Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The diverse roles of ubiquitin and the 26S proteasome in the life of plants

Key Points

  • The tagging of proteins with ubiquitin and their subsequent degradation by the 26S proteasome provides a highly regulated proteolysis system that is necessary in all eukaryotes.

  • The ubiquitylation of a target protein involves the sequential action of E1, E2 and E3 enzymes; E3 ubiquitin ligase provides target specificity.

  • Plants use ubiquitin and the 26S proteasome to control a wide variety of developmental processes through the degradation of key cellular regulators.

  • Approximately 5% of the Arabidopsis thaliana genome encodes components of the ubiquitin/26S proteasome system.

  • We discuss the roles of ubiquitin in the regulation of floral development, responses to plant hormones and to pathogens, and in the regulation of photomorphogenesis.

  • The COP9 signalosome (CSN) is intimately connected to the ubiquitin/26S proteasome system and might regulate the activity of SCF-type (and possibly other) E3 ligases.

  • Recent advances, particularly in the fields of hormone signalling and responses to pathogens, have shown just how frequently plants use ubiquitin to regulate cellular processes and indicate that ubiquitin and the 26S proteasome act as regulators in many more, as yet unidentified, plant developmental processes.

Abstract

A tightly regulated and highly specific system for the degradation of individual proteins is essential for the survival of all organisms. In eukaryotes, this is achieved by the tagging of proteins with ubiquitin and their subsequent recognition and degradation by the 26S proteasome. In plants, genetic analysis has identified many genes that regulate developmental pathways. Subsequent analysis of these genes has implicated ubiquitin and the 26S proteasome in the control of diverse developmental processes, and indicates that proteolysis is a crucial regulatory step throughout the life cycle of plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The ABC model of floral organ development and the role of SCFUFO in regulating the B-type gene AP3.
Figure 2: A model for R protein-dependent disease-resistance signalling and the role of SCF and the COP9 signalosome.
Figure 3: The effect of light on Arabidopsis seedling development and the ubiquitylation and protein degradation conferred by the COP/DET/FUS group of proteins.

Similar content being viewed by others

References

  1. Tanaka, K. Molecular biology of proteasomes. Mol. Biol. Rep. 21, 21–26 (1995).

    CAS  PubMed  Google Scholar 

  2. Hochstrasser, M. Ubiquitin, proteasomes, and the regulation of intracellular protein degradtion. Curr. Biol. 7, 215–223 (1995).

    CAS  Google Scholar 

  3. Vierstra, R. D. Proteolysis in plants: mechanisms and functions. Plant Mol. Biol. 32, 275–302 (1996).

    CAS  PubMed  Google Scholar 

  4. Vierstra, R. D. The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci. 8, 135–142 (2003).

    CAS  PubMed  Google Scholar 

  5. Hellmann, H. & Estelle, M. Plant development: regulation by protein degradation. Science 297, 793–797 (2002).

    CAS  PubMed  Google Scholar 

  6. Frugis, G. & Chua, N. H. Ubiquitin-mediated proteolysis in plant hormone signal transduction. Trends Cell Biol. 12, 308–311 (2002).

    CAS  PubMed  Google Scholar 

  7. Pickart, C. M. Mechansims underlysing ubiquitination. Ann. Rev. Biochem. 70, 503–533 (2001).

    CAS  PubMed  Google Scholar 

  8. Bachmir, A., Novatchkova, M., Potushak, T. & Eisenhaber, F. Ubiquitylation in plants: a post-genic look at post-translational modification. Trends Plant Sci. 6, 463–470 (2001).

    Google Scholar 

  9. Aguilar, R. C. & Wendland, B. Ubiqutin: not just for proteasomes anymore. Curr. Opin. Cell Biol. 15, 184–190 (2003).

    CAS  PubMed  Google Scholar 

  10. Conaway, R. C., Brower, C. S. & Weliky-Conaway, J. Emerging roles of ubiquitin in transcriptional regulation. Science 296, 1254–1258 (2002).

    CAS  PubMed  Google Scholar 

  11. Weissmann, A. M. Themes and variations on ubiquitylation. Nature Rev. Mol. Cell Biol. 2, 169–178 (2001).

    Google Scholar 

  12. Serino, G. & Deng, X. W. The COP9 signalosome: regulating plant development through the control of proteolysis. Ann. Rev. Plant Biol. 54, 165–182 (2003).

    CAS  Google Scholar 

  13. Bech-Otschir, D., Seeger, M. & Dubiel, W. The COP9 signalosome: at the interface between signal transduction and ubiquitin dependent proteolysis. J. Cell Sci. 115, 467–473 (2002).

    CAS  PubMed  Google Scholar 

  14. Schwechheimer, C. & Deng, X. W. COP9 signalosome revisited; a novel mediator of protein degradation. Trends Cell Biol. 11, 420–426 (2001).

    CAS  PubMed  Google Scholar 

  15. Peng, Z. et al. Evidence for a physical association of the COP9 signalosome, the proteasome, and specific SCF E3 ligases in vivo. Curr. Biol. 13, R504–R505 (2003).

    CAS  PubMed  Google Scholar 

  16. Lyapina, S. et al. Promotion of NEDD8-CUL1 conjugate cleavage by COP9 signalosome. Science 292, 1382–1385 (2001).

    CAS  PubMed  Google Scholar 

  17. Schwechheimer, C. et al. Interactions of the COP9 signalosome with the E3 ubiquitin ligase SCFTIR1 in mediating auxin response. Science 292, 1379–1382 (2001). Shows that reduced CSN function leads to a loss of auxin responses similar to that seen in mutants in SCFTIR1. They also show that the CSN SCFTIR1 interact in vivo and that the CSN is required for the degradation of a putative target of SCFTIR1, indicating the importance of the CSN in regulating SCF-type E3 ligases.

    CAS  PubMed  Google Scholar 

  18. Cope, G. A. et al. Role of predicted metalloprotease motif of JAB1/Csn5 in cleavage of Nedd8 from Cul1. Science 298, 608–611 (2002). The first demonstration that the Jab1/Csn5 subunit of the CSN shows NEDD8 isopeptidase activity associated with its metalloenzyme JAMM domain.

    CAS  PubMed  Google Scholar 

  19. Leyser, H. M. O. et al. Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiquitin activating enzyme E1. Nature 364, 161–164 (1993).

    CAS  PubMed  Google Scholar 

  20. del Pozo, J. C., Timpte, C., Tan, S., Callis, J. & Estelle, M. The ubiquitin-related protein RUB1 and auxin response in Arabidopsis. Science 280, 1760–1763 (1998).

    CAS  Google Scholar 

  21. Schwechheimer, C., Serino, G. & Deng, X. W. Multiple ubiquitin ligase-mediated processes require COP9 signalosome and AXR1 function. Plant Cell 14, 2553–2563 (2002). Shows the role of the CSN in regulating many SCF E3 ligases in plants.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Estelle, M. Proteases and cellular regulation in plants. Curr. Opin. Plant Biol. 4, 254–260 (2001).

    CAS  PubMed  Google Scholar 

  23. Adam, Z. Chloroplast proteases; possible regulators of gene expression? Biochimie 82, 647–654 (2000).

    CAS  PubMed  Google Scholar 

  24. Palma, J. M. et al. Plant proteases, protein degradtion, and oxidative stress; role of peroxisomes. Plant Physiol. Biochem. 40, 521–530 (2002).

    CAS  Google Scholar 

  25. Adam, Z. & Clarke, A. K. Cutting edge of chloroplast proteolysis. Trends Plant Sci. 7, 451–456 (2002).

    CAS  PubMed  Google Scholar 

  26. Woo, R. H. et al. ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. Plant Cell 13, 1779–1790 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Stirnberg, P., van de Sande, K. & Leyser, H. M. O. MAX and MAX2 control shoot lateral branching in Arabidopsis. Development 129, 1131–1141 (2002).

    CAS  PubMed  Google Scholar 

  28. Schultz, T. F., Kiyosue, T., Yanovsky, M., Wada, M. & Kay, S. A. A role for LKP2 in the circadian clock of Arabidopsis. Plant Cell 13, 2659–2670 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Millar, A. J., Carré, I. A., Strayer, C. A., Chua, N. -H. & Kay, S. A. Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science 267, 1161–1163 (1995).

    CAS  PubMed  Google Scholar 

  30. Kim, A. S. & Delaney, T. P. Arabidopsis SON1 is an F-box protein that regulates a novel induced defense response independent of both salicyclic acid and systemic acquired resistance. Plant Cell 14, 1469–1482 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Thelander, M., Fredriksson, D., Schouten, J., Hoge, H. C. & Ronne, H. Cloning by pathway activation in yeast: identification of an Arabidopsis thaliana F-box protein that can turn on glucose repression. Plant Mol. Biol. 49, 69–79 (2002).

    CAS  PubMed  Google Scholar 

  32. Ingram, G. C. et al. Dual role for fimbriata in regulating floral homeotic genes and cell division in Antirrhinum. EMBO J. 16, 6521–6534 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Karlowski, W. M. & Hirsch, A. M. The overexpression of an alfalfa RING-H2 gene induces pleiotrpic effects on plant growth and development. Plant Mol. Biol. 52, 121–133 (2003).

    CAS  PubMed  Google Scholar 

  34. Stone, S. L., Anderson, E. M., Mullen, R. T. & Goring, D. R. ARC1 is an E3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible Brassica pollen. Plant Cell 15, 885–898 (2003). Demonstrates that, in the presence of incompatible pollen, the E3 ligase ARC1 shuttles between the nucleus and the cytosol and promotes the protein degradation events that lead to pollen rejection.

    PubMed  PubMed Central  Google Scholar 

  35. Downes, B. P., Stupar, R. M., Gingerich, D. J. & Vierstra, R. D. The HECT ubiquitin-protein ligase (UPL) family in Arabidopsis; UPL3 has a specific role in trichome development. Plant J. 35, 729–742 (2003). Describes analysis of knockout lines for the Arabidopsis HECT-domain proteins UPL3 and UPL4. Shows that mutations in UPL3 lead to defects in trichome development and that UPL3 is allelic to the previously identified kaktus mutant.

    CAS  PubMed  Google Scholar 

  36. Irish, V. F. Patterning the flower. Dev. Biol. 209, 211–220 (1999).

    CAS  PubMed  Google Scholar 

  37. Yanofsky, M. F. Floral meristems to floral organs; genes controlling early events in Arabidopsis flower development. Ann. Rev. Plant Physiol. Plant Mol. Biol. 46, 167–188 (1995).

    CAS  Google Scholar 

  38. Coen, E. S. & Meyerowitz, E. M. The war of the whorls; genetic interactions controlling flower development. Nature 353, 31–37 (1991).

    CAS  PubMed  Google Scholar 

  39. Haughn, G. W. & Somerville, C. R. Genetic control of morphogenesis in Arabidopsis. Dev. Genet. 9, 73–89 (1988).

    Google Scholar 

  40. Riechmann, J. L. & Meyerowitz, E. MADS domain proteins in plant development. J. Biol. Chem. 378, 1079–1101 (1997).

    CAS  Google Scholar 

  41. Goto, K. & Meyerowitz, E. M. Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev. 8, 1548–1560 (1994).

    CAS  PubMed  Google Scholar 

  42. Jack, T., Brockman, L. L. & Meyerowitz, E. M. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68, 683–697 (1992).

    CAS  PubMed  Google Scholar 

  43. Jack, T., Fox, G. L. & Meyerowitz, E. M. Arabidopsis homeotic gene APETALA3 ectopic expression: transcriptional and posttranscriptional regulation determine floral organ identity. Cell 76, 703–716 (1994).

    CAS  PubMed  Google Scholar 

  44. Krizek, B. A. & Meyerowitz, E. M. The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development 122, 11–22 (1996).

    CAS  PubMed  Google Scholar 

  45. Levin, J. Z. & Meyerowitz, E. M. UFO: an Arabidopsis gene involved in both floral meristem and floral organ development. Plant Cell 7, 529–548 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wilkinson, M. D. & Haughn, G. W. UNUSUAL FLORAL ORGANS controls meristem identity and organ primordial fate in Arabidopsis. Plant Cell 7, 1485–1499 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee, I., Wolfe, D. S., Nilsson, O. & Weigel, D. A. LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS. Curr. Biol. 7, 95–104 (1997).

    PubMed  Google Scholar 

  48. Zhao, D., Yu, Q., Chen, M. & Ma, H. The ASK1 gene regulates B function gene expression in cooperation with UFO and LEAFY in Arabidopsis. Development, 128, 2735–2746 (2001).

    CAS  PubMed  Google Scholar 

  49. Samach, A. et al. The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem. Plant J. 20, 433–445 (1999).

    CAS  PubMed  Google Scholar 

  50. Wang, X. et al. The COP9 signalosome interacts with SCFUFO and participates in Arabidopsis flower development. Plant Cell 15, 1071–1082 (2003). Shows that the CSN is highly enriched in flowers and that plants with reduced CSN function show defects in floral development. It also shows that the F-box protein, UFO, forms part of an SCF-type E3 ligase that associates with the CSN in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Peng, Z., Serino, G. & Deng, X. W. Molecular characterization of subunit 6 of the COP9 signalosome and its role in multifaceted developmental processes in Arabidopsis. Plant Cell 13, 2393–2407 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Johri, M. M. & Mitra, D. Action of plant hormones. Curr. Sci. 80, 199–205 (2001).

    CAS  Google Scholar 

  53. Vogler, H. & Kuhlemeier, C. Simple hormones but complex signaling. Curr. Opin. Plant Biol. 6, 51–56 (2003).

    CAS  PubMed  Google Scholar 

  54. Leyser, O. Molecular genetics of auxin signaling. Ann. Rev. Plant Biol. 53, 377–398 (2002).

    CAS  Google Scholar 

  55. Rogg, L. E. & Bartel, B. Auxin signaling: derepression through regulated proteolysis. Dev. Cell 1, 595–604 (2001).

    CAS  PubMed  Google Scholar 

  56. del Pozo, J. C. & Estelle, M. Function of the ubiquitin-proteasome pathway in auxin response. Trends Plant Sci. 4, 107–112 (1999).

    PubMed  Google Scholar 

  57. Richards, D. E., King, K. E., Ait-ali, T. & Harberd, N. P. How gibberellin regulates plant growth and development: a molecular genetic analysis of giberellin signaling. Ann. Rev. Plant Physiol. Plant Mol. Biol. 52, 67–88 (2001).

    CAS  Google Scholar 

  58. Koornneef, M. & van der Veen, J. H. Induction and analysisof gibberellin sensitive mutants in Arabidopsis thaliana (L.) Heynh. Theor. Appl. Genet. 58, 257–263 (1980).

    CAS  PubMed  Google Scholar 

  59. Sun, T., Goodman H. M. & Ausubel, F. M. Cloning the Arabidopsis GA1 locus by genomic subtraction. Plant Cell 4, 119–128 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Fath, A., Bethke, P., Lonsdale, J., Meza-Romero, R. & Jones, R. Programmed cell death in cereal aleurone. Plant Mol. Biol. 44, 255–266 (2000).

    CAS  PubMed  Google Scholar 

  61. Silverstone, A. L., Ciampaglio, C. N. & Sun, T. The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell 10, 155–169 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Silverstone, A. L. et al. Repressing a repressor: gibberellin-induced rapid reduction of the RGA protein in Arabidopsis. Plant Cell 13, 1555–1565 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Itoh, H., Ueguchi-Tanaka, M., Sato, Y., Ashikari, M. & Matsuoka, M. The gibberellin signaling pathway is regulated by the appearance and disappearance of SLENDER RICE1 in nuclei. Plant Cell 14, 57–70 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Fu, X. et al. Gibberellin-mediated proteasome-dependent degradtion of the barley DELLA protein SLN1 repressor. Plant Cell 14, 3191–3200 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Sasaki, A. et al. Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science 299, 1896–1989 (2003). Demonstrates that the GA-insensitive mutant gid2 of rice is caused by a mutation in an F-box protein that forms part of an SCF-type E3 ligase. They also show that degradation of SLR1, a repressor of GA signalling, involves SCFGID2 and is controlled through GA-dependent phosophorylation of SLR1.

    CAS  PubMed  Google Scholar 

  66. McGinnis, K. M. et al. The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase. Plant Cell 15, 1120–1130 (2003). Identifies the Arabidopsis SLEEPY gene, a positive regulator of GA responses. SLEEPY is an F-box protein that forms an SCF E3 ligase and participates in the degradation of the repressor of GA signalling RGA in response to GA.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang, K. L., Li, H. & Ecker, J. R. Ethylene biosynthesis and siganling networks. Plant Cell Suppl. 14, S131–S151 (2002).

    CAS  Google Scholar 

  68. Yanagisawa, S., Yoo, S. D. & Sheen, J. Differential regulation of EIN3 stability by glucose and ethylene signaling in plants. Nature 425, 521–525 (2003). Demonstrates that EIN3, a crucial regulator of ethylene signalling, is stabilized by ethylene. By contrast, addition of glucose causes the degradation of EIN3 in a proteasome-dependent manner, indicating that EIN3 is a convergence point between ethylene and sugar signalling.

    CAS  PubMed  Google Scholar 

  69. Wang, Z. Y. et al. BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature 410, 380–383 (2001).

    CAS  PubMed  Google Scholar 

  70. Li, J. & Chory, J. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Science 288, 2360–2363 (1997).

    Google Scholar 

  71. Wang, Z. Y. et al. Nuclear-localised BZR1 mediates brassionosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev. Cell 2, 505–513 (2002).

    CAS  PubMed  Google Scholar 

  72. He, J. -X., Gendron, J. M., Yang, Y. & Wang, Z. -Y. The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proc. Natl Acad. Sci. USA 99, 10185–10190 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Lopez-Molina, L., Mongrand, S. & Chua, N. H. A post-germination developmental arrest checkpont is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc. Natl Acad. Sci. USA 32, 1–12 (2001). Describes the identification of ABI5, a transcription factor that mediates responses to ABA. They also show that ABI5 is regulated at the level of protein degradation and requires the action of the 26S proteasome and the ABI5 binding protein, AFP.

    Google Scholar 

  74. Lopez-Molina, L., Mongrand, S., Kinoshita, N. & Chua, N. H. AFP is a novel negative regulator of ABA signaling that promotes ABI5 protein degradation. Genes Dev. 17, 410–418 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang, S. & Klessig, D. F. MAPK cascades in plant defense signaling. Trends Plant Sci. 6, 520–527 (2001).

    CAS  PubMed  Google Scholar 

  76. Dong, X. N. Genetic dissection of systemic acquired resistance. Curr. Opin. Plant Biol. 4, 309–314 (2001).

    CAS  PubMed  Google Scholar 

  77. McDowell, J. M. & Dangl, J. L. Signal transduction in the plant immune response. Trends Biochem. Sci. 25, 79–82 (2000).

    CAS  PubMed  Google Scholar 

  78. Shirasu, K. & Schulze-Lefert, P. Regulators of cell death in disease resistance. Plant Mol. Biol. 44, 371–385 (2000).

    CAS  PubMed  Google Scholar 

  79. Dong, X. & Sa, J. A. Ethylene and disease resistance in plants. Curr. Opin. Plant Biol. 1, 316–323 (1988).

    Google Scholar 

  80. Hammond-Kosack, K. E. & Parker, J. E. Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr. Opin. Biotechnol. 14, 177–193 (2003).

    CAS  PubMed  Google Scholar 

  81. Dangl, J. L. & Jones, J. D. G. Plant pathogens and integrated defense responses to infection. Nature 411, 826–833 (2001).

    CAS  PubMed  Google Scholar 

  82. Shirasu, K. et al. A novel class of eukaryotic zinc-finger binding protein is required for disease resistance signaling in barley and development in C. elegans. Cell 99, 355–366 (1999).

    CAS  PubMed  Google Scholar 

  83. Azevedo, C. et al. The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science 295, 2073–2076 (2002). Shows that SGT1 is an interacting partner of RAR1, an essential component of MLA12-mediated resistance against powdery mildew in barley. Single-cell RNAi assays showed that SGT1 is also a crucial component of the resistance pathway.

    CAS  PubMed  Google Scholar 

  84. Austin, M. J. et al. Regulatory role of SGT1 in early R gene-mediated plant defenses. Science 295, 2077–2080 (2002). Describes a forward mutant screening in Arabidopsis for loss of resistance against downy mildew that identified SGT1b as a vital component of resistance.

    CAS  PubMed  Google Scholar 

  85. Peart, J. R. et al. Ubiquitin ligase associated protein SGT1 is required for host and non-host disease resistance in plants. Proc. Natl Acad. Sci. USA 99, 10865–10869 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Shirasu, K. & Schulze-Lefeft, P. Complex formation, promiscuity and multi-functionality: protein interactions in disease resistance pathways. Trends Plant Sci. 8, 252–258 (2003).

    CAS  PubMed  Google Scholar 

  87. Takahashi, A., Casais, C., Ichimura, K. & Shirasu, K. HSP90 interacts with RAR1 and SCT1, and is essential for RPS2-mediated disease resistance in Arabidopsis. Proc. Natl Acad. Sci. USA 100, 11777–11782 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Dubacq, C., Guerois, R., Courbeyrette, R., Kitagawa, K. & Mann, C. Sgt1p contributes to cyclic AMP pathway activity and physically interacts with the adenylyl cyclase Cry1p/Cdc35p in budding yeast. Eukaryot. Cell 1, 568–582 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Liu, Y., Schiff, M., Serino, G., Deng, X. W. & Dinesh-Kumar, S. P. Role of SCF ubiquitin-ligase and the COP9 signalosome in the N gene-mediated resistance response to Tobacco mosaic virus. Plant Cell 14, 1483–1496 (2002). Shows that SKP1 and CSN components are essential for N-mediated disease resistance in Nicotiana . Both RAR1 and SGT1 associate with SCF and CSN components, indicating the functional link among these components.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Kitagawa, K., Skowyra, D., Elledge, S. J., Harper, J. W. & Hieter, P. SGT1 encodes an essential component of the yeast kinetochore assembly pathway and a novel subunit of the SCF ubiquitin ligase complex. Mol. Cell 4, 21–33 (1999).

    CAS  PubMed  Google Scholar 

  91. Gray, W. M., Muskett, P. R., Chuang, H. -W. & Parker, J. E. Arabidopsis SGT1b is required for SCFTIR1-mediated auxin response. Plant Cell 15, 1310–1319 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Creelmann, R. A. & Mullet, J. E. Biosynthesis and action of jasmonates in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 48, 355–381 (1997).

    Google Scholar 

  93. Feys, B. J. F., Benedetti, C. E., Penfold, C. N. & Turner, J. G. Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 6, 751–759 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Thomma, B. P. H. J. et al. Separate jasmonate-dependent and salicylate-dependent defense-repsonse pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc. Natl Acad. Sci. USA 95, 15107–15111 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. McConn, M., Creelmann, R. A., Bell, E., Mullet, J. E. & Browse, J. Jasmonate is essential for insect defense. Proc. Natl Acad. Sci. USA 94, 5473–5477 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Devoto, A. et al. COI1 links jasmonate signaling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant J. 32, 457–466 (2002)

    CAS  PubMed  Google Scholar 

  97. Xu, L. et al. The SCFCOI1 ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14, 1919–1935 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Xie, D., Feys, B. F., James, S., Nieto-Rostro, M. & Turner, J. G. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280, 1091–1094 (1998). A landmark paper describing isolation of the COI1 gene that encodes an F-box protein, required for jasmonate, the signalling pathway in Arabidopsis.

    CAS  PubMed  Google Scholar 

  99. Feng, S. et al. The COP9 signalosome interacts physically with SCFCOI1 and modulates jasmonate responses. Plant Cell 15, 1083–1094 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Sullivan, J. A. & Deng, X. W. From seed to seed; the role of photoreceptors in Arabidopsis development. Dev. Biol. 260, 289–297 (2003).

    CAS  PubMed  Google Scholar 

  101. Quail, P. H. Phytochrome photosensory signaling networks. Nature Rev. Mol. Cell Biol. 3, 85–93 (2002).

    CAS  Google Scholar 

  102. Wang, H. & Deng, X. W. in The Arabidopsis Book, American Society of Plant Biologists [online], (eds Somerville, C. R. & Meyerowitz, E. M.), (cited 29 Oct 2003) <http://www.aspb.org/publications/arabidopsis> (2002).

    Google Scholar 

  103. Teppermann, J. M., Zhu, T., Chang, H. -S., Wang, X. & Quail, P. H. Multiple transcription factor genes are early targets of phytochrome A signaling. Proc. Natl Acad. Sci. USA 98, 9437–9442 (2001).

    Google Scholar 

  104. Ma, L. et al. Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell 13, 2589–2398 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Lin, C. Blue light photoreceptors and signal transduction. Plant Cell 14, S207–S225 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Möller, S. G., Ingles, P. J. & Whitelam, G. C. The cell biology of phytochrome signaling. New Phytol. 154, 553–590 (2002).

    PubMed  Google Scholar 

  107. Wei, N. & Deng, X. W. The role of the COP/DET/FUS genes in light control of Arabidopis seedling development. Plant Physiol. 112, 871–878 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Deng, X. W. et al. COP1, an Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and a Gb homologous domain. Cell 71, 791–801 (1992).

    CAS  PubMed  Google Scholar 

  109. Pepper, A., Delaney, T., Washburn, T., Poole, D. & Chory, J. DET1, a negative regulator of light-mediated development and gene expression in Arabidopsis, encodes a novel nuclear localized protein. Cell 78, 109–116 (1994).

    CAS  PubMed  Google Scholar 

  110. Suzuki, G., Yanagawa, Y., Kwok, S. F. & Deng, X. W. Arabidopsis COP10 is a ubiquitin-conjugating enzyme variant that acts together with COP1 and the COP9 signalosome in repressing photomorphogenesis. Genes Dev. 16, 554–559 (2002). Describes the identification of COP10 , one of the essential COP/DET/FUS genes. COP10 encodes a protein showing significant homology to E2 variant proteins and indicates a possible role for non-canonical ubiquitylation in the regulation of photomorphogenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Wei, N., Chamovitz, D. A. & Deng, X. W. Arabidopsis COP9 is a component of a novel signaling complex mediating light control of development. Cell 78, 117–124 (1994).

    CAS  PubMed  Google Scholar 

  112. Holm, M., Ma, L. -G., Qu, L. -J. & Deng, X. W. Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Gene Dev. 16, 1247–1259 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Ballesteros, M. et al. LAF1, a myb transcription activator for phytochrome A signaling. Genes Dev. 15, 2613–2625 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Ang, L. -H. et al. Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol. Cell 1, 213–222 (1998).

    CAS  PubMed  Google Scholar 

  115. Oyama, T., Shimura, Y. & Okada, K. The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Dev. 11, 2983–2995 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. von Arnim, A. G. & Deng, X. W. Light inactivation of Arabidopsis photomorphogenic repressor COP1 involves a cell-specific regulation of its nucleocytoplasmic partitioning. Cell 79, 1035–1045 (1994).

    CAS  PubMed  Google Scholar 

  117. Osterlund, M. T., Hardtke, C., Wei, N. & Deng, X. W. Targeted destabilization of Hy5 during light-regulated development of Arabidopsis. Nature 405, 462–466 (2000). A landmark paper that shows that the photomorphogenesis promoting factor HY5 is regulated at the level of protein degradation through the 26S proteasome and that this regulation requires the action of COP1 and other COP/DET/FUS proteins.

    CAS  PubMed  Google Scholar 

  118. Saijo, Y. et al. The COP1–SPA1 interaction defines a critical step in Phytochrome A-mediated regulation of HY5 activity. Genes Dev. 17, 2642–2647 (2003). Shows that COP1 has E3-ligase activity with respect to HY5 and that this activity can be altered by SPA1, an upstream regulator of phytochrome A signalling.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Seo, S. H. et al. LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. Nature 423, 995–999 (2003). This is the first demonstration of the E3 activity of COP1 on the transcription factor, LAF1, and shows that this activity can be stimulated by addition of the COP1-binding region of SPA1.

    CAS  PubMed  Google Scholar 

  120. Hoffmann, R. M. & Pickart, C. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96, 645–653 (1999).

    Google Scholar 

  121. Benvenuto, G., Formiggini, F., Laflamme, P., Malakhov, M. & Bowler, C. The photomorphogensis regulator DET1 binds the amino-terminal tail of histone H2B in a nucleosomal context. Curr. Biol. 12, 1529–1534 (2002).

    CAS  PubMed  Google Scholar 

  122. Schroeder, D. F. et al. De-etiolated 1 and damaged DNA binding protein 1 interact to regulate Arabidopsis phoromorphogenesis. Curr. Biol. 15, 1462–1472 (2002).

    Google Scholar 

  123. Chamovitz, D. A. et al. The COP9 complex a novel multisubunit nuclear regulator involved in light control of a plant developmental switch. Cell 86, 115–121 (1996).

    CAS  PubMed  Google Scholar 

  124. Quail, P. An emerging molecular map of the phytochromes. Plant Cell Environ. 20, 657–666 (1997).

    CAS  Google Scholar 

  125. Wang, H., Ma, L., Li, J., Zhao, H. & Deng, X. W. Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Science 294, 154–158 (2001).

    CAS  PubMed  Google Scholar 

  126. Yang, H. -Q., Tang, R. -H. & Cashmore, A. R. The signaling mechanism if Arabidopsis CRY1 involves direct interaction with COP1. Plant Cell 13, 2573–2587 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Marx, J. Ubiquitin lives up to its name. Science 297, 1792–1794 (2002).

    PubMed  Google Scholar 

  128. Staub, J. M., Wei, N. & Wang, X. W. Evidence for FUS6 as a component of the nuclear localized COP9 complex in Arabidopsis. Plant Cell 8, 2047–2056 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Serino, G. et al. Characterization of the last subunit of the Arabidopsis COP9 signalosome: implications for the overall structure and origian of the complex. Plant Cell 15, 719–731 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Peng, Z., Serino, G. & Deng, X. W. A role of Arabidopsis COP9 signalosome in multifaceted developmental processes revealed by the characterization of its subunit 3. Development 128, 4277–4288 (2001).

    CAS  PubMed  Google Scholar 

  131. Serino, G. et al. Arabidopsis cop8 and fus4 mutations define the same gene that encodes subunit 4 of the COP9 signalosome. Plant Cell 11, 1967–1980 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Kwok, S. F. et al. Arabidopsis homologs of a c-Jun co-activator are present both in monomeric form and in the COP9 complex, and their abundance if differentially affected by the pleiotropic cop/det/fus mutations. Plant Cell 19, 1779–1790 (1998).

    Google Scholar 

  133. Karniol, B., Malec, P. & Chamovitz, D. A. Arabidopsis FUSCA5 encodes a novel phosphoprotein that is a compoent of the COP9 complex. Plant Cell 11, 839–848 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Ferrell, K., Wilkinson, C. R. M., Dubiel, W. & Gordon, C. Regulatory subunit interactions of the 26S proteasome, a complex problem. Trends Biochem. Sci. 25, 83–88 (2000).

    CAS  PubMed  Google Scholar 

  135. Wei, N. et al. The COP9 complex is conserved between plants and mammals and is related to the 26S proteasome regulatory complex. Curr. Biol. 8, 919–922 (1998).

    CAS  PubMed  Google Scholar 

  136. Peng, Z. et al. Evidence for a physical association of the COP9 signalosome, the proteasome, and specific SCF E3 ligases in vivo. Curr. Biol. 12, R504–R505 (2003).

    Google Scholar 

  137. Ohi, M. D., Vander Kooi, C. W., Rosenberg, J. A., Chazin, W. J. & Gould, K. L. Structural insights into the U-box, a domain associated with multi-ubiquitination. Nature Struct. Biol. 10, 250–255 (2003).

    CAS  PubMed  Google Scholar 

  138. Azevedo, C., Santos-Rosa, M. J. & Shirasu, K. The U-box protein family in plants. Trends Plant Sci. 6, 354–358 (2001).

    CAS  PubMed  Google Scholar 

  139. Gagne, J. M., Downes, B. P., Shiu, S -H., Durski, A. M. & Vierstra, R. D. The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc. Natl Acad. Sci. USA 99, 11519–11524 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Risseeuw, E. P. et al. Protein interaction of SCF ubiquitin E3 ligase subunits from Arabidopsis. Plant J. 34, 753–767 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.A.S. is supported by a Human Frontiers Science Program long-term fellowship. Research in K.S.'s laboratory is supported in part by grants from the Gatsby Charitable Foundation and the Biotechnology and Biological Sciences Research Council. Related research in X.W.D.'s laboratory is supported by grants from the National Institutes of Health and the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Wang Deng.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Related links

Related links

DATABASES

TAIR

APETALA3

Axr1

CIO1

COP

COP10

DET

FUS

LEAFY

NIM1

PISTILLATA

RAR1

RGA

SGT1α

SGT1b

SKP1

SLEEPY1

ubiquitin

UNUSUAL FLORAL ORGANS

UPL3

UK CropNet

Mla6

Mla12

FURTHER INFORMATION

Xing Wang Deng's laboratory

Glossary

PROTO-ONCOGENE

A gene that has the potential to change into an active cancer-causing oncogene.

ENDOCYTOSIS

The uptake of extracellular materials within membrane-bound vesicles by cells.

ISOPEPTIDE BOND

The covalent linkage that joins amino-acid residues through an amide bond.

THIOESTER LINKAGE

A non-covalent chemical bond between two proteins formed through thiolester.

CONJUGATION

The addition of ubiquitin moieties to a growing polyubiquitin chain.

SENESCENCE

Regulated death of an organ or a cell after its normal physiological function.

CHELATION

The process by which an organic chemical bonds with metal ions and thereby removes them from solutions.

WHORLS

A specific layer of flower organs that is generated through floral meristem activity.

SEPALS

The protective outer layer of flower.

STAMENS

The third layer of flower that bears the male gametophyte that produces pollen.

CARPELS

The fourth whorl of flower that bears the female gametophyte.

TRANSFORMATION

The change from one developmental pattern to another.

APICAL DOMINANCE

Concentration of growth at the tip of a plant shoot, where a terminal bud exerts partial inhibition of auxiliary bud growth.

ALEURONE CELLS

A cell type in cereal kernals that undergoes highly regulated cell death to release stores of minerals and nutrients to the developing embryo.

PHENOCOPY

The production of a phenotype, which closely resembles a phenotype that normally results from specific gene expression or from gene mutation.

POWDERY MILDEW

A group of plant diseases that are caused by the growth of fungal mycelium and the production of spores on the surface of plant tissues.

DENEDDYLATION

The removal of the ubiquitin-like modifier NEDD8 (also called RUB) from a protein.

HISTONE DEACETYLASE

The enzyme that removes acetyl groups from lysine residues in the DNA-binding histone group of proteins.

SKOTOMORPHOGENIC

Developmental pattern followed by seedlings in the absence of light.

HYPOCOTYLS

The stem of a seedling.

COTYLEDONS

The leaves of a seedling formed during embryonic development.

PHOTOMORPHOGENIC

Developmental pattern followed by seedlings in the presence of light.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sullivan, J., Shirasu, K. & Deng, X. The diverse roles of ubiquitin and the 26S proteasome in the life of plants. Nat Rev Genet 4, 948–958 (2003). https://doi.org/10.1038/nrg1228

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1228

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing