Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The evolution of metazoan axial properties

Key Points

  • Insights into the origin of bilaterian characteristics will be obtained by investigating the four basal bilaterian taxa: Cnidaria, Ctenophora, sponges and the placozoan Trichoplax adhaerens. Understanding the correct phylogenetic relationship of these organisms is necessary to understand the direction of evolutionary change.

  • Molecular expression studies argue that cnidarians, which have been considered to be radially symmetrical on morphological grounds, are actually bilaterally symmetrical and have an anterior–posterior (A–P) and a dorso-ventral (D–V) axis.

  • Ctenophores have definitive muscle cells, and the gastrodermis of cnidarians is both functionally and molecularly a bifunctional endomesoderm.

  • Although total genome sequencing for all four taxa is not yet complete, A–P patterning seems to have arisen before Hox genes evolved.

  • Cnidarians clearly possess gene family members that have been lost in bilaterian taxa such as flies and nematodes.

  • Changing patterns of gastrulation must have had a role in body-plan evolution. Gastrulation, and the genes that control it, originated at the animal pole, but have migrated to the vegetal pole in deuterostomes, and to intermediate locations in other taxa.

  • Some, but not all, genes that are expressed at the site of gastrulation in cnidarians are expressed at the site of gastrulation in other metazoans, indicating that these gene networks can and have been dissociated with one another.

Abstract

Renewed interest in the developmental basis of organismal complexity, and the emergence of new molecular tools, is improving our ability to study the evolution of metazoan body plans. The most substantial changes in body-plan organization occurred early in metazoan evolution; new model systems for studying basal metazoans are now being developed, and total-genome-sequencing initiatives are underway for at least three of the four most important taxa. The elucidation of how the gene networks that are involved in axial organization, germ-layer formation and cell differentiation are used differently during development is generating a more detailed understanding of the events that have led to the current diversity of multicellular life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: How did the metazoan body plan evolve?
Figure 2: The phylogenetic relationships of basal metazoans.
Figure 3: Body plans of four basal metazoan taxa.

Similar content being viewed by others

References

  1. Holland, P. W. & Garcia-Fernandez, J. Hox genes and chordate evolution. Dev. Biol. 173, 382–395 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Wada, H., Garcia-Fernandez, J. & Holland, P. W. Colinear and segmental expression of amphioxus Hox genes. Dev. Biol. 213, 131–141 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Irvine, Q. & Martindale, M. Q. Comparative analysis of polychaete Hox gene expression: implications for the evolution of body plan regionalization. Am. Zool. 41, 640–651 (2001).

    CAS  Google Scholar 

  4. Hughes, C. L. & Kaufman, T. C. Hox genes and the evolution of the arthropod body plan. Evol. Dev. 4, 459–499 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Holley, S. A., et al. A conserved system for dorsal–ventral patterning in insects and vertebrates involving sog and chordin. Nature 376, 249–253 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Holley, S. A. & Ferguson, E. L. Fish are like flies are like frogs: conservation of dorsal–ventral patterning mechanisms. Bioessays 19, 281–284 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Schmidt, J., Francois, V., Bier, E. & Kimelman, D. Drosophila short gastrulation induces an ectopic axis in Xenopus: evidence for conserved mechanisms of dorsal–ventral patterning. Development 121, 4319–4328 (1995).

    CAS  PubMed  Google Scholar 

  8. Lacalli, T. C. Dorsoventral axis inversion: a phylogenetic perspective. Bioessays 18, 251–254 (1996).

    Article  Google Scholar 

  9. Willmer, P. Invertebrate Relationships. Patterns in Animal Evolution (Cambridge Univ. Press, Cambridge, 1990).

    Book  Google Scholar 

  10. King, N. The unicellular ancestry of animal development. Dev. Cell 7, 313–325 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Brauckmann, S. & Gilbert, S. F. in Gastrulation: from Cells to Embryos (ed. Stern, C.) (Cold Spring Harbor Laboratory Press, 2004).

    Google Scholar 

  12. Price, A. L. & Patel, N. H. Gastrulation: from Cells to Embryos (ed. Stern, C.) (Cold Spring Harbor Laboratory Press, 2004).

    Google Scholar 

  13. Coghlan, A. & Wolfe, K. H. Fourfold faster rate of genome rearrangement in nematodes than Drosophila. Genome Res. 16, 857–867 (2002).

    Article  CAS  Google Scholar 

  14. Copley, R. R., Aloy, P., Russess, R. B. & Telford, M. J. Systematic searches for molecular synapomorphies in model metazoan genomes give some support for Ecdysozoa after accounting for the idiosyncrasies of Caenorhabditis elegans. Evol. Dev. 6, 164–169 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Hughes, A. L. & Friedman, R. Loss of ancestral genes in the genomic evolution of Ciona intestinalis. Evol. Dev. 7, 196–200 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Volff, J. N. Genome evolution and biodiversity in teleost fish. Heredity 94, 280–294 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Noonan J. P. et al. Coelacanth genome sequence reveals the evolutionary history of vertebrate genes. Genome Res. 14, 2397–2405 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Amores, A. et al. Developmental roles of pufferfish Hox clusters and genome evolution in ray-fin fish. Genome Res. 14, 1–10 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Thomas J. W. & Green, E. D. NISC Comparative Sequencing Program. Comparative sequence analysis of a single-gene conserved segment in mouse and human. Mamm. Genome 14, 673–678 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Baguna, J. & Riutort, M. The dawn of bilaterian animals: the case of acoelomorph flatworms. Bioessays 26, 1046–1057 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Ruiz-Trillo, I. et al. A phylogenetic analysis of myosin heavy chain type II sequences corroborates that Acoela and Nemertodermatida are basal bilaterians. Proc. Natl Acad. Sci. USA 99, 11246–11251 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Telford, M. J., Lockyer, A. E, Cartwright-Finch, C. & Littlewood, D. T. J. Combined large and small subunit ribosomal RNA phylogenies support a basal position of the acoelomorph flatworms. Proc. Biol. Sci. 270, 1077–1083 (2003).

  23. Grell, K. G. & Ruthmann, A. in Microscopic Anatomy of Invertebrates Vol. 2 (eds Harrison, F. W. & Westfall, J. A.) (Wiley-Liss, New York, 1991).

    Google Scholar 

  24. Martinelli, C. & Spring, J. Distinct expression patterns of the two T-box homologues Brachyury and Tbx2/3 in the placozoan Trichoplax adhaerens. Dev. Genes Evol. 213, 492–499 (2003). This paper is one of the first convincing studies of gene expression in Trichoplax adhaerens . It shows that these enigmatic animals have many members of gene families that are important for developmental regulation.

    Article  PubMed  Google Scholar 

  25. Martinelli, C. & Spring, J. Expression pattern of the homeobox gene Not in the basal metazoan Trichoplax adhaerens. Gene Expr. Patterns 4, 443–447 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Muller, W. E. et al. Bauplan of Urmetazoa: basis for genetic complexity of Metazoa. Int. Rev. Cytol. 235, 53–92 (2004).

    Article  PubMed  Google Scholar 

  27. Adell, T., Grebenjuk, V. A., Wiens, M. & Müller, W. E. G. Isolation and characterization of two T-box genes from sponges, the phylogenetically oldest metazoantaxon. Dev. Genes Evol. 213, 421–434 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Kim, J., Kim, W. & Cunningham, C. W. A new perspective on lower metazoan relationships from 18S rDNA sequences. Mol. Biol. Evol. 16, 423–427 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Hyman, L. H. The Invertebrates. Protozoa through Ctenophora (McGraw-Hill, New York, 1940).

    Google Scholar 

  30. Ball, E. E., Hayward, D. C., Saint, R. & Miller, D. C. A simple plan — cnidarians and the origins of developmental mechanisms. Nature Rev. Genet. 5, 567–577 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Kortschak, R. D., Samuel, G., Saint, R. & Miller, D. J. EST analysis of the cnidarian Acropora millepora reveals extensive gene loss and rapid sequence divergence in the model invertebrates. Curr. Biol. 13, 2190–2195 (2003). The first comprehensive analysis of a shallow EST screen in an anthozoan cnidarian. The authors show that cnidarians possess members of gene families that were lost in ecdysozoan genetic model systems. This result highlights the importance of sampling outgroups to determine the direction of evolutionary change, and indicates that even 'simple' animals possess complex genetic repertoires.

    Article  CAS  PubMed  Google Scholar 

  32. Collins, A. G. Phylogeny of the Medusozoa and the evolution of cnidarian life cycles. J. Evol. Biol. 15, 418–432 (2002).

    Article  Google Scholar 

  33. Medina, M., Collins, A. G., Silberman, J. D. & Sogin, M. L. Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA. Proc. Natl Acad. Sci. USA 98, 9707–9712 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kusserow, A. et al. Unexpected complexity of Wnt genes in a sea anemone. Nature 433, 156–160 (2005). This survey of an anthozoan genome shows that anthozoans have 11 of the 12 Wnt family members that are present in vertebrates. Expression studies reveal the presence of two distinct subsets of Wnt genes: these appear in nested 'Hox-like' patterns that start at the blastopore — one in the endoderm and the other in the ectoderm.

    Article  CAS  PubMed  Google Scholar 

  35. Schierwater, B. & Kuhn, K. Homology of Hox genes and the zootype concept in early metazoan evolution. Mol. Phylogenet. Evol. 9, 375–381 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Jakob, W. et al. The Trox-2 Hox/ParaHox gene of Trichoplax (Placozoa) marks an epithelial boundary. Dev. Genes Evol. 214, 170–175 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Brooke, N. M., Garcia-Fernandez, J. & Holland, P. W. The ParaHox gene cluster is an evolutionary sister of the Hox gene cluster. Nature 392, 920–922 (1998). A landmark paper that sheds light on the origin of the Hox gene cluster and allows comparisons of the functional and genomic evolution of an important family of developmental regulatory genes.

    Article  CAS  PubMed  Google Scholar 

  38. Finnerty, J. R., Paulson, D., Burton, P., Pang, K. & Martindale, M. Q. Early evolution of a homeobox gene: the ParaHox gene Gsx in the Cnidaria and the Bilateria. Evol. Dev. 5, 331–345 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Garcia-Fernàndez, J. The genesis and evolution of homebox gene clusters. Nature Rev. Genet. 6, 881–892 (2005).

    Article  PubMed  Google Scholar 

  40. Finnerty, J. R., Pang, K., Burton, P., Paulson, D. & Martindale, M. Q. Deep origins for bilateral symmetry: Hox and Dpp expression in a sea anemone. Science 304, 1335–1337 (2004). Although one pattern of asymmetrical gene expression during early development had already been described in a coral, these authors report the unexpectedly asymmetrical expression pattern of TGFB and many homeodomain-containing genes along the juvenile body plan of a sea anemone.

    Article  CAS  PubMed  Google Scholar 

  41. Tessier, G. Etude expérimentale du développement de quelques hydraires. Ann. Sci. Nat. Ser. X 14, 5–60 (1931) (in French).

    Google Scholar 

  42. Freeman, G. in Developmental and Cellular Biology of Coelenterates (eds Tardent, P. & Tardent, R.) (Elsevier, Amsterdam, 1980).

    Google Scholar 

  43. Hirose, M., Kinzie, R. A. 3rd & Hidaka, M. Early development of zooxanthella-containing eggs of the corals Pocillopora verrucosa and P. eydouxi with special reference to the distribution of zooxanthellae. Biol. Bull. 199, 68–75 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Freeman, G. The establishment of the oral–aboral axis in the ctenophore embryo. J. Embryol. Exp. Morphol. 42, 237–260 (1977).

    Google Scholar 

  45. Salvini-Plawen, L. On the origin and evolution of the lower Metazoa. Z. Zool. Syst. Evol. 16, 40–88 (1978).

    Article  Google Scholar 

  46. Nielsen, C. & Norrevang, A. in The Origins and Relationships of Lower Invertebrates (eds Conway Morris, S., George, J. D., Gibson, R. & Platt, H. M.) (Clarendon, Oxford, 1985)

    Google Scholar 

  47. Jägersten, G. On the early phylogeny of the Metazoa: the bilaterogastraea theory. Zool. Bidr. Uppsala 30, 321–354 (1955).

    Google Scholar 

  48. Meinhardt, H. Different strategies for midline formation in bilaterians. Nature Rev. Neurosci. 5, 8–17 (2004).

    Article  CAS  Google Scholar 

  49. Grell, K. G. Trichoplax adhaerens and the origin of the Metazoa. Atti Conv. Lincei 49, 107–121 (1981).

    Google Scholar 

  50. Bruce, A. E. E. & Shankland, M. Expression of the head gene Lox22-Otx in the leech Helobdella and the origin of the bilaterian body plan. Dev. Biol. 201, 101–112 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Arendt, D. & Nübler-Jung, K. Dorsal or ventral: similarities in fate maps and gastrulation patterns in annelids, arthropods and chordates. Mech. Dev. 61, 7–21 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Hayward, D. C. et al. Localized expression of a dpp/BMP2/4 ortholog in a coral embryo. Proc. Natl Acad. Sci. USA 99, 8106–8111 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Holley, S. A. & Ferguson, E. L. Fish are like flies are like frogs: conservation of dorsal–ventral patterning mechanisms. Bioessays 19, 281–284 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Henry, J. Q., Tagawa, K. & Martindale, M. Q. Deuterostome evolution: early development in the enteropneust hemichordate Ptychodera flava. Evol. Dev. 3, 375–390 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Eriksson, B. J. & Budd, G. E. Onychophoran cephalic nerves and their bearing on our understanding of head segmentation and stem-group evolution of Arthropoda. Arthropod Struct. Dev. 29, 197–209 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Eriksson, B. J., Tait, N. N. & Budd, G. E. Head development in the onychophoran Euperipatoides kanangrensis with particular reference to the central nervous system. J. Morph. 255, 1–23 (2003).

    Article  PubMed  Google Scholar 

  57. Schierenberg, E. Unusual cleavage and gastrulation in a freshwater nematode: developmental and phylogenetic implications. Dev. Genes Evol. 215, 103–108 (2005). Describes the development of a nematode that is unlike the heavily studied soil nematodes. The embryonic form undergoes equal cleavage and gastrulates by unipolar invagination at the animal oral pole.

    Article  PubMed  Google Scholar 

  58. Byrum, C. & Martindale, M. Q. in Gastrulation: from Cells to Embryos (ed. Stern, C.) (Cold Spring Harbor Laboratory Press, 2004).

    Google Scholar 

  59. Schneider, S., Steinbeisser, H., Warga, R. M. & Hausen, P. β-catenin translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos. Mech. Dev. 57, 191–198 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Logan, C. Y., Miller, J. R., Ferkowicz, M. J. & McClay, D. R. Nuclear β-catenin is required to specify vegetal cell fates in the sea urchin embryo. Development 126, 345–357 (1999).

    CAS  PubMed  Google Scholar 

  61. Wikramanayake, A. H. et al. An ancient role for nuclear β-catenin in the evolution of axial polarity and germ layer segregation. Nature 426, 446–450 (2003). The authors show that β-catenin is selectively stabilized and enters the nuclei of the cells at the animal pole that will give rise to the gastrodermis. They show that nuclear β-catenin is causally required for gastrulation to proceed.

    Article  CAS  PubMed  Google Scholar 

  62. Lespinet, O. et al. Characterisation of two snail genes in the gastropod mollusc Patella vulgata. Implications for understanding the ancestral function of the snail-related genes in Bilateria. Dev. Genes Evol. 212, 186–195 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Duboc, V., Rottinger, E., Besnardeau, L. & Lepage, T. Nodal and BMP2/4 signaling organizes the oral–aboral axis of the sea urchin embryo. Dev. Cell 6, 397–410 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Angerer, L. M. et al. A BMP pathway regulates cell fate allocation along the sea urchin animal–vegetal embryonic axis. Development 127, 1105–1114 (2000).

    CAS  PubMed  Google Scholar 

  65. Scholz, C. B. & Technau, U. The ancestral role of Brachyury: expression of NemBra1 in the basal cnidarian Nematostella vectensis (Anthozoa). Dev. Genes Evol. 212, 563–570 (2003). This article shows for the first time that the T-box transcription factor Brachyury is expressed at the blastopore (mouth/anus) in an anthozoan cnidarian embryo and that brachyury is a marker for the site of gastrulation rather than for the adult mouth/anus.

    CAS  PubMed  Google Scholar 

  66. Martindale, M. Q., Pang, K. & Finnerty, J. R. Investigating the origins of triploblasty: 'Mesodermal' gene expression in a diploblastic animal, the sea anemone, Nematostella vectensis (phylum, Cnidaria; Class Anthozoa). Development 131, 2463–2474 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Fritzenwanker, J. H., Saina, M. & Technau, U. Analysis of forkhead and snail expression reveals epithelial–mesenchymal transitions during embryonic and larval development of Nematostella vectensis. Dev. Biol. 275, 389–402 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Hayward, D. C., Miller, D. J. & Ball, E. E. snail expression during embryonic development of the coral Acropora: blurring the diploblast/triploblast divide? Dev. Genes Evol. 214, 257–260 (2004).

    Article  PubMed  Google Scholar 

  69. Showell, C., Binder, O. & Conlon, F. L. T-box genes in early embryogenesis. Dev. Dyn. 229, 201–218 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lartillot, N., Lespinet, O., Vervoort, M. & Adoutte, A. Expression pattern of Brachyury in the mollusc Patella vulgata suggests a conserved role in the establishment of the AP axis in Bilateria. Development 129, 1411–1421 (2002).

    CAS  PubMed  Google Scholar 

  71. Arendt, D., Nubler-Jung, K. & Wittbrodt, J. Evolution of the bilaterian larval foregut. Nature 409, 81–85 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Kispert, A., Herrmann, B. G., Leptin, M. & Reuter, R. Homologs of the mouse Brachyury gene are involved in the specification of posterior terminal structures in Drosophila, Tribolium, and Locusta. Genes Dev. 8, 2137–2150 (1994).

    Article  CAS  PubMed  Google Scholar 

  73. Gross, J. M. & McClay, D. R. The role of Brachyury (T) during gastrulation movements in the sea urchin Lytechinus variegatus. Dev. Biol. 239, 132–147 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Shoguchi, E., Satoh, N. & Maruyama, Y. K. Pattern of Brachyury gene expression in starfish embryos resembles that of hemichordate embryos but not of sea urchin embryos. Mech. Dev. 82, 185–189 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Tagawa, K., Humphreys, T. & Satoh, N. Novel pattern of Brachyury gene expression in hemichordate embryos. Mech. Dev. 75, 139–143 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Takada, N., Goto, T. & Satoh, N. Expression pattern of the Brachyury gene in the arrow worm Paraspadella gotoi (chaetognatha). Genesis 32, 240–245 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Technau, U. & Bode, H. R. HyBra1, a Brachyury homologue, acts during head formation in Hydra. Development 126, 999–1010 (1999).

    CAS  PubMed  Google Scholar 

  78. Schram, F. R. in The Early Evolution of Metazoa and the Significance of Problematic Taxa (eds Simonetta, A. M. & Conway Morris, S.) (Cambridge Univ. Press, Cambridge, 1991).

    Google Scholar 

  79. Ax, P. Multicellular Animals: a New Approach to the Phylogenetic Order in Nature (Springer, Berlin, 1996).

    Book  Google Scholar 

  80. Nielsen, C., Scharff, N. & Eibye-Jacobsen, D. Cladistic analyses of the animal kingdom. Biol. J. Linn. Soc. 57, 385–410 (1996).

    Article  Google Scholar 

  81. Peterson, K. J. & Eernisse, D. J. Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences. Evol. Dev. 3, 170–205 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Collins, A. G. Evaluating multiple alternative hypotheses for the origin of Bilateria: an analysis of 18S molecular evidence. Proc. Natl Acad. Sci. USA 95, 15458–15463 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Podar, M., Haddock, S. H., Sogin, M. L. & Harbison, G. R. A molecular phylogenetic framework for the phylum Ctenophora using 18S rRNA genes. Mol. Phylog. Evol. 21, 218–230 (2001).

    Article  CAS  Google Scholar 

  84. Wallberg, A., Thollesson, M., Farris, J. S. & Jondelius, U. The phylogenetic position of the comb jellies (Ctenophora) and the importance of taxonomic sampling. Cladistics 20, 558–578 (2004). By far the most thorough phylogenetic analysis to be carried out using 528 SSU rRNA sequences from diploblast, triploblast and outgroup animals. This paper uses multiple reconstruction techniques to support the 'Planulozoa' theory that cnidarians, and not ctenophores, are the sister group to the traditionally defined Bilateria.

    Article  PubMed  Google Scholar 

  85. Martindale, M. Q. & Henry, J. Q. Intracelular fate mapping in a basal metazoan, the ctenophore Mnemiopsis leidyi, reveals the origins of mesoderm and the existence of indeterminate cell lineages. Dev. Biol. 214, 243–257 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Henry, J. Q., Martindale, M. Q. & Boyer, B. C. The unique developmental program of the acoel flatworm, Neochildia fusca. Dev. Biol. 220, 285–295 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Tamm, S. L. Ctenophora. in: Electrical Conduction and Behavior in 'Simple' Invertebrates (ed. Shelton, G. G.) (Clarendon, Oxford, 1982).

    Google Scholar 

  88. Hay-Schmidt, A. The evolution of the serotonergic nervous system. Proc. Biol. Sci. 267, 1071–1079 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yamada, A. & Martindale, M. Q. The ctenophore Brain Factor-1 forkhead gene ortholog (ctenoBF-1) is expressed in the presumptive oral region and feeding apparatus: implications for axial organization in the Metazoa. Dev. Genes Evol. 212, 338–348 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. David, C. N. & Hager, G. Formation of a primitive nervous system- nerve cell differentiation in the polyp hydra. Perspect. Dev. Neurobiol. 2, 135–140 (1994).

    CAS  PubMed  Google Scholar 

  91. Greenberg, M. Ancestors, embryos, and symmetry. Syst. Zool. 8, 212–221 (1959).

    Article  Google Scholar 

  92. Haeckel, E. Die Gastrea-Theorie, die phylogenetische clasification des thierreichs und die homologie der keimblatter. Jena. Z. Naturw. 8, 1–55 (1874).

    Google Scholar 

  93. Arias, A. M. Epithelial mesenchymal interactions in cancer and development. Cell 105, 425–431 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Pérez-Pomares, J. M. & Muñoz-Chápuli, R. Epithelial–mesenchymal transitions: a mesodermal cell strategy for evolutive innovation in metazoans. Anat. Rec. 268, 343–351 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Rodaway, A. & Patient, R. Mesendoderm: an ancient germ layer? Cell 105, 169–172 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Technau, U. Brachyury, the blastopore and the evolution of the mesoderm. Bioessays 23, 788–794 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Maduro, M. F. & Rothman, J. H. Making worm guts: the gene regulatory network of the Caenorhabditis elegans endoderm. Dev. Biol. 246, 68–85 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Stainier, D. Y. A glimpse into the molecular entrails of endoderm formation. Genes Dev. 16, 893–907 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Loose, M. & Patient, R. A genetic regulatory network for Xenopus mesendoderm formation. Dev. Biol. 271, 467–478 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Cavalier-Smith T. & Chao, E. E. Phylogeny of choanozoa, apusozoa, and other protozoa and early eukaryote megaevolution. J. Mol. Evol. 56, 540–563 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank the memory of S. Beroe, and also members of the Kewalo Marine Laboratory for spirited discussions about the views expressed in this article.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

DOE Joint Genome Institute

Martindale's homepage

Glossary

METAZOAN

A multicellular animal.

RADIAL SYMMETRY

The presence of multiple planes of mirror symmetry running through the longitudinal axis.

GASTRULATION

The process during which cells move from the outer regions of the embryo to the inside, to give rise to the endodermal (gut) and mesodermal (for example, muscle and blood) germ-layer derivatives; the cells that remain on the external surface of the embryo give rise to the ectodermal derivatives (skin and nervous system).

INGRESSION OR DELAMINATION

Two forms of cell movement at gastrulation. Ingression involves individual cells actively migrating into the blastocoel, whereas delamination occurs when a cell divides perpendicularly to the surface of the embryo, to generate one internal and one peripheral daughter cell.

ORGANIZER

A small dorsal region of the blastopore of a vertebrate gastrula-stage embryo that has the remarkable capacity to organize a complete embryonic body plan.

AMNIOTE

An animal, such as a reptile, bird or mammal, whose eggs contain an amnion — an extra-embryonic membrane that surrounds the embryo and helps retain fluids and store waste products.

BASAL METAZOAN

A term given to animal phyla that diverged from more derived groups early in animal evolution.

DERIVED

Evolved to a state that is distinct from the primitive condition.

CLADE

A lineage of organisms or alleles that comprises an ancestor and all its descendants.

OUTGROUP TAXON

A closely related taxon that is used for comparison; for example, to infer the ancestral versus the derived state of character evolution.

ACOELOMATE

An animal that does not possess a mesodermally lined body cavity in which the internal organs (gut and derivatives) are suspended. The coelom is a design character that is often used in evolutionary arguments about the origin of body-plan complexity.

TRIPLOBLAST

An animal that has derivatives of all three germ layers (ectoderm, mesoderm and endoderm). A diploblast has derivatives of two germ layers (ectoderm and endoderm (also known as endomesoderm)).

PLACOZOA

A 'group' (currently defined by one species, Trichoplax adhaerens) that has been proposed to be an intermediate between protozoans (single-celled animals) and metazoans (multicellular animals).

MESENCHYMAL

Describes an individual migratory cell or populations of cells that are not part of an epithelial sheet.

ARCHENTERON

The primitive gut that forms during embryogenesis at gastrulation.

BLASTULA

The stage of animal development that follows the early cleavage programme but precedes gastrulation.

GASTRULA

The stage of animal development during which the formation of distinct germ layers occurs; that is, gastrulation.

PLANKTON

Small plants and animals that live and drift in the open ocean without associating with the ocean floor for at least part of their life cycle.

BENTHOS

The bottom of the ocean or body of water. The sea floor.

DIRECT DEVELOPMENT

A developmental strategy in which embryogenesis generates a juvenile adult without the formation of an intervening larval form.

HYDROSTATIC SKELETON

A means of maintaining body integrity by internal hydrostatic pressure, rather than by using a hard external exoskeleton (arthropods) or an internal endoskeleton (chordates).

PARENCHYMAL

Describes the loose tissue that fills the space between other tissues or organs.

LIFE HISTORY

The reproductive strategy of an organism.

DEMOSPONGE

The largest class of sponge (poriferans) that has siliceous (not calcareous) spicules and comprises roughly 95% of all sponge species.

ORAL–ABORAL AXIS

The body axis that runs from the oral side to the side that is opposite the oral (the 'ab' prefix means opposite). The term is used in animals that do not have an obvious anterior–posterior axis.

SHALLOW EST SCREENS

The sequencing of relatively small numbers (typically thousands) of random cDNA molecules from a given tissue to gain insight into the nature of gene expression, but is not intended to catalogue all rare transcripts.

PARAHOX GENES

Developmentally regulated transcription factors that are the evolutionary sister group to Hox genes and show collinear patterns of expression in chordate embryos.

MESOGLEA

The extracellular space between the outer ectoderm and inner endoderm of diploblastic animals that is composed primarily of extracellular matrix molecules and can house loose populations of cells.

COMB PLATES

'Paddles' that are composed of arrays of thousands of cilia and that are found only in the locomotory organs of ctenophores.

ANIMAL POLE

The position on the oocyte and embryo in which the meiotic reduction divisions occur, and that will give rise to the anterior region of the adult body plan. It is the side opposite to the vegetal pole, which generally gives rise to the gut.

DEUTEROSTOME

A bilaterian animal in which the mouth forms as a secondary opening, separate from the blastopore. Deuterostomes include chordates, hemichordates and echinoderms. By contrast, the mouth of protostomes develops before the anus during embryogenesis. Protostomes include arthropods, molluscs and worms.

CHAETOGNATHS

An enigmatic phylum of marine animals that have features of both protostomes and deuterostomes and therefore defy phylogenetic placement.

MEIOFAUNAL

A class of small but highly diverse interstitial animals that live between grains of sand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martindale, M. The evolution of metazoan axial properties. Nat Rev Genet 6, 917–927 (2005). https://doi.org/10.1038/nrg1725

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1725

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing