Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Replication and transcription: Shaping the landscape of the genome

Key Points

  • DNA replication in mammalian nuclei is carried out in specialized structures that are known as replication factories. Throughout S phase, these factories assemble dynamically, and replicons that are located in their vicinity are recruited to the replication sub-compartment.

  • GC-rich, gene-dense regions tend to replicate early in S phase, whereas AT-rich regions that are usually gene-poor replicate late. In many cases, expressed genes replicate early in S phase and silent genes replicate late, but there are many exceptions to this rule.

  • Early replication timing is probably determined by epigenetic information and chromatin structure rather than by individual gene expression per se. Gene expression does not seem to be a direct consequence of early replication.

  • Transcription is highly compartmentalized in mammalian nuclei. Nascent transcription by RNA polymerase II occurs in foci that are known as transcription factories. Cells contain very few transcription factories compared with the number of active genes.

  • Most 'active' genes are not continuously transcribed, but undergo transcription cycles. Modulation of expression might occur by changing the frequency or duration of the 'on' state versus the 'off' state.

  • On activation, genes migrate to pre-assembled transcription factories that are shared with other actively transcribed genes.

  • In higher eukaryotes approximately 15% of the genome is transcribed. Most transcribed genomic regions are intergenic sequences.

  • The finding that most of the genome is transcribed indicates that transcription factories are principal focal points for the nuclear organization of the genome.

  • The clustering of genes around functional sites in the nucleus might impose selective pressures on the organization of genes and regulatory elements at the primary sequence level, thereby contributing to the observed clustering of highly expressed genes in the genome.

Abstract

As the relationship between nuclear structure and function begins to unfold, a picture is emerging of a dynamic landscape that is centred on the two main processes that execute the regulated use and propagation of the genome. Rather than being subservient enzymatic activities, the replication and transcriptional machineries provide potent forces that organize the genome in three-dimensional nuclear space. Their activities provide opportunities for epigenetic changes that are required for differentiation and development. In addition, they impose physical constraints on the genome that might help to shape its evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Patterns of replication foci in S phase cells.
Figure 2: Transcription factories.
Figure 3: A chromatin hub.
Figure 4: Organizer factory.
Figure 5: Transcription factory model.

Similar content being viewed by others

References

  1. McNairn, A. J. & Gilbert, D. M. Epigenomic replication: linking epigenetics to DNA replication. Bioessays 25, 647–656 (2003).

    CAS  PubMed  Google Scholar 

  2. Goren, A. & Cedar, H. Replicating by the clock. Nature Rev. Mol. Cell Biol. 4, 25–32 (2003).

    CAS  Google Scholar 

  3. Gilbert, D. M. Replication timing and transcriptional control: beyond cause and effect. Curr. Opin. Cell Biol. 14, 377–383 (2002).

    CAS  PubMed  Google Scholar 

  4. Schubeler, D. et al. Genome-wide DNA replication profile for Drosophila melanogaster: a link between transcription and replication timing. Nature Genet. 32, 438–442 (2002).

    PubMed  Google Scholar 

  5. Woodfine, K. et al. Replication timing of the human genome. Hum. Mol. Genet. 13, 191–202 (2004).

    CAS  PubMed  Google Scholar 

  6. Cheng, J. et al. Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science 308, 1149–1154 (2005). An extensive and unbiased study showing that the human transcriptome is composed of a complex network of overlapping poly(A)+, poly(A) and bimorphic RNA species, most of which are non-coding.

    CAS  PubMed  Google Scholar 

  7. Kapranov, P. et al. Large-scale transcriptional activity in chromosomes 21 and 22. Science 296, 916–919 (2002).

    CAS  PubMed  Google Scholar 

  8. Peterson, C. L. & Laniel, M. A. Histones and histone modifications. Curr. Biol. 14, R546–R551 (2004).

    CAS  PubMed  Google Scholar 

  9. Khorasanizadeh, S. The nucleosome: from genomic organization to genomic regulation. Cell 116, 259–272 (2004).

    CAS  PubMed  Google Scholar 

  10. Elgin, S. C. & Grewal, S. I. Heterochromatin: silence is golden. Curr. Biol. 13, R895–R898 (2003).

    CAS  PubMed  Google Scholar 

  11. Hatton, K. S. et al. Replication program of active and inactive multigene families in mammalian cells. Mol. Cell. Biol. 8, 2149–2158 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Diffley, J. F. Regulation of early events in chromosome replication. Curr. Biol. 14, R778–R786 (2004).

    CAS  PubMed  Google Scholar 

  13. Ma, H. et al. Spatial and temporal dynamics of DNA replication sites in mammalian cells. J. Cell Biol. 143, 1415–1425 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Jackson, D. A. & Pombo, A. Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J. Cell Biol. 140, 1285–1295 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Philimonenko, A. A. et al. Dynamics of DNA replication: an ultrastructural study. J. Struct. Biol. 148, 279–289 (2004).

    CAS  PubMed  Google Scholar 

  16. Quivy, J. P. et al. A CAF-1 dependent pool of HP1 during heterochromatin duplication. EMBO J. 23, 3516–3526 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sadoni, N., Cardoso, M. C., Stelzer, E. H., Leonhardt, H. & Zink, D. Stable chromosomal units determine the spatial and temporal organization of DNA replication. J. Cell Sci. 117, 5353–5365 (2004). The authors describe elegant experiments in live cells showing that during S-phase progression, replication sequentially proceeds through spatially adjacent sets of chromosomal domains.

    CAS  PubMed  Google Scholar 

  18. Sporbert, A., Gahl, A., Ankerhold, R., Leonhardt, H. & Cardoso, M. C. DNA polymerase clamp shows little turnover at established replication sites but sequential de novo assembly at adjacent origin clusters. Mol. Cell 10, 1355–1365 (2002).

    CAS  PubMed  Google Scholar 

  19. Abney, J. R., Cutler, B., Fillbach, M. L., Axelrod, D. & Scalettar, B. A. Chromatin dynamics in interphase nuclei and its implications for nuclear structure. J. Cell Biol. 137, 1459–1468 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Chubb, J. R., Boyle, S., Perry, P. & Bickmore, W. A. Chromatin motion is constrained by association with nuclear compartments in human cells. Curr. Biol. 12, 439–445 (2002). This report shows that nuclear substructures, including the nucleolus and nuclear periphery, constrain the movements of chromatin and have a role in the three-dimensional organization of chromatin in the nucleus.

    CAS  PubMed  Google Scholar 

  21. Molenaar, C. et al. Visualizing telomere dynamics in living mammalian cells using PNA probes. EMBO J. 22, 6631–6641 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. MacAlpine, D. M., Rodriguez, H. K. & Bell, S. P. Coordination of replication and transcription along a Drosophila chromosome. Genes Dev. 18, 3094–3105 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Azuara, V. et al. Heritable gene silencing in lymphocytes delays chromatid resolution without affecting the timing of DNA replication. Nature Cell Biol. 5, 668–674 (2003).

    CAS  PubMed  Google Scholar 

  24. Belyakin, S. N. et al. Genomic analysis of Drosophila chromosome underreplication reveals a link between replication control and transcriptional territories. Proc. Natl Acad. Sci. USA 102, 8269–8274 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hiratani, I., Leskovar, A. & Gilbert, D. M. Differentiation-induced replication-timing changes are restricted to AT-rich/long interspersed nuclear element (LINE)-rich isochores. Proc. Natl Acad. Sci. USA 101, 16861–16866 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bozhenok, L., Wade, P. A. & Varga-Weisz, P. WSTF-ISWI chromatin remodeling complex targets heterochromatic replication foci. EMBO J. 21, 2231–2241 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Taddei, A., Roche, D., Sibarita, J. B., Turner, B. M. & Almouzni, G. Duplication and maintenance of heterochromatin domains. J. Cell Biol. 147, 1153–1166 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Rountree, M. R., Bachman, K. E. & Baylin, S. B. DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nature Genet. 25, 269–277 (2000).

    CAS  PubMed  Google Scholar 

  29. Collins, N. et al. An ACF1-ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin. Nature Genet. 32, 627–632 (2002).

    CAS  PubMed  Google Scholar 

  30. Fisher, D. & Mechali, M. Vertebrate HoxB gene expression requires DNA replication. EMBO J. 22, 3737–3748 (2003). This paper demonstrates that induction of HoxB genes requires only one cell cycle and occurs in a DNA replication-dependent manner, without a change in replication timing.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Cimbora, D. M. et al. Long-distance control of origin choice and replication timing in the human β-globin locus are independent of the locus control region. Mol. Cell. Biol. 20, 5581–5591 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. White, E. J. et al. DNA replication-timing analysis of human chromosome 22 at high resolution and different developmental states. Proc. Natl Acad. Sci. USA 101, 17771–17776 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Dimitrova, D. S. & Gilbert, D. M. The spatial position and replication timing of chromosomal domains are both established in early G1 phase. Mol. Cell 4, 983–993 (1999). The authors demonstrate that the replication timing programme is established independently of origin specification.

    CAS  PubMed  Google Scholar 

  34. Li, F. et al. The replication timing program of the Chinese hamster β-globin locus is established coincident with its repositioning near peripheral heterochromatin in early G1 phase. J. Cell Biol. 154, 283–292 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Li, F., Chen, J., Solessio, E. & Gilbert, D. M. Spatial distribution and specification of mammalian replication origins during G1 phase. J. Cell Biol. 161, 257–266 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lin, C. M., Fu, H., Martinovsky, M., Bouhassira, E. & Aladjem, M. I. Dynamic alterations of replication timing in mammalian cells. Curr. Biol. 13, 1019–1028 (2003).

    CAS  PubMed  Google Scholar 

  37. Smith, Z. E. & Higgs, D. R. The pattern of replication at a human telomeric region (16p13.3): its relationship to chromosome structure and gene expression. Hum. Mol. Genet. 8, 1373–1386 (1999).

    CAS  PubMed  Google Scholar 

  38. Vyas, P. et al. Cis-acting sequences regulating expression of the human α-globin cluster lie within constitutively open chromatin. Cell 69, 781–793 (1992).

    CAS  PubMed  Google Scholar 

  39. Flint, J. et al. The relationship between chromosome structure and function at a human telomeric region. Nature Genet. 15, 252–257 (1997).

    CAS  PubMed  Google Scholar 

  40. Epner, E., Forrester, W. C. & Groudine, M. Asynchronous DNA replication within the human β-globin gene locus. Proc. Natl Acad. Sci. USA 85, 8081–8085 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Simon, I. et al. Developmental regulation of DNA replication timing at the human β globin locus. EMBO J. 20, 6150–6157 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Owen-Hughes, T. & Workman, J. L. Experimental analysis of chromatin function in transcription control. Crit. Rev. Eukaryot. Gene Expr. 4, 403–441 (1994).

    CAS  PubMed  Google Scholar 

  43. Sims, R. J. 3rd, Belotserkovskaya, R. & Reinberg, D. Elongation by RNA polymerase II: the short and long of it. Genes Dev. 18, 2437–2468 (2004).

    CAS  PubMed  Google Scholar 

  44. Belotserkovskaya, R. et al. FACT facilitates transcription-dependent nucleosome alteration. Science 301, 1090–1093 (2003).

    CAS  PubMed  Google Scholar 

  45. Kireeva, M. L. et al. Nucleosome remodeling induced by RNA polymerase II: loss of the H2A/H2B dimer during transcription. Mol. Cell 9, 541–552 (2002).

    CAS  PubMed  Google Scholar 

  46. Cavalli, G. & Paro, R. The Drosophila Fab-7 chromosomal element conveys epigenetic inheritance during mitosis and meiosis. Cell 93, 505–518 (1998).

    CAS  PubMed  Google Scholar 

  47. Cavalli, G. & Paro, R. Epigenetic inheritance of active chromatin after removal of the main transactivator. Science 286, 955–958 (1999).

    CAS  PubMed  Google Scholar 

  48. Bender, W. & Fitzgerald, D. P. Transcription activates repressed domains in the Drosophila bithorax complex. Development 129, 4923–4930 (2002).

    CAS  PubMed  Google Scholar 

  49. Hogga, I. & Karch, F. Transcription through the iab-7 cis-regulatory domain of the bithorax complex interferes with maintenance of Polycomb-mediated silencing. Development 129, 4915–4922 (2002).

    CAS  PubMed  Google Scholar 

  50. Schwartz, B. E. & Ahmad, K. Transcriptional activation triggers deposition and removal of the histone variant H3.3. Genes Dev. 19, 804–814 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Schmitt, S., Prestel, M. & Paro, R. Intergenic transcription through a Polycomb group response element counteracts silencing. Genes Dev. 19, 697–708 (2005). This paper demonstrates that intergenic transcription through a Polycomb group response element is required for the switch from a silenced to an activated state.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ahmad, K. & Henikoff, S. The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol. Cell 9, 1191–1200 (2002).

    CAS  PubMed  Google Scholar 

  53. Henikoff, S., Furuyama, T. & Ahmad, K. Histone variants, nucleosome assembly and epigenetic inheritance. Trends Genet. 20, 320–326 (2004).

    CAS  PubMed  Google Scholar 

  54. McKittrick, E., Gafken, P. R., Ahmad, K. & Henikoff, S. Histone H3.3 is enriched in covalent modifications associated with active chromatin. Proc. Natl Acad. Sci. USA 101, 1525–1530 (2004). References 50,52–54 describe a pathway for replication-independent chromatin assembly through histone replacement in transcribed genomic regions.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Cawley, S. E. et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116, 499–509 (2004).

    CAS  PubMed  Google Scholar 

  56. Impey, S. et al. Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell 119, 1041–1054 (2004).

    CAS  PubMed  Google Scholar 

  57. Yelin, R. et al. Widespread occurrence of antisense transcription in the human genome. Nature Biotechnol. 21, 379–386 (2003).

    CAS  Google Scholar 

  58. Mattick, J. S. RNA regulation: a new genetics? Nature Rev. Genet. 5, 316–323 (2004).

    CAS  PubMed  Google Scholar 

  59. Navarro, P., Pichard, S., Ciaudo, C., Avner, P. & Rougeulle, C. Tsix transcription across the Xist gene alters chromatin conformation without affecting Xist transcription: implications for X-chromosome inactivation. Genes Dev. 19, 1474–1482 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Martens, J. A., Laprade, L. & Winston, F. Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene. Nature 429, 571–574 (2004).

    CAS  PubMed  Google Scholar 

  61. Shibata, S. & Lee, J. T. Tsix transcription- versus RNA-based mechanisms in Xist repression and epigenetic choice. Curr. Biol. 14, 1747–1754 (2004).

    CAS  PubMed  Google Scholar 

  62. Lipshitz, H. D., Peattie, D. A. & Hogness, D. S. Novel transcripts from the Ultrabithorax domain of the bithorax complex. Genes Dev. 1, 307–322 (1987).

    CAS  PubMed  Google Scholar 

  63. Gribnau, J., Diderich, K., Pruzina, S., Calzolari, R. & Fraser, P. Intergenic transcription and developmental remodeling of chromatin subdomains in the human β-globin locus. Mol. Cell 5, 377–386 (2000).

    CAS  PubMed  Google Scholar 

  64. Ashe, H. L., Monks, J., Wijgerde, M., Fraser, P. & Proudfoot, N. J. Intergenic transcription and transinduction of the human β-globin locus. Genes Dev. 11, 2494–2509 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Drewell, R. A., Bae, E., Burr, J. & Lewis, E. B. Transcription defines the embryonic domains of cis-regulatory activity at the Drosophila bithorax complex. Proc. Natl Acad. Sci. USA 99, 16853–16858 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Bolland, D. J. et al. Antisense intergenic transcription in V(D)J recombination. Nature Immunol. 5, 630–637 (2004).

    CAS  Google Scholar 

  67. Bernstein, B. E. et al. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120, 169–181 (2005).

    CAS  PubMed  Google Scholar 

  68. Rogan, D. F., Cousins, D. J. & Staynov, D. Z. Intergenic transcription occurs throughout the human IL-4/IL-13 gene cluster. Biochem. Biophys. Res. Commun. 255, 556–561 (1999).

    CAS  PubMed  Google Scholar 

  69. Bae, E., Calhoun, V. C., Levine, M., Lewis, E. B. & Drewell, R. A. Characterization of the intergenic RNA profile at abdominal-A and Abdominal-B in the Drosophila bithorax complex. Proc. Natl Acad. Sci. USA 99, 16847–168452 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ogawa, Y. & Lee, J. T. Xite, X-inactivation intergenic transcription elements that regulate the probability of choice. Mol. Cell 11, 731–743 (2003).

    CAS  PubMed  Google Scholar 

  71. Rogan, D. F. et al. Analysis of intergenic transcription in the human IL-4/IL-13 gene cluster. Proc. Natl Acad. Sci. USA 101, 2446–2451 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Wilson, C. J. et al. RNA polymerase II holoenzyme contains SWI/SNF regulators involved in chromatin remodeling. Cell 84, 235–244 (1996).

    CAS  PubMed  Google Scholar 

  73. Cho, H. et al. A human RNA polymerase II complex containing factors that modify chromatin structure. Mol. Cell. Biol. 18, 5355–5363 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Wittschieben, B. O. et al. A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme. Mol. Cell 4, 123–128 (1999).

    CAS  PubMed  Google Scholar 

  75. Wittschieben, B. O., Fellows, J., Du, W., Stillman, D. J. & Svejstrup, J. Q. Overlapping roles for the histone acetyltransferase activities of SAGA and elongator in vivo. EMBO J. 19, 3060–3068 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Schaft, D. et al. The histone 3 lysine 36 methyltransferase, SET2, is involved in transcriptional elongation. Nucleic Acids Res. 31, 2475–2482 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Jackson, D. A., Hassan, A. B., Errington, R. J. & Cook, P. R. Visualization of focal sites of transcription within human nuclei. EMBO J. 12, 1059–1065 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Wansink, D. G. et al. Fluorescent labeling of nascent RNA reveals transcription by RNA polymerase II in domains scattered throughout the nucleus. J. Cell Biol. 122, 283–93 (1993). References 77 and 78 show that all nascent transcription occurs in distinct nuclear foci or transcription factories.

    CAS  PubMed  Google Scholar 

  79. Wansink, D. G., Sibon, O. C., Cremers, F. F., van Driel, R. & de Jong, L. Ultrastructural localization of active genes in nuclei of A431 cells. J. Cell. Biochem. 62, 10–18 (1996).

    CAS  PubMed  Google Scholar 

  80. Jackson, D. A., Iborra, F. J., Manders, E. M. & Cook, P. R. Numbers and organization of RNA polymerases, nascent transcripts, and transcription units in HeLa nuclei. Mol. Biol. Cell 9, 1523–1536 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Pombo, A. et al. Regional specialization in human nuclei: visualization of discrete sites of transcription by RNA polymerase III. EMBO J. 18, 2241–2253 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Iborra, F. J., Pombo, A., Jackson, D. A. & Cook, P. R. Active RNA polymerases are localized within discrete transcription 'factories' in human nuclei. J. Cell Sci. 109, 1427–1436 (1996).

    CAS  PubMed  Google Scholar 

  83. Grande, M. A., van der Kraan, I., de Jong, L. & van Driel, R. Nuclear distribution of transcription factors in relation to sites of transcription and RNA polymerase II. J. Cell Sci. 110, 1781–1791 (1997).

    CAS  PubMed  Google Scholar 

  84. Hieda, M., Winstanley, H., Maini, P., Iborra, F. J. & Cook, P. R. Different populations of RNA polymerase II in living mammalian cells. Chromosome Res. 13, 135–144 (2005).

    CAS  PubMed  Google Scholar 

  85. Osborne, C. S. et al. Active genes dynamically colocalize to shared sites of ongoing transcription. Nature Genet. 36, 1065–1071 (2004). This article provides the first demonstration that during transcription in vivo , distant genes co-localize to the same transcription factory.

    CAS  PubMed  Google Scholar 

  86. Ross, I. L., Browne, C. M. & Hume, D. A. Transcription of individual genes in eukaryotic cells occurs randomly and infrequently. Immunol. Cell Biol. 72, 177–185 (1994).

    CAS  PubMed  Google Scholar 

  87. Kimura, H., Sugaya, K. & Cook, P. R. The transcription cycle of RNA polymerase II in living cells. J. Cell Biol. 159, 777–782 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Levsky, J. M., Shenoy, S. M., Pezo, R. C. & Singer, R. H. Single-cell gene expression profiling. Science 297, 836–840 (2002). This paper reveals that genes are not continuously transcribed and individual cells consequently show unique patterns of gene transcription.

    CAS  PubMed  Google Scholar 

  89. Vazquez, J., Belmont, A. S. & Sedat, J. W. Multiple regimes of constrained chromosome motion are regulated in the interphase Drosophila nucleus. Curr. Biol. 11, 1227–1239 (2001). Live cell analysis provides direct evidence for cell-cycle regulated changes in interphase chromatin motion.

    CAS  PubMed  Google Scholar 

  90. Brown, K. E. et al. Expression of α- and β-globin genes occurs within different nuclear domains in haemopoietic cells. Nature Cell Biol. 3, 602–606 (2001).

    CAS  PubMed  Google Scholar 

  91. Kosak, S. T. et al. Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science 296, 158–162 (2002).

    CAS  PubMed  Google Scholar 

  92. Gribnau, J., Hochedlinger, K., Hata, K., Li, E. & Jaenisch, R. Asynchronous replication timing of imprinted loci is independent of DNA methylation, but consistent with differential subnuclear localization. Genes Dev. 17, 759–773 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Chambeyron, S. & Bickmore, W. A. Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev. 18, 1119–1130 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Zink, D. et al. Transcription-dependent spatial arrangements of CFTR and adjacent genes in human cell nuclei. J. Cell Biol. 166, 815–825 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Carter, D., Chakalova, L., Osborne, C. S., Dai, Y. F. & Fraser, P. Long-range chromatin regulatory interactions in vivo. Nature Genet. 32, 623–626 (2002).

    CAS  PubMed  Google Scholar 

  96. Tolhuis, B., Palstra, R. J., Splinter, E., Grosveld, F. & de Laat, W. Looping and interaction between hypersensitive sites in the active β-globin locus. Mol. Cell 10, 1453–1465 (2002).

    CAS  PubMed  Google Scholar 

  97. Murrell, A., Heeson, S. & Reik, W. Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nature Genet. 36, 889–893 (2004).

    CAS  PubMed  Google Scholar 

  98. Horike, S., Cai, S., Miyano, M., Cheng, J. F. & Kohwi-Shigematsu, T. Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nature Genet. 37, 31–40 (2005).

    CAS  PubMed  Google Scholar 

  99. Spilianakis, C. G. & Flavell, R. A. Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nature Immunol. 5, 1017–1027 (2004).

    CAS  Google Scholar 

  100. Blanton, J., Gaszner, M. & Schedl, P. Protein: protein interactions and the pairing of boundary elements in vivo. Genes Dev. 17, 664–675 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Farrell, C. M., West, A. G. & Felsenfeld, G. Conserved CTCF insulator elements flank the mouse and human β-globin loci. Mol. Cell. Biol. 22, 3820–3831 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Long, Q., Bengra, C., Li, C., Kutlar, F. & Tuan, D. A long terminal repeat of the human endogenous retrovirus ERV-9 is located in the 5′ boundary area of the human β-globin locus control region. Genomics 54, 542–555 (1998).

    CAS  PubMed  Google Scholar 

  103. Leach, K. M. et al. Reconstitution of human β-globin locus control region hypersensitive sites in the absence of chromatin assembly. Mol. Cell. Biol. 21, 2629–2940 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Routledge, S. J. & Proudfoot, N. J. Definition of transcriptional promoters in the human β globin locus control region. J. Mol. Biol. 323, 601–611 (2002).

    CAS  PubMed  Google Scholar 

  105. Palstra, R. J. et al. The β-globin nuclear compartment in development and erythroid differentiation. Nature Genet. 35, 190–194 (2003).

    CAS  PubMed  Google Scholar 

  106. Patrinos, G. P. et al. Multiple interactions between regulatory regions are required to stabilize an active chromatin hub. Genes Dev. 18, 1495–1509 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Lettice, L. A. et al. A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum. Mol. Genet. 12, 1725–1735 (2003).

    CAS  PubMed  Google Scholar 

  108. Nobrega, M. A., Ovcharenko, I., Afzal, V. & Rubin, E. M. Scanning human gene deserts for long-range enhancers. Science 302, 413 (2003).

    CAS  PubMed  Google Scholar 

  109. Kleinjan, D. A. & van Heyningen, V. Long-range control of gene expression: emerging mechanisms and disruption in disease. Am. J. Hum. Genet. 76, 8–32 (2005).

    CAS  PubMed  Google Scholar 

  110. Jackson, D. A. & Cook, P. R. Transcription occurs at a nucleoskeleton. EMBO J. 4, 919–925 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Kimura, H., Tao, Y., Roeder, R. G. & Cook, P. R. Quantitation of RNA polymerase II and its transcription factors in an HeLa cell: little soluble holoenzyme but significant amounts of polymerases attached to the nuclear substructure. Mol. Cell. Biol. 19, 5383–5392 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Cook, P. R. Predicting three-dimensional genome structure from transcriptional activity. Nature Genet. 32, 347–352 (2002).

    CAS  PubMed  Google Scholar 

  113. Iborra, F. J., Pombo, A., McManus, J., Jackson, D. A. & Cook, P. R. The topology of transcription by immobilized polymerases. Exp. Cell Res. 229, 167–173 (1996).

    CAS  PubMed  Google Scholar 

  114. Yin, H. et al. Transcription against an applied force. Science 270, 1653–1657 (1995).

    CAS  PubMed  Google Scholar 

  115. Wang, H. Y., Elston, T., Mogilner, A. & Oster, G. Force generation in RNA polymerase. Biophys. J. 74, 1186–1202 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Cook, P. R. Nongenic transcription, gene regulation and action at a distance. J. Cell Sci. 116, 4483–4491 (2003).

    CAS  PubMed  Google Scholar 

  117. Velagaleti, G. V. et al. Position effects due to chromosome breakpoints that map 900 Kb upstream and 1.3 Mb downstream of SOX9 in two patients with campomelic dysplasia. Am. J. Hum. Genet. 76, 652–662 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Sawado, T., Halow, J., Bender, M. A. & Groudine, M. The β-globin locus control region (LCR) functions primarily by enhancing the transition from transcription initiation to elongation. Genes Dev. 17, 1009–1018 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Vieira, K. F. et al. Recruitment of transcription complexes to the β-globin gene locus in vivo and in vitro. J. Biol. Chem. 279, 50350–50357 (2004).

    CAS  PubMed  Google Scholar 

  120. Hassan, A. B., Errington, R. J., White, N. S., Jackson, D. A. & Cook, P. R. Replication and transcription sites are colocalized in human cells. J. Cell Sci. 107, 425–434 (1994).

    CAS  PubMed  Google Scholar 

  121. Wei, X. et al. Segregation of transcription and replication sites into higher order domains. Science 281, 1502–1506 (1998). This paper provides evidence that transcription and replication occur in spatially distinct nuclear zones during S phase.

    CAS  PubMed  Google Scholar 

  122. Cook, P. Duplicating a tangled genome. Science 281, 1466–1467 (1998).

    CAS  PubMed  Google Scholar 

  123. Misteli, T. The concept of self-organization in cellular architecture. J. Cell Biol. 155, 181–185 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Perry, P. et al. A dynamic switch in the replication timing of key regulator genes in embryonic stem cells upon neural induction. Cell Cycle 3, 1645–1650 (2004).

    CAS  PubMed  Google Scholar 

  125. Henikoff, S. Histone modifications: combinatorial complexity or cumulative simplicity? Proc. Natl Acad. Sci. USA 102, 5308–5309 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Marshall, W. F. et al. Interphase chromosomes undergo constrained diffusional motion in living cells. Curr. Biol. 7, 930–939 (1997).

    CAS  PubMed  Google Scholar 

  127. Gerlich, D. et al. Global chromosome positions are transmitted through mitosis in mammalian cells. Cell 112, 751–764 (2003).

    CAS  PubMed  Google Scholar 

  128. Caron, H. et al. The human transcriptome map: clustering of highly expressed genes in chromosomal domains. Science 291, 1289–1292 (2001).

    CAS  PubMed  Google Scholar 

  129. Lercher, M. J., Urrutia, A. O. & Hurst, L. D. Clustering of housekeeping genes provides a unified model of gene order in the human genome. Nature Genet. 31, 180–183 (2002).

    CAS  PubMed  Google Scholar 

  130. Versteeg, R. et al. The human transcriptome map reveals extremes in gene density, intron length, GC content, and repeat pattern for domains of highly and weakly expressed genes. Genome Res. 13, 1998–2004 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank A. Horton, P. Varga-Wiesz, W. Reik and A. Corcoran for helpful discussions. We are also grateful to S. Gasser for the yeast chromatin dynamics movie and D. Dimitrova for DNA replication micrographs. J.A.M. is supported by a Natural Sciences and Engineering Research Council of Canada postdoctoral fellowship. P.F. is a Senior Fellow of the Medical Research Council (MRC) and is supported by the MRC and Biotechnology and Biological Sciences Research Council, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Fraser.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

Air

CFTR

Eraf

Hbb

HoxB

Xist

Supplementary Information

Glossary

NUCLEAR LAMINA

A scaffold of proteins — mainly lamin A/C and B — that are predominantly found in the nuclear periphery associated with the inner surface of the nuclear membrane.

NUCLEOLUS

A highly organized nuclear organelle that is the site of ribosomal RNA processing and ribosome assembly.

NUCLEAR MATRIX

A three-dimensional filamentous protein network in the nucleus that remains intact after high salt extraction.

LONG INTERSPERSED NUCLEAR ELEMENTS

A class of repeat sequences.

REPLICATION ORIGINS

DNA sequences at which DNA replication is initiated.

POLYCOMB GROUP

A class of proteins — originally described in Drosophila melanogaster — that maintain the stable and heritable repression of several genes, including the homeotic genes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakalova, L., Debrand, E., Mitchell, J. et al. Replication and transcription: Shaping the landscape of the genome. Nat Rev Genet 6, 669–677 (2005). https://doi.org/10.1038/nrg1673

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1673

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing