Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chromatin remodelling in mammalian differentiation: lessons from ATP-dependent remodellers

Key Points

  • ATP-dependent chromatin-remodelling enzymes use the energy of ATP hydrolysis to alter histone–DNA contacts and to facilitate changes in chromatin structure. These are important steps in the regulation of gene expression, recombination and cell-cycle progression during cell differentiation.

  • ATP-dependent chromatin-remodelling enzymes contribute to, and in many cases are essential for, organismal development and the initiation and/or completion of mammalian differentiation processes.

  • The complexity of ATP-dependent chromatin-remodelling enzyme function might be increased by the presence of tissue-specific subunits and the ability to form different complexes from a pool of different subunit proteins.

  • ATP-dependent chromatin-remodelling can be regulated by signal transduction pathways, thereby permitting extracellular cues to exert effects on chromatin structure.

  • Regulation of changes in chromatin structure at specific loci frequently occurs in cooperation with chromatin modifying enzymes that post-translationally modify histone proteins.

  • ATP-dependent chromatin-remodelling enzymes can have local effects on chromatin structure at specific loci, and can also have long-range effects that mediate changes over several kilobases or more.

  • The targeting of ATP-dependent chromatin-remodelling enzymes to their sites of action occurs via DNA-binding regulatory factors that promote specific differentiation pathways. Targeting by related factors during differentiation might help to explain differences in the extent and timing of changes in chromatin structure and subsequent changes in gene expression.

  • During the regulation of differentiation-specific gene expression, the consequences of ATP-dependent remodelling can result in gene activation or gene silencing. Moreover, the requirement for specific enzymes seems to be locus specific, despite the fact that multiple genes are responding to the differentiation cues with similar kinetics.

Abstract

The initiation of cellular differentiation involves alterations in gene expression that depend on chromatin changes, at the level of both higher-order structures and individual genes. Consistent with this, chromatin-remodelling enzymes have key roles in differentiation and development. The functions of ATP-dependent chromatin-remodelling enzymes have been studied in several mammalian differentiation pathways, revealing cell-type-specific and gene-specific roles for these proteins that add another layer of precision to the regulation of differentiation. Recent studies have also revealed a role for ATP-dependent remodelling in regulating the balance between proliferation and differentiation, and have uncovered intriguing links between chromatin remodelling and other cellular processes during differentiation, including recombination, genome organization and the cell cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ATP-dependent chromatin-remodelling enzymes.
Figure 2: Long-range control of expression at the interleukin-2α locus is mediated by ATP-dependent chromatin remodelling.
Figure 3: Temporal requirement for chromatin remodelling at the myogenin locus.

Similar content being viewed by others

References

  1. Bork, P. & Koonin, E. V. An expanding family of helicases within the 'DEAD/H' superfamily. Nucleic Acids Res. 21, 751–752 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Henikoff, S. Transcriptional activator components and poxvirus DNA-dependent ATPases comprise a single family. Trends Biochem. Sci. 18, 291–292 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Eisen, J. A., Sweder, K. S. & Hanawalt, P. C. Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res. 23, 2715–2723 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hassan, A. H. et al. Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell 111, 369–379 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Boyer, L. A., Latek, R. R. & Peterson, C. L. The SANT domain: a unique histone-tail-binding module? Nature Rev. Mol. Cell Biol. 5, 158–163 (2004).

    Article  CAS  Google Scholar 

  6. Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Flanagan, J. F. et al. Double chromodomains cooperate to recognize the methylated histone H3 tail. Nature 438, 1181–1185 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Sims, R. J. et al. Human but not yeast CHD1 binds directly and selectively to histone H3 methylated at lysine 4 via its tandem chromodomains. J. Biol. Chem. 280, 41789–41792 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. de la Cruz, X., Lois, S., Sanchez-Molina, S. & Martinez-Balbas, M. A. Do protein motifs read the histone code? Bioessays 27, 164–175 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Bottomley, M. J. Structures of protein domains that create or recognize histone modifications. EMBO Rep. 5, 464–469 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Smith, C. L. & Peterson, C. L. ATP-dependent chromatin remodeling. Curr. Top. Dev. Biol. 65, 115–148 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Reyes, J. C. et al. Altered control of cellular proliferation in the absence of mammalian brahma (SNF2α). EMBO J. 17, 6979–6991 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bultman, S. et al. A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol. Cell 6, 1287–1295 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Guidi, C. J. et al. Disruption of Ini1 leads to peri-implantation lethality and tumorigenesis in mice. Mol. Cell. Biol. 21, 3598–3603 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Klochendler-Yeivin, A. et al. The murine SNF5/INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression. EMBO Rep. 1, 500–506 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Roberts, C. W., Galusha, S. A., McMenamin, M. E., Fletcher, C. D. & Orkin, S. H. Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice. Proc. Natl Acad. Sci. USA 97, 13796–13800 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bultman, S. J., Gebuhr, T. C. & Magnuson, T. A Brg1 mutation that uncouples ATPase activity from chromatin remodeling reveals an essential role for SWI/SNF-related complexes in β-globin expression and erythroid development. Genes Dev. 19, 2849–2861 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chi, T. H. et al. Sequential roles of Brg, the ATPase subunit of BAF chromatin remodeling complexes, in thymocyte development. Immunity 19, 169–182 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Chi, T. H. et al. Reciprocal regulation of CD4/CD8 expression by SWI/SNF-like BAF complexes. Nature 418, 195–199 (2002). This manuscript, along with references 19 and 21, used mouse models to show that SWI/SNF complexes are involved in both activation and repression of T-cell-specific gene expression, and function at multiple stages of T-cell development.

    Article  CAS  PubMed  Google Scholar 

  21. Gebuhr, T. C. et al. The role of Brg1, a catalytic subunit of mammalian chromatin-remodeling complexes, in T cell development. J. Exp. Med. 198, 1937–1949 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Han, S. et al. Peripheral T cells become sensitive to glucocorticoid- and stress-induced apoptosis in transgenic mice overexpressing SRG3. J. Immunol. 167, 805–810 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Williams, C. J. et al. The chromatin remodeler Mi-2β is required for CD4 expression and T cell development. Immunity 20, 719–733 (2004). Through use of a conditional knockout of CHD4, the authors demonstrated that this remodelling enzyme contributed to activation of T-cell-specific gene expression. Previously, this subfamily of enzymes had only been linked to gene repression.

    Article  CAS  PubMed  Google Scholar 

  24. Kim, J. K. et al. Srg3, a mouse homolog of yeast SWI3, is essential for early embryogenesis and involved in brain development. Mol. Cell. Biol. 21, 7787–7795 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gresh, L. et al. The SWI/SNF chromatin-remodeling complex subunit SNF5 is essential for hepatocyte differentiation. EMBO J. 24, 3313–3324 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lickert, H. et al. Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature 432, 107–112 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, Z. et al. Polybromo protein BAF180 functions in mammalian cardiac chamber maturation. Genes Dev. 18, 3106–3116 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kowenz-Leutz, E. & Leutz, A. A C/EBP β isoform recruits the SWI/SNF complex to activate myeloid genes. Mol. Cell 4, 735–743 (1999). The first report to identify endogenous mammalian genes regulated by SWI/SNF enzymes. The study also indicated that genes in the same differentiation pathway were differentially regulated by SWI/SNF enzymes.

    Article  CAS  PubMed  Google Scholar 

  29. Holstege, F. C. et al. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717–728 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Sudarsanam, P., Iyer, V. R., Brown, P. O. & Winston, F. Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 97, 3364–3369 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Joh, T., Hosokawa, Y., Suzuki, R., Takahashi, T. & Seto, M. Establishment of an inducible expression system of chimeric MLL-LTG9 protein and inhibition of Hox a7, Hox b7 and Hox c9 expression by MLL-LTG9 in 32Dcl3 cells. Oncogene 18, 1125–1130 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Schreiner, S. A., Garcia-Cuellar, M. P., Fey, G. H. & Slany, R. K. The leukemogenic fusion of MLL with ENL creates a novel transcriptional transactivator. Leukemia 13, 1525–1533 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Rozenblatt-Rosen, O. et al. The C-terminal SET domains of ALL-1 and TRITHORAX interact with the INI1 and SNR1 proteins, components of the SWI/SNF complex. Proc. Natl Acad. Sci. USA 95, 4152–4157 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nie, Z. et al. Novel SWI/SNF chromatin-remodeling complexes contain a mixed-lineage leukemia chromosomal translocation partner. Mol. Cell. Biol. 23, 2942–2952 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Armstrong, J. A., Bieker, J. J. & Emerson, B. M. A SWI/SNF-related chromatin remodeling complex, E-RC1, is required for tissue-specific transcriptional regulation by EKLF in vitro. Cell 95, 93–104 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Lee, C. H., Murphy, M. R., Lee, J. S. & Chung, J. H. Targeting a SWI/SNF-related chromatin remodeling complex to the β-globin promoter in erythroid cells. Proc. Natl Acad. Sci. USA 96, 12311–12315 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. O'Neill, D. et al. Tissue-specific and developmental stage-specific DNA binding by a mammalian SWI/SNF complex associated with human fetal-to-adult globin gene switching. Proc. Natl Acad. Sci. USA 96, 349–354 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. O'Neill, D. W. et al. An ikaros-containing chromatin-remodeling complex in adult-type erythroid cells. Mol. Cell. Biol. 20, 7572–7582 (2000). A complex containing both NuRD and SWI/SNF enzyme subunits was isolated and shown to bind to the β-globin locus with the Ikaros transcription factor, suggesting that multiple classes of ATP-dependent chromatin-remodelling enzyme contribute to globin gene switching during erythropoiesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lopez, R. A., Schoetz, S., DeAngelis, K., O'Neill, D. & Bank, A. Multiple hematopoietic defects and delayed globin switching in Ikaros null mice. Proc. Natl Acad. Sci. USA 99, 602–607 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stopka, T. & Skoultchi, A. I. The ISWI ATPase Snf2h is required for early mouse development. Proc. Natl Acad. Sci. USA 100, 14097–14102 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Choi, Y. I. et al. Notch1 confers a resistance to glucocorticoid-induced apoptosis on developing thymocytes by down-regulating SRG3 expression. Proc. Natl Acad. Sci. USA 98, 10267–10272 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bowen, N. J., Fujita, N., Kajita, M. & Wade, P. A. Mi-2/NuRD: multiple complexes for many purposes. Biochim. Biophys. Acta 1677, 52–57 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Winandy, S. Regulation of chromatin structure during thymic T cell development. J. Cell Biochem. 95, 466–477 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Morshead, K. B., Ciccone, D. N., Taverna, S. D., Allis, C. D. & Oettinger, M. A. Antigen receptor loci poised for V(D)J rearrangement are broadly associated with BRG1 and flanked by peaks of histone H3 dimethylated at lysine 4. Proc. Natl Acad. Sci. USA 100, 11577–11582 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Patenge, N., Elkin, S. K. & Oettinger, M. A. ATP-dependent remodeling by SWI/SNF and ISWI proteins stimulates V(D)J cleavage of 5 S arrays. J. Biol. Chem. 279, 35360–35367 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Zhao, K. et al. Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell 95, 625–636 (1998). This report provided the first evidence that ATP-dependent chromatin-remodelling enzymes could be regulated by signal-transduction pathways.

    Article  CAS  PubMed  Google Scholar 

  47. Cocco, L., Maraldi, N. M. & Manzoli, F. A. New frontiers of inositide-specific phospholipase C in nuclear signalling. Eur. J. Histochem. 48, 83–88 (2004).

    CAS  PubMed  Google Scholar 

  48. Martelli, A. M., Manzoli, L. & Cocco, L. Nuclear inositides: facts and perspectives. Pharmacol. Ther. 101, 47–64 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Rando, O. J., Zhao, K., Janmey, P. & Crabtree, G. R. Phosphatidylinositol-dependent actin filament binding by the SWI/SNF-like BAF chromatin remodeling complex. Proc. Natl Acad. Sci. USA 99, 2824–2829 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Alvarez, J. D. et al. The MAR-binding protein SATB1 orchestrates temporal and spatial expression of multiple genes during T-cell development. Genes Dev. 14, 521–535 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cai, S., Han, H. J. & Kohwi-Shigematsu, T. Tissue-specific nuclear architecture and gene expression regulated by SATB1. Nature Genet. 34, 42–51 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Dickinson, L. A., Joh, T., Kohwi, Y. & Kohwi-Shigematsu, T. A tissue-specific MAR/SAR DNA-binding protein with unusual binding site recognition. Cell 70, 631–645 (1992).

    Article  CAS  PubMed  Google Scholar 

  53. Yasui, D., Miyano, M., Cai, S., Varga-Weisz, P. & Kohwi-Shigematsu, T. SATB1 targets chromatin remodelling to regulate genes over long distances. Nature 419, 641–645 (2002). The SATB1 regulatory protein was known to affect gene expression over long distances by manipulation of higher-order chromatin organization. Here, the authors demonstrated that SATB1 function was mediated at least in part through the targeting of multiple ATP-dependent chromatin-remodelling enzymes.

    Article  CAS  PubMed  Google Scholar 

  54. Erickson, R. L., Hemati, N., Ross, S. E. & MacDougald, O. A. p300 coactivates the adipogenic transcription factor CCAAT/enhancer-binding protein α. J. Biol. Chem. 276, 16348–16355 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Pedersen, T. A., Kowenz-Leutz, E., Leutz, A. & Nerlov, C. Cooperation between C/EBPα TBP/TFIIB and SWI/SNF recruiting domains is required for adipocyte differentiation. Genes Dev. 15, 3208–3216 (2001). These authors demonstrated that SWI/SNF enzymes facilitated adipogenic differentiation through interaction with an adipogenic activator.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Takahashi, N. et al. Overexpression and ribozyme-mediated targeting of transcriptional coactivators CREB-binding protein and p300 revealed their indispensable roles in adipocyte differentiation through the regulation of peroxisome proliferator-activated receptor γ. J. Biol. Chem. 277, 16906–16912 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Salma, N., Xiao, H., Mueller, E. & Imbalzano, A. N. Temporal recruitment of transcription factors and SWI/SNF chromatin-remodeling enzymes during adipogenic induction of the peroxisome proliferator-activated receptor gamma nuclear hormone receptor. Mol. Cell. Biol. 24, 4651–4663 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Soutoglou, E. & Talianidis, I. Coordination of PIC assembly and chromatin remodeling during differentiation-induced gene activation. Science 295, 1901–1904 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Agalioti, T. et al. Ordered recruitment of chromatin modifying and general transcription factors to the IFN-β promoter. Cell 103, 667–678 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Lomvardas, S. & Thanos, D. Nucleosome sliding via TBP DNA binding in vivo. Cell 106, 685–696 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Imbalzano, A. N., Kwon, H., Green, M. R. & Kingston, R. E. Facilitated binding of TATA-binding protein to nucleosomal DNA. Nature 370, 481–485 (1994).

    Article  CAS  PubMed  Google Scholar 

  62. Müller, C., Calkhoven, C. F., Sha, X. & Leutz, A. The CCAAT enhancer-binding protein alpha (C/EBPα) requires a SWI/SNF complex for proliferation arrest. J. Biol. Chem. 279, 7353–7358 (2004).

    Article  PubMed  CAS  Google Scholar 

  63. Iakova, P., Awad, S. S. & Timchenko, N. A. Aging reduces proliferative capacities of liver by switching pathways of C/EBPα growth arrest. Cell 113, 495–506 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Wang, W. et al. Diversity and specialization of mammalian SWI/SNF complexes. Genes Dev. 10, 2117–2130 (1996). Cloning of the genes encoding subunits of SWI/SNF complexes revealed gene families and tissue-specific expression of some genes, advancing the concept that chromatin-remodelling enzymes could be modified for specific functions by the inclusion or exclusion of individual enzyme subunits.

    Article  CAS  PubMed  Google Scholar 

  65. Olave, I., Wang, W., Xue, Y., Kuo, A. & Crabtree, G. R. Identification of a polymorphic, neuron-specific chromatin remodeling complex. Genes Dev. 16, 2509–2517 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Machida, Y., Murai, K., Miyake, K. & Iijima, S. Expression of chromatin remodeling factors during neural differentiation. J. Biochem. (Tokyo) 129, 43–49 (2001).

    Article  CAS  Google Scholar 

  67. Reisman, D. N., Sciarrotta, J., Bouldin, T. W., Weissman, B. E. & Funkhouser, W. K. The expression of the SWI/SNF ATPase subunits BRG1 and BRM in normal human tissues. Appl. Immunohistochem. Mol. Morphol. 13, 66–74 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Aihara, T. et al. Cloning and mapping of SMARCA5 encoding hSNF2H, a novel human homologue of Drosophila ISWI. Cytogenet. Cell Genet. 81, 191–193 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Okabe, I. et al. Cloning of human and bovine homologs of SNF2/SWI2: a global activator of transcription in yeast S. cerevisiae. Nucleic Acids Res. 20, 4649–4655 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lazzaro, M. A. & Picketts, D. J. Cloning and characterization of the murine Imitation Switch (ISWI) genes: differential expression patterns suggest distinct developmental roles for Snf2h and Snf2l. J. Neurochem. 77, 1145–1156 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Banting, G. S. et al. CECR2, a protein involved in neurulation, forms a novel chromatin remodeling complex with SNF2L. Hum. Mol. Genet. 14, 513–524 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Barak, O. et al. Isolation of human NURF: a regulator of Engrailed gene expression. EMBO J. 22, 6089–6100 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Aigner, S. & Gage, F. H. A small gem with great powers: geminin keeps neural progenitors thriving. Dev. Cell 9, 171–172 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Seo, S. et al. Geminin regulates neuronal differentiation by antagonizing Brg1 activity. Genes Dev. 19, 1723–1734 (2005). The cell-cycle regulator geminin, which was previously implicated in neural-cell-fate acquisition, was shown to function in maintaining the undifferentiated state by antagonizing the pro-differentiation function of the BRG1 subunit of SWI/SNF enzymes during neurogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Seo, S., Richardson, G. A. & Kroll, K. L. The SWI/SNF chromatin remodeling protein Brg1 is required for vertebrate neurogenesis and mediates transactivation of Ngn and NeuroD. Development 132, 105–115 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Hsieh, J. & Gage, F. H. Chromatin remodeling in neural development and plasticity. Curr. Opin. Cell Biol. 17, 664–671 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Battaglioli, E. et al. REST repression of neuronal genes requires components of the hSWI/SNF complex. J. Biol. Chem. 277, 41038–41045 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Watanabe, H. et al. SWI/SNF complex is essential for NRSF-mediated suppression of neuronal genes in human nonsmall cell lung carcinoma cell lines. Oncogene 25, 470–479 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Berkes, C. A. et al. Pbx marks genes for activation by MyoD indicating a role for a homeodomain protein in establishing myogenic potential. Mol. Cell 14, 465–477 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. de la Serna, I. L., Carlson, K. A. & Imbalzano, A. N. Mammalian SWI/SNF complexes promote MyoD-mediated muscle differentiation. Nature Genet. 27, 187–190 (2001). This manuscript was the first to demonstrate that interference with SWI/SNF chromatin-remodelling enzyme function not only abrogated gene expression but also inhibited changes in chromatin accessibility at an endogenous, differentiation-specific locus.

    Article  CAS  PubMed  Google Scholar 

  81. Roy, K., de la Serna, I. L. & Imbalzano, A. N. The myogenic basic helix–loop–helix family of transcription factors shows similar requirements for SWI/SNF chromatin remodeling enzymes during muscle differentiation in culture. J. Biol. Chem. 277, 33818–33824 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. de la Serna, I. L. et al. MyoD targets chromatin remodeling complexes to the myogenin locus prior to forming a stable DNA-bound complex. Mol. Cell. Biol. 25, 3997–4009 (2005). Provides a detailed, mechanistic assessment of the targeting of ATP-dependent chromatin-remodelling enzymes to a muscle-specific promoter.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. de la Serna, I. L., Roy, K., Carlson, K. A. & Imbalzano, A. N. MyoD can induce cell cycle arrest but not muscle differentiation in the presence of dominant negative SWI/SNF chromatin remodeling enzymes. J. Biol. Chem. 276, 41486–41491 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Simone, C. et al. p38 pathway targets SWI-SNF chromatin-remodeling complex to muscle-specific loci. Nature Genet 36, 738–743 (2004). Showed targeting of SWI/SNF enzymes via the MyoD regulator and indicated that SWI/SNF mediated chromatin remodelling was dependent on the p38 signalling pathway.

    Article  CAS  PubMed  Google Scholar 

  85. Blais, A. et al. An initial blueprint for myogenic differentiation. Genes Dev. 19, 553–569 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cao, Y. et al. Global and gene-specific analyses show distinct roles for Myod and Myog at a common set of promoters. EMBO J. 25, 502–511 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ohkawa, Y., Marfella, C. G. A. & Imbalzano, A. N. Skeletal muscle specification by Myogenin and Mef2D via the SWI/SNF ATPase Brg1. EMBO J. 25, 490–501 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Knoepfler, P. S. et al. A conserved motif N-terminal to the DNA-binding domains of myogenic bHLH transcription factors mediates cooperative DNA binding with pbx-Meis1/Prep1. Nucleic Acids Res. 27, 3752–3761 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chaya, D. & Zaret, K. S. Sequential chromatin immunoprecipitation from animal tissues. Methods Enzymol. 376, 361–372 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Pal, S. et al. mSin3A/histone deacetylase 2- and PRMT5-containing Brg1 complex is involved in transcriptional repression of the Myc target gene cad. Mol. Cell. Biol. 23, 7475–7487 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Xu, W. et al. A methylation-mediator complex in hormone signaling. Genes Dev. 18, 144–156 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Breeden, L. & Nasmyth, K. Cell cycle control of the yeast HO gene: cis- and trans-acting regulators. Cell 48, 389–397 (1987).

    Article  CAS  PubMed  Google Scholar 

  94. Stern, M., Jensen, R. & Herskowitz, I. Five SWI genes are required for expression of the HO gene in yeast. J. Mol. Biol. 178, 853–868 (1984).

    Article  CAS  PubMed  Google Scholar 

  95. Neigeborn, L. & Carlson, M. Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics 108, 845–858 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kingston, R. E., Bunker, C. A. & Imbalzano, A. N. Repression and activation by multiprotein complexes that alter chromatin structure. Genes Dev. 10, 905–920 (1996).

    Article  CAS  PubMed  Google Scholar 

  97. Winston, F. & Carlson, M. Yeast SNF/SWI transcriptional activators and the SPT/SIN chromatin connection. Trends Genet. 8, 387–391 (1992).

    Article  CAS  PubMed  Google Scholar 

  98. Kruger, W. & Herskowitz, I. A negative regulator of HO transcription, SIN1 (SPT2), is a nonspecific DNA-binding protein related to HMG1. Mol. Cell. Biol. 11, 4135–4146 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Kruger, W. et al. Amino acid substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the yeast SWI/SNF complex for transcription. Genes Dev. 9, 2770–2779 (1995).

    Article  CAS  PubMed  Google Scholar 

  100. Hirschhorn, J. N., Brown, S. A., Clark, C. D. & Winston, F. Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev. 6, 2288–2298 (1992).

    Article  CAS  PubMed  Google Scholar 

  101. Cairns, B. R., Kim, Y. J., Sayre, M. H., Laurent, B. C. & Kornberg, R. D. A multisubunit complex containing the SWI1/ADR6, SWI2/SNF2, SWI3, SNF5, and SNF6 gene products isolated from yeast. Proc. Natl Acad. Sci. USA 91, 1950–1954 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Peterson, C. L., Dingwall, A. & Scott, M. P. Five SWI/SNF gene products are components of a large multisubunit complex required for transcriptional enhancement. Proc. Natl Acad. Sci. USA 91, 2905–2908 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Cote, J., Quinn, J., Workman, J. L. & Peterson, C. L. Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science 265, 53–60 (1994).

    Article  CAS  PubMed  Google Scholar 

  104. Kennison, J. A. The Polycomb and trithorax group proteins of Drosophila: trans-regulators of homeotic gene function. Annu. Rev. Genet. 29, 289–303 (1995).

    Article  CAS  PubMed  Google Scholar 

  105. Tamkun, J. W. The role of brahma and related proteins in transcription and development. Curr. Opin. Genet. Dev. 5, 473–477 (1995).

    Article  CAS  PubMed  Google Scholar 

  106. Tamkun, J. W. et al. brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Cell 68, 561–572 (1992).

    Article  CAS  PubMed  Google Scholar 

  107. Khavari, P. A., Peterson, C. L., Tamkun, J. W., Mendel, D. B. & Crabtree, G. R. BRG1 contains a conserved domain of the SWI2/SNF2 family necessary for normal mitotic growth and transcription. Nature 366, 170–174 (1993).

    Article  CAS  PubMed  Google Scholar 

  108. Muchardt, C. & Yaniv, M. A human homologue of Saccharomyces cerevisiae SNF2/SWI2 and Drosophila brm genes potentiates transcriptional activation by the glucocorticoid receptor. EMBO J. 12, 4279–4290 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kwon, H., Imbalzano, A. N., Khavari, P. A., Kingston, R. E. & Green, M. R. Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature 370, 477–481 (1994).

    Article  CAS  PubMed  Google Scholar 

  110. Dingwall, A. K. et al. The Drosophila snr1 and brm proteins are related to yeast SWI/SNF proteins and are components of a large protein complex. Mol. Biol. Cell 6, 777–791 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Armstrong, J. A. et al. The Drosophila BRM complex facilitates global transcription by RNA polymerase II. EMBO J. 21, 5245–5254 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tsukiyama, T., Daniel, C., Tamkun, J. & Wu, C. ISWI, a member of the SWI2/SNF2 ATPase family, encodes the 140 kDa subunit of the nucleosome remodeling factor. Cell 83, 1021–1026 (1995).

    Article  CAS  PubMed  Google Scholar 

  113. Goodwin, G. H. Isolation of cDNAs encoding chicken homologues of the yeast SNF2 and Drosophila Brahma proteins. Gene 184, 27–32 (1997).

    Article  CAS  PubMed  Google Scholar 

  114. Farrona, S., Hurtado, L., Bowman, J. L. & Reyes, J. C. The Arabidopsis thaliana SNF2 homolog AtBRM controls shoot development and flowering. Development 131, 4965–4975 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Ito, T., Bulger, M., Pazin, M. J., Kobayashi, R. & Kadonaga, J. T. ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90, 145–155 (1997).

    Article  CAS  PubMed  Google Scholar 

  116. Varga-Weisz, P. D. et al. Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature 388, 598–602 (1997).

    Article  CAS  PubMed  Google Scholar 

  117. Badenhorst, P., Voas, M., Rebay, I. & Wu, C. Biological functions of the ISWI chromatin remodeling complex NURF. Genes Dev. 16, 3186–3198 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Badenhorst, P. et al. The Drosophila nucleosome remodeling factor NURF is required for Ecdysteroid signaling and metamorphosis. Genes Dev. 19, 2540–2545 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Deuring, R. et al. The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo. Mol. Cell 5, 355–365 (2000).

    Article  CAS  PubMed  Google Scholar 

  120. Xi, R. & Xie, T. Stem cell self-renewal controlled by chromatin remodeling factors. Science 310, 1487–1489 (2005).

    Article  CAS  PubMed  Google Scholar 

  121. Guschin, D. et al. Multiple ISWI ATPase complexes from Xenopus laevis. Functional conservation of an ACF/CHRAC homolog. J. Biol. Chem. 275, 35248–35255 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Bozhenok, L., Wade, P. A. & Varga-Weisz, P. WSTF-ISWI chromatin remodeling complex targets heterochromatic replication foci. EMBO J. 21, 2231–2241 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Collins, N. et al. An ACF1-ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin. Nature Genet. 32, 627–632 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. Dirscherl, S. S., Henry, J. J. & Krebs, J. E. Neural and eye-specific defects associated with loss of the Imitation Switch (ISWI) chromatin remodeler in Xenopus laevis. Mech. Dev. 122, 1157–1170 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Kehle, J. et al. dMi-2, a hunchback-interacting protein that functions in polycomb repression. Science 282, 1897–1900 (1998).

    Article  CAS  PubMed  Google Scholar 

  126. Ogas, J., Kaufmann, S., Henderson, J. & Somerville, C. PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis. Proc. Natl Acad. Sci. USA 96, 13839–13844 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Solari, F. & Ahringer, J. NURD-complex genes antagonise Ras-induced vulval development in Caenorhabditis elegans. Curr. Biol. 10, 223–226 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Wade, P. A., Jones, P. L., Vermaak, D. & Wolffe, A. P. A multiple subunit Mi-2 histone deacetylase from Xenopus laevis cofractionates with an associated Snf2 superfamily ATPase. Curr. Biol. 8, 843–846 (1998).

    Article  CAS  PubMed  Google Scholar 

  129. Ahringer, J. NuRD and SIN3 histone deacetylase complexes in development. Trends Genet. 16, 351–356 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. von Zelewsky, T. et al. The C. elegans Mi-2 chromatin-remodelling proteins function in vulval cell fate determination. Development 127, 5277–5284 (2000).

    Article  CAS  PubMed  Google Scholar 

  131. Unhavaithaya, Y. et al. MEP-1 and a homolog of the NURD complex component Mi-2 act together to maintain germline-soma distinctions in C. elegans. Cell 111, 991–1002 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Shin, T. H. & Mello, C. C. Chromatin regulation during C. elegans germline development. Curr. Opin. Genet. Dev. 13, 455–462 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. Hendrich, B., Guy, J., Ramsahoye, B., Wilson, V. A. & Bird, A. Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes Dev. 15, 710–723 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lagger, G. et al. Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J. 21, 2672–2681 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the American Heart Association and the National Institutes of Health (NIH) to I.L.D. and from the NIH to A.N.I. We apologize to those whose work was not discussed due to space limitations.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Anthony Imbalzano's homepage

Glossary

Myeloid cells

General term for white blood cells that are not of the lymphoid lineage that gives rise to cells such as T and B cells. Myeloid cells arise in the bone marrow and include megakaryocytes, monocytes and granulocytes.

Homeobox genes

A family of genes that are critically important for many aspects of development. They often encode transcription factors that regulate the expression of many other genes. The proteins encoded contain homeoboxes, a specific class of DNA-binding domain.

Polycomb group proteins

A class of proteins — originally described in Drosophila melanogaster — that maintain the stable and heritable repression of several genes, including the homeotic genes.

T cell

T cells are derived from precursor cells that arise in the bone marrow and then collect in the thymus as thymocytes, where they undergo differentiation. T cells recognize antigens through cell-surface receptors, and exert different effects depending on whether they differentiate to form cytotoxic or helper T cells.

Helper T cells

When stimulated by a specific antigen, these cells release specific lymphokines that promote the activation and function of cytotoxic T cells and of antibody-producing B cells.

Cytotoxic T cells

Also called killer T cells; these cells recognize and lyse target cells bearing a specific foreign antigen.

Pre-initiation complex

A complex consisting of a specific RNA polymerase and its associated factors that interact with promoter DNA near the RNA start site and are necessary to initiate transcription.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de la Serna, I., Ohkawa, Y. & Imbalzano, A. Chromatin remodelling in mammalian differentiation: lessons from ATP-dependent remodellers. Nat Rev Genet 7, 461–473 (2006). https://doi.org/10.1038/nrg1882

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1882

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing