030–15034 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Hennekes, H. & Nigg, E. A. The role of isoprenylation in membrane attachment of nuclear lamins. J. Cell Sci. 107, 1019–1029 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Vergnes, L., Peterfy, M., Bergo, M. O., Young, S. G. & Reue, K. Lamin B1 is required for mouse development and nuclear integrity. Proc. Natl Acad. Sci. USA 101, 10428–10433 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Constantinescu, D., Gray, H. L., Sammak, P. J., Schatten, G. P. & Csoka, A. B. Lamin A/C expression is a marker of mouse and human embryonic stem cell differentiation. Stem Cells 24, 177–185 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. DeBusk, F. L. The Hutchinson–Gilford progeria syndrome. J. Pediatr. 80, 697–724 (1972).

    Article  CAS  PubMed  Google Scholar 

  15. Sarkar, P. K., Shinton, R. A. Hutchinson–Gilford progeria syndrome. Postgrad. Med. J. 77, 312–217 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Baker, P. B., Baba, N. & Boesel, C. P. Cardiovascular abnormalities in progeria. Case report and review of the literature. Arch. Pathol. Lab. Med. 105, 384–386 (1981).

    CAS  PubMed  Google Scholar 

  17. Hutchinson, J. Congenital absence of hair and mammary glands with atrophic condition of the skin and its appendages in a boy whose mother had been almost totally bald from alopecia areata from the age of six. Medicochir. Trans. 69, 473–477 (1886).

    CAS  Google Scholar 

  18. Eriksson, M. et al. Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature 423, 293–298 (2003). The seminal paper that identified and characterized the G608G LMNA mutation as the cause of approximately 90% of HGPS cases. This paper described the 50-amino-acid preterminal deletion and noted the presence of blebbed nuclei in HGPS.

    Article  CAS  PubMed  Google Scholar 

  19. De Sandre-Giovannoli, A. et al. Lamin A truncation in Hutchinson–Gilford progeria. Science 300, 2055 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. D'Apice, M. R., Tenconi, R., Mammi, I., van den Ende, J. & Novelli, G. Paternal origin of LMNA mutations in Hutchinson–Gilford progeria syndrome. Clin. Genet. 65, 52–54 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Capell, B. C. et al. Inhibiting the farnesylation of progerin prevents the characteristic nuclear blebbing of Hutchinson–Gilford progeria syndrome. Proc. Natl Acad. Sci. USA 102, 12879–12884 (2005). Demonstrated the in vitro efficacy of the clinical candidate FTI lonafarnib to prevent the nuclear blebbing that is seen in human HGPS fibroblasts, as well as providing evidence to suggest that progerin is not alternatively geranylgeranylated when farnesylation is inhibited.

    Article  CAS  Google Scholar 

  22. Yang, S. H. et al. Blocking protein farnesyltransferase improves nuclear blebbing in mouse fibroblasts with a targeted Hutchinson–Gilford progeria syndrome mutation. Proc. Natl Acad. Sci. USA 102, 10291–10296 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Toth, J. I. et al. Blocking protein farnesyltransferase improves nuclear shape in fibroblasts from humans with progeroid syndromes. Proc. Natl Acad. Sci. USA 102, 12873–12878 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Glynn, M. W. & Glover, T. W. Incomplete processing of mutant lamin A in Hutchinson–Gilford progeria syndrome leads to nuclear abnormalities, which are reversed by farnesyltransferase inhibition. Hum. Mol. Genet. 14, 2959–2969 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Mallampalli, M. P., Huyer, G., Bendale, P., Gelb, M. H. & Michaelis, S. Inhibiting farnesylation reverses the nuclear morphology defect in a HeLa cell model for Hutchinson–Gilford progeria syndrome. Proc. Natl Acad. Sci. USA 102, 14416–14421 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Reddel, C. J. & Weiss, A. S. Lamin A expression levels are unperturbed at the normal and mutant alleles but display partial splice site selection in Hutchinson–Gilford progeria syndrome. J. Med. Genet. 41, 715–717 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Goldman, R. D. et al. Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson–Gilford progeria syndrome. Proc. Natl Acad. Sci. USA 101, 8963–8968 (2004). The first description of the passage-dependent nuclear blebbing, loss of peripheral heterochromatin and nuclear pore clustering that is seen in HGPS cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Scaffidi, P. & Misteli, T. Reversal of the cellular phenotype in the premature aging disease Hutchinson–Gilford progeria syndrome. Nature Med. 11, 440–445 (2005). The first demonstration of the reversal of the nuclear phenotype of HGPS using a modified oligonucleotide that is targeted to the activated lamin A cryptic splice site used in HGPS.

    Article  CAS  PubMed  Google Scholar 

  29. Csoka, A. B. et al. Genome-scale expression profiling of Hutchinson–Gilford progeria syndrome reveals widespread transcriptional misregulation leading to mesodermal/mesenchymal defects and accelerated atherosclerosis. Aging Cell 4, 235–243 (2004).

    Article  CAS  Google Scholar 

  30. Delbarre, E. et al. The truncated prelamin A in Hutchinson–Gilford progeria syndrome alters segregation of A-type and B-type lamin homopolymers. Hum. Mol. Genet. 15, 1113–1122 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Paradisi, M. et al. Dermal fibroblasts in Hutchinson–Gilford progeria syndrome with the lamin A G608G mutation have dysmorphic nuclei and are hypersensitive to heat stress. BMC Cell Biol. 6, 27 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Shumaker, D. K. et al. Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc. Natl Acad. Sci. USA 103, 8703–8708 (2006). The first paper to show that, prior to nuclear blebbing, HGPS cells undergo broad and dramatic epigenetic changes that might contribute to the rapid premature ageing that is seen in HGPS patients.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McClintock, D., Gordon, L. B. & Djabali, K. Hutchinson–Gilford progeria mutant lamin A primarily targets human vascular cells as detected by an anti-Lamin A G608G antibody. Proc. Natl Acad. Sci. USA 103, 2154–2159 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yu, C. E. et al. Positional cloning of the Werner's syndrome gene. Science 272, 258–262 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Chen, L. et al. LMNA mutations in atypical Werner's syndrome. Lancet 362, 440–445 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Adelfalk, C., Scherthan, H., Hirsch-Kauffmann, M. & Schweiger, M. Nuclear deformation characterizes Werner syndrome cells. Cell Biol. Int. 29, 1032–1037 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Csoka, A. B. et al. Novel lamin A/C gene (LMNA) mutations in atypical progeroid syndromes. J. Med. Genet. 41, 304–308 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Caux, F. et al. A new clinical condition linked to a novel condition in lamins A and C with generalized lipoatrophy, insulin-resistant diabetes, disseminated leukomelanodermic papules, liver steatosis, and cardiomyopathy. J. Clin. Endocrinol. Metab. 88, 1006–1013 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Bione, S. et al. Identification of a novel X-linked gene responsible for Emery–Dreifuss muscular dystrophy. Nature Genet. 8, 323–327 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Bonne, G. et al. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery–Dreifuss muscular dystrophy. Nature Genet. 21, 285–288 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Raffaele di Barletta, M. et al. Different mutations in the LMNA gene cause autosomal dominant and autosomal recessive Emery–Dreifuss muscular dystrophy. Am. J. Hum. Genet. 66, 1407–1412 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Manilal, S. et al. Mutations in Emery–Dreifuss muscular dystrophy and their effects on emerin protein expression. Hum. Mol. Genet. 7, 855–864 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Yates, J. R. & Wehnert, M. The Emery–Dreifuss muscular dystrophy mutation database. Neuromuscul. Disord. 9, 199 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Brown, C. A et al. Novel and recurrent mutations in lamin A/C in patients with Emery–Dreifuss muscular dystrophy. Am. J. Hum. Genet. 102, 359–367 (2001).

    Article  CAS  Google Scholar 

  45. Muchir, A. et al. Identification of mutations in the gene encoding lamins A/C in autosomal dominant limb girdle muscular dystrophy with atrioventricular conduction disturbances (LGMD1B). Hum. Mol. Genet. 9, 1453–1459 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Jacob, K. N. & Garg, A. Laminopathies: multisystem dystrophy syndromes. Mol. Genet. Metab. 87, 289–302 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Todorova, A. et al. A synonymous codon change in the LMNA gene alters mRNA splicing and causes limb girdle muscular dystrophy type 1B. J. Med. Genet. 40, e115 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fatkin, D. et al. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N. Engl. J. Med. 341, 1715–1724 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Brodsky, G. L. et al. Lamin A/C gene mutation associated with dilated cardiomyopathy with variable skeletal muscle involvement. Circulation 101, 473–476 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. De Sandre-Giovannoli, A. et al. Homozygous defects in LMNA, encoding lamin A/C nuclear-envelope proteins, cause autosomal recessive axonal neuropathy in human (Charcot–Marie–Tooth disorder type 2) and mouse. Am. J. Hum. Genet. 70, 726–736 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tazir, M. et al. Phenotype variability in autosomal recessive axonal Charcot–Marie–Tooth disease due to the R298C mutation in lamin A/C. Brain 127, 154–163 (2003).

    Article  PubMed  Google Scholar 

  52. Cao, H. & Hegele, R. Nuclear lamin A/C R482Q mutation in Canadian kindreds with Dunnigan-type familial partial lipodystrophy. Hum. Mol. Genet. 9, 109–112 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Shackleton, S. et al. LMNA, encoding lamin A/C, is mutated in partial lipodystrophy. Nature Genet. 24, 153–156 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Speckman, R. A. et al. Mutational and haplotype analyses of families with familial partial lipodystrophy (Dunnigan variety) reveal recurrent missense mutations in the globular C-terminal domain of lamin A/C. Am. J. Hum. Genet. 66, 1192–1198 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dhe-Paganon, S., Werner, E. D., Chi, Y. & Shoelson, S. E. Structure of the globular tail of nuclear lamin. J. Biol. Chem. 277, 17381–17384 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Krimm, I. et al. The Ig-like structure of the C-terminal domain of lamin A/C, mutated in muscular dystrophies, cardiomyopathy, and partial lipodystrophy. Structure 10, 811–823 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Novelli, G. et al. Mandibuloacral dysplasia is caused by a mutation in LMNA-encoding lamin A/C. Am. J. Hum. Genet. 71, 426–431 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Agarwal, A. K., Fryns, J. P., Auchus, R. J. & Garg, A. Zinc metalloproteinase, ZMPSTE24, is mutated in mandibuloacral dysplasia. Hum. Mol. Genet. 12, 1995–2001 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Filesi, I. et al. Alterations of nuclear envelope and chromatin organization in mandibuloacral dysplasia, a rare form of laminopathy. Physiol. Genomics 23, 150–158 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Navarro, C. L. et al. Lamin A and ZMPSTE24 (FACE1) defects cause nuclear disorganization and identify restrictive dermopathy as a lethal neonatal laminopathy. Hum. Mol. Genet. 13, 2493–2503 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Navarro, C. L. et al. Loss of ZMPSTE24 (FACE1) causes autosomal recessive restrictive dermopathy and accumulation of lamin A precursors. Hum. Mol. Genet. 14, 1503–1513 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Moulson, C. L. et al. Homozygous and compound heterozygous mutations in ZMPSTE24 cause the laminopathy restrictive dermopathy. J. Invest. Dermatol. 125, 913–919 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kirschner, J. et al. p.S143F mutation in lamin A/C: a new phenotype combining myopathy and progeria. Ann. Neurol. 57, 148–151 (2004).

    Article  CAS  Google Scholar 

  64. Goizet, C. et al. A new mutation of the lamin A/C gene leading to autosomal dominant axonal neuropathy, muscular dystrophy, cardiac disease, and leuconychia. J. Med. Genet. 41, e29 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Van Esch, H., Agarwal, A. K., Debeer, P., Fryns, J. P. & Garg, A. A homozygous mutation in the lamin A/C gene associated with a novel syndrome of arthropathy, tendinous calcinosis, and progeroid features. J. Clin. Endocrinol. Metab. 91, 517–521 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Young, J. et al. Type A insulin resistance syndrome revealing a novel lamin A mutation. Diabetes 54, 1873–1878 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Hegele, R. A. et al. Sequencing of the reannotated LMNB2 gene reveals novel mutations in patients with acquired partial lipodystrophy. Am. J. Hum. Genet. 79, 383–389 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Padiath, Q. S. et al. Lamin B1 duplications cause autosomal dominant leukodystrophy. Nature Genet. 38, 1114–1123 (2006). The first demonstration that mutations in LMNB1 can cause human disease.

    Article  CAS  PubMed  Google Scholar 

  69. Waterham, H. R. et al. Autosomal recessive HEM/Greenberg skeletal dysplasia is caused by 3β-hydroxysterol delta14-reductase deficiency due to mutations in the lamin B receptor gene. Am. J. Hum. Genet. 72, 1013–1017 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Oosterwijk, J. C. et al. Congenital abnormalities reported in Pelger-Huet homozygosity as compared to Greenberg/HEM dysplasia: highly variable expression of allelic phenotypes. J. Med. Genet. 40, 937–941 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Benedetti, S. & Merlini, L. Laminopathies: from the heart of the cell to the clinics. Curr. Opin. Neurol. 17, 553–560 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Ostlund, C. & Worman, H. J. Nuclear envelope proteins and neuromuscular disease. Muscle Nerve 27, 393–406 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Dahl, K. N., Kahn, S. M., Wilson, K. L. & Discher, D. E. The nuclear envelope lamina network has elasticity and a compressibility limit suggestive of a molecular shock absorber. J. Cell Sci. 117, 4779–4786 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Sullivan, T. et al. Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J. Cell Biol. 147, 913–920 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lammerding, J. et al. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J. Clin. Invest. 113, 370–378 (2004). Demonstrated the mechanical role of A-type lamins in nuclear stability, and how perturbing an abnormal lamina with mechanical strain can affect downstream transcription.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Broers, J. L. et al. Decreased mechanical stiffness in LMNA−/− cells is caused by defective nucleo-cytoskeletal integrity: implications for the development of laminopathies. Hum. Mol. Genet. 13, 2567–2580 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Nikolova, V. et al. Defects in nuclear structure and function promote dilated cardiomyopathy in lamin A/C-deficient mice. J. Clin. Invest. 113, 357–369 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Glass, C. A. et al. The α-helical rod domain of human lamins A and C contains a chromatin binding site. EMBO J. 12, 4413–4424 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Taniura, H., Glass, C. & Gerace, L. A chromatin binding site in the tail domain of nuclear lamins that interacts with core histones. J. Cell Biol. 131, 33–44 (1995).

    Article  CAS  PubMed  Google Scholar 

  80. Pickersgill, H. et al. Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nature Genet. 38, 1005–1014 (2006). Provided the first in vivo evidence for the dynamic role of the lamina in genomic organization and expression.

    Article  CAS  PubMed  Google Scholar 

  81. Capanni, C. et al. Failure of lamin A/C to functionally assemble in R482L mutated familial partial lipodystrophy fibroblasts: altered intermolecular interaction with emerin and implications for gene transcription. Exp. Cell Res. 291, 122–134 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Spann, T. P., Moir, R. D., Goldman, A. E., Stick, R. & Goldman, R. Disruption of nuclear lamin organization alters the distribution of replication factors and inhibits DNA synthesis. J. Cell Biol. 136, 1201–1212 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jagatheesan, G. et al. Colocalization of intranuclear lamin foci with RNA splicing factors. J. Cell Sci. 112, 4651–4661 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Ivorra, C. et al. A mechanism of AP-1 suppression through interaction of c-Fos with lamin A/C. Genes Dev. 20, 307–320 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lloyd, D. J., Trembath, R. C. & Shackleton, S. A novel interaction between lamin A and SREBP1: implications for partial lipodystrophy and other laminopathies. Hum. Mol. Genet. 11, 769–777 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Broers, J. L., Hutchinson, C. J. & Ramaekers, F. C. Laminopathies. J. Pathol. 204, 478–488 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Bengtsson, L. & Wilson, K. L. Barrier-to-autointegration factor phosphorylation on Ser-4 regulates emerin binding to lamin A in vitro and emerin localization in vivo. Mol. Biol. Cell 17, 1154–1163 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Melcon, G. et al. Loss of emerin at the nuclear envelope disrupts the Rb/E2F and MyoD pathways during muscle regeneration. Hum. Mol. Genet. 15, 637–651 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Flemington, E. K., Speck, S. H. & Kaelin, W. G. E2F1-mediated transactivation is inhibited by complex formation with the retinoblastoma susceptibility gene product. Proc. Natl Acad. Sci. USA 90, 6914–6918 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Johnson, B. R. et al. A-type lamins regulate retinoblastoma protein function by promoting subnuclear localization and preventing proteasomal degradation. Proc. Natl Acad. Sci. USA 101, 19677–19682 (2004).

    Google Scholar 

  91. Frock, R. L. et al. Lamin A/C and emerin are critical for skeletal muscle satellite cell differentiation. Genes Dev. 20, 486–500 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Van Berlo, J. H. et al. A-type lamins are essential for TGFβ1 induced PP2A to dephosphorylate transcription factors. Hum. Mol. Genet. 14, 2839–2849 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Mounkes, L. C., Kozlov, S., Hernandez, L., Sullivan, T. & Stewart, C. L. A progeroid syndrome in mice is caused by defects in A-type lamins. Nature 423, 298–301 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Boguslavsky, R. L., Stewart, C. L. & Worman, H. J. Nuclear lamin A inhibits adipocyte differentiation: implications for Dunnigan-type familial partial lipodystrophy. Hum. Mol. Genet. 15, 653–663 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Capanni, C. et al. Altered pre-lamin A processing is a common mechanism leading to lipodystrophy. Hum. Mol. Genet. 14, 1489–1502 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Tsai, M. et al. A mitotic lamin B matrix induced by RanGTP required for spindle assembly. Science 311, 1187–1893 (2006). The first proof of the role of the lamina in mitosis, in particular the essential role of lamin B in the formation of the mitotic matrix that assists in spindle assembly.

    Article  CAS  Google Scholar 

  97. Zastrow, M. S., Flaherty, D. B., Benian, G. M. & Wilson, K. L. Nuclear titin interacts with A- and B-type lamins in vitro and in vivo. J. Cell Sci. 119, 239–249 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Lans, H. & Hoeijmakers, J. H. Ageing nucleus gets out of shape. Nature 440, 32–34 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Scaffidi, P., Gordon, L. & Misteli, T. The cell nucleus and aging: tantalizing clues and hopeful promises. PLoS Biol. 3, 1855–1859 (2006).

    Google Scholar 

  100. Pendas, A. M. et al. Defective prelamin A processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase-deficient mice. Nature Genet. 31, 94–99 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Liu, B. et al. Genomic instability in laminopathy-based premature aging. Nature Med. 11, 780–785 (2005). Demonstrated the potential relationship between DNA damage, chromosomal aberrations, genome instability and premature ageing in both a HGPS mouse model and HGPS fibroblasts.

    Article  CAS  PubMed  Google Scholar 

  102. Varela, I. et al. Accelerated ageing in mice deficient in Zmpste24 protease is linked to p53 signalling activation. Nature 437, 564–566 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Fong, L. G. et al. Heterozygosity for Lmna deficiency eliminates the progeria-like phenotypes in Zmpste24-deficient mice. Proc. Natl Acad. Sci. USA 101, 18111–18116 (2004). Provided in vivo proof that reducing the level of farnesylated prelamin A by half can dramatically ameliorate a severe phenotype in a progeria mouse model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fong, L. G. et al. Prelamin A and lamin A appear to be dispensable in the nuclear lamina. J. Clin. Invest. 116, 743–752 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Basso, A. D., Kirschmeier, P. & Bishop, W. R. Farnesyl transferase inhibitors. J. Lipid Res. 47, 15–31 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Fong, L. G. et al. A protein farnesyltransferase inhibitor ameliorates disease in a mouse model of progeria. Science 311, 1621–1623 (2006). The first in vivo demonstration of the efficacy of farnesyltransferase inhibitors in a progeria mouse model.

    Article  CAS  PubMed  Google Scholar 

  107. Yang, S. H. et al. A farnesyltransferase inhibitor improves disease phenotype in mice with a Hutchinson–Gilford progeria syndrome mutation. J. Clin. Invest. 116, 2115–2121 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sebti, S. M. & Der, C. J. Searching for the elusive targets of farnesyltransferase inhibitors. Nature Rev. Cancer 3, 945–951 (2003).

    Article  CAS  Google Scholar 

  109. Efuet, E. T. & Keyomarsi, K. Farnesyl and geranylgeranyl transferase inhibitors induce G1 arrest by targeting the proteasome. Cancer Res. 66, 1040–1051 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Doll, R. J., Kirschmeier, P. & Bishop, W. R. Farneyltransferase inhibitors as anticancer agents: critical crossroads. Curr. Opin. Drug Discov. Devel. 7, 478–486 (2004).

    CAS  PubMed  Google Scholar 

  111. Winter-Vann, A. M. & Casey, P. J. Post-prenylation-processing enzymes as new targets in oncogenesis. Nature Rev. Cancer 5, 405–412 (2005).

    Article  CAS  Google Scholar 

  112. Demierre, M., Higgins, P. D. R., Gruber, S. B., Hawk, E. & Lippman, S. M. Statins and cancer prevention. Nature Rev. Cancer 5, 930–942 (2005).

    Article  CAS  Google Scholar 

  113. Columbaro, M. et al. Rescue of heterochromatin organization in Hutchinson–Gilford progeria by drug treatment. Cell. Mol. Life Sci. 62, 2669–2678 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Huang, S. et al. Correction of cellular phenotypes of Hutchinson–Gilford progeria cells by RNA interference. Hum. Genet. 118, 444–450 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Zimmermann, T. S. et al. RNAi-mediated gene silencing in non-human primates. Nature 441, 111–114 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Sazani, P. & Kole, R. Therapeutic potential of antisense oligonucleotides as modulators of alternative splicing. J. Clin. Invest. 112, 481–486 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Scaffidi, P. & Misteli, T. Lamin A-dependent nuclear defects in human aging. Science 312, 1059–1063 (2006). The first evidence for nuclear phenotypic similarities between aged fibroblasts and HGPS fibroblasts. Also showed that normal cells use the same cryptic splice site that is used in HGPS and produce small amounts of the mutant progerin protein.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Haithcock, E. et al. Age-related changes of nuclear architecture in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 102, 16690–16695 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hegele, R. A. & Pollex, R. L. Genetic and physiological insights into the metabolic syndrome. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R663–R669 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Stehbens, W. E., Wakefield, S. J., Gilbert-Barness, E., Olson, R. E. & Ackerman, J. Histological and ultrastructural features of atherosclerosis in progeria. Cardiovasc. Pathol. 8, 29–39 (1999).

    Article  CAS  PubMed  Google Scholar 

  121. Stehbens, W. E., Delahunt, B., Shozawa, T. & Gilbert-Barness, E. Smooth muscle cell depletion and collagen types in progeric arteries. Cardiovasc. Pathol. 10, 133–136 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Varga, R. et al. Progressive vascular smooth muscle cell defects in a mouse model of Hutchinson–Gilford progeria syndrome. Proc. Natl Acad. Sci. USA 103, 3250–3255 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gordon, L. B., Harten, I. A., Patti, M. E. & Lichtenstein, A. H. Reduced adiponectin and HDL cholesterol without elevated C-reactive protein: clues to the biology of premature atherosclerosis in Hutchinson–Gilford Progeria Syndrome. J. Pediatr. 146, 336–341 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Low, A. F. et al. Aging syndrome genes and premature coronary artery disease. BMC Med. Genet. 6, 38 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Mounkes, L. C., Kozlov, S. V., Rottman, J. N. & Stewart, C. L. Expression of an LMNA-N195K variant of A-type lamins results in cardiac conduction defects and death in mice. Hum. Mol. Genet. 14, 2167–2180 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Arimura, T., et al. Mouse model carrying H222P-Lmna mutation develops muscular dystrophy and dilated cardiomyopathy similar to human striated muscle laminopathies. Hum. Mol. Genet. 14, 155–169 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Mason, J. C. et al. Statins and their role in vascular protection. Clin. Sci. (Lond.) 105, 251–266 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis S. Collins.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

ADLD

APL

CMT

DCM1A

EDMD

FPLD

Greenberg dysplasia

HGPS

LGMD1B

MAD

Pelger–Huet anomaly

RD

Werner syndrome (atypical)

FURTHER INFORMATION

Compilation of Known and Hypothetical Prenylated CAAX Proteins in the Human Genome

Leiden Muscular Dystrophy pages

Progeria Research Foundation

Universal Mutation Database

Glossary

Intermediate filament proteins

A large family of cytoskeletal proteins that polymerize into stable filaments of 10 nm in diameter.

Nuclear pore

Openings in the nuclear envelope through which molecules, such as nuclear proteins that are synthesized in the cytoplasm and mRNA, must pass.

Blebs

Protrusions from the surface of a cell or nucleus, usually approximately hemispherical.

Microstomia

Abnormal smallness of the mouth.

Compound heterozygous

The state of carrying a different mutation in each allele of a gene.

Pleiotropy

The action of a single gene on two or more distinct phenotypic characters.

Desmin

A muscle-specific intermediate filament.

Facultative heterochromatin

Heterochromatin that is located in positions that are composed of euchromatin in other cell types or other individuals of the same species, or even in the other homologue of a chromosome pair.

Constitutive heterochromatin

Heterochromatin that consists of highly condensed, repetitive DNA and is largely transcriptionally silent; unlike facultative heterochromatin, constitutive heterochromatin is never converted back into euchromatin.

Mesenchyme

The part of the embryonic mesoderm from which connective tissue, bone, cartilage and the circulatory and lymphatic systems develop.

Proteasome

A cytosolic protein complex that degrades proteins that have been marked for destruction by the ubiquitylation pathway.

Senescence

The state in which normal cells irreversibly stop dividing.

Herniation

The abnormal protrusion of nuclear contents through an opening or blebbed membrane.

Metabolic syndrome

A syndrome comprising hyperinsulinemia, glucose intolerance, dyslipidemia, hypertension and obesity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capell, B., Collins, F. Human laminopathies: nuclei gone genetically awry. Nat Rev Genet 7, 940–952 (2006). https://doi.org/10.1038/nrg1906

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1906

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing