Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of diabetes mellitus-induced bone fragility

Key Points

  • Patients with type 1 diabetes mellitus or type 2 diabetes mellitus (T2DM) have an increased risk of fractures; BMD underestimates this risk in individuals with T2DM, making risk assessment challenging

  • Patients with diabetes mellitus with long-term disease, poor glycaemic control, β-cell failure and who receive insulin treatment are at the highest risk of fractures

  • Low bone turnover, accumulation of advanced glycation endproducts, micro and macro-architecture alterations and tissue material damage lead to abnormal biomechanical properties and impair bone strength

  • Other determinants of bone fragility include inflammation, oxidative stress, adipokine alterations, WNT dysregulation and increased marrow fat

  • Complications of diabetes mellitus, such as neuropathy, poor balance, sarcopenia, vision impairment and frequent hypoglycaemic events, increase the risk of falls and risk of fracture; preventive measures are advised, especially in patients taking insulin

  • Use of thiazolidinediones, or some SGLT2 inhibitors might contribute to increased fracture risk; antidiabetic medications with good bone safety profiles such as metformin, GLP1analogues or DPP4 inhibitors are preferred

Abstract

The risk of fragility fractures is increased in patients with either type 1 diabetes mellitus (T1DM) or type 2 diabetes mellitus (T2DM). Although BMD is decreased in T1DM, BMD in T2DM is often normal or even slightly elevated compared with an age-matched control population. However, in both T1DM and T2DM, bone turnover is decreased and the bone material properties and microstructure of bone are altered; the latter particularly so when microvascular complications are present. The pathophysiological mechanisms underlying bone fragility in diabetes mellitus are complex, and include hyperglycaemia, oxidative stress and the accumulation of advanced glycation endproducts that compromise collagen properties, increase marrow adiposity, release inflammatory factors and adipokines from visceral fat, and potentially alter the function of osteocytes. Additional factors including treatment-induced hypoglycaemia, certain antidiabetic medications with a direct effect on bone and mineral metabolism (such as thiazolidinediones), as well as an increased propensity for falls, all contribute to the increased fracture risk in patients with diabetes mellitus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms underlying bone loss and fractures in type 2diabetes mellitus.
Figure 2: Cellular and molecular mechanisms of bone diseases in diabetes mellitus.

Similar content being viewed by others

References

  1. International Diabetes Federation. IDF Diabetes Atlas 6th edn (International Diabetes Federation, 2013).

  2. Johnell, O. & Kanis, J. A. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos. Int. 17, 1726–1733 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Melton, L. J. 3rd, Chrischilles, E. A., Cooper, C., Lane, A. W. & Riggs, B. L. Perspective. How many women have osteoporosis? J. Bone Miner. Res. 7, 1005–1010 (1992).

    Article  PubMed  Google Scholar 

  4. Sanchez-Riera, L. et al. The global burden attributable to low bone mineral density. Ann. Rheum. Dis. 73, 1635–1645 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Janghorbani, M., Van Dam, R. M., Willett, W. C. & Hu, F. B. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am. J. Epidemiol. 166, 495–505 (2007).

    Article  PubMed  Google Scholar 

  6. Janghorbani, M., Feskanich, D., Willett, W. C. & Hu, F. Prospective study of diabetes and risk of hip fracture: the Nurses' Health Study. Diabetes Care 29, 1573–1578 (2006).

    Article  PubMed  Google Scholar 

  7. Weber, D. R., Haynes, K., Leonard, M. B., Willi, S. M. & Denburg, M. R. Type 1 diabetes is associated with an increased risk of fracture across the life span: a population-based cohort study using the Health Improvement Network (THIN). Diabetes Care 38, 1913–1920 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Vestergaard, P., Rejnmark, L. & Mosekilde, L. Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia 48, 1292–1299 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Kelsey, J. L., Browner, W. S., Seeley, D. G., Nevitt, M. C. & Cummings, S. R. Risk factors for fractures of the distal forearm and proximal humerus. The Study of Osteoporotic Fractures Research Group. Am. J. Epidemiol. 135, 477–489 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Zhukouskaya, V. V. et al. Prevalence of morphometric vertebral fractures in patients with type 1 diabetes. Diabetes Care 36, 1635–1640 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ivers, R. Q., Cumming, R. G., Mitchell, P. & Peduto, A. J. Diabetes and risk of fracture: the Blue Mountains Eye Study. Diabetes Care 24, 1198–1203 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Miao, J., Brismar, K., Nyren, O., Ugarph-Morawski, A. & Ye, W. Elevated hip fracture risk in type 1 diabetic patients: a population-based cohort study in Sweden. Diabetes Care 28, 2850–2855 (2005).

    Article  PubMed  Google Scholar 

  13. Strotmeyer, E. S. et al. Nontraumatic fracture risk with diabetes mellitus and impaired fasting glucose in older white and black adults: the health, aging, and body composition study. Arch. Intern. Med. 165, 1612–1617 (2005).

    Article  PubMed  Google Scholar 

  14. Schwartz, A. V. et al. Older women with diabetes have an increased risk of fracture: a prospective study. J. Clin. Endocrinol. Metab. 86, 32–38 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Forsen, L., Meyer, H. E., Midthjell, K. & Edna, T. H. Diabetes mellitus and the incidence of hip fracture: results from the Nord-Trondelag Health Survey. Diabetologia 42, 920–925 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Ahmed, L. A., Joakimsen, R. M., Berntsen, G. K., Fonnebo, V. & Schirmer, H. Diabetes mellitus and the risk of non-vertebral fractures: the Tromso study. Osteoporos. Int. 17, 495–500 (2006).

    Article  PubMed  Google Scholar 

  17. Napoli, N. et al. Fracture risk in diabetic elderly men: the MrOS study. Diabetologia 57, 2057–2065 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li, C. I. et al. Glycated hemoglobin level and risk of hip fracture in older people with type 2 diabetes: a competing risk analysis of Taiwan Diabetes Cohort Study. J. Bone Miner. Res. 30, 1338–1346 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Johnston, S. S., Conner, C., Aagren, M., Ruiz, K. & Bouchard, J. Association between hypoglycaemic events and fall-related fractures in Medicare-covered patients with type 2 diabetes. Diabetes Obes. Metab. 14, 634–643 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Vestergaard, P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes — a meta-analysis. Osteoporos. Int. 18, 427–444 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Napoli, N. et al. Risk factors for subtrochanteric and diaphyseal fractures: the study of osteoporotic fractures. J. Clin. Endocrinol. Metab. 98, 659–667 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. de Liefde, I. I. et al. Bone mineral density and fracture risk in type-2 diabetes mellitus: the Rotterdam Study. Osteoporos. Int. 16, 1713–1720 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Bonds, D. E. et al. Risk of fracture in women with type 2 diabetes: the Women's Health Initiative Observational Study. J. Clin. Endocrinol. Metab. 91, 3404–3410 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Yamamoto, M., Yamaguchi, T., Yamauchi, M., Kaji, H. & Sugimoto, T. Diabetic patients have an increased risk of vertebral fractures independent of BMD or diabetic complications. J. Bone Miner. Res. 24, 702–709 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Lipscombe, L. L., Jamal, S. A., Booth, G. L. & Hawker, G. A. The risk of hip fractures in older individuals with diabetes: a population-based study. Diabetes Care 30, 835–841 (2007).

    Article  PubMed  Google Scholar 

  26. Schwartz, A. V. et al. Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. JAMA 305, 2184–2192 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dubey, A., Aharonoff, G. B., Zuckerman, J. D. & Koval, K. J. The effects of diabetes on outcome after hip fracture. Bull. Hosp. Jt Dis. 59, 94–98 (2000).

    CAS  PubMed  Google Scholar 

  28. Huang, Y. F. et al. Diabetes and health outcomes among older Taiwanese with hip fracture. Rejuvenation Res. 15, 476–482 (2012).

    Article  PubMed  Google Scholar 

  29. Muraki, S., Yamamoto, S., Ishibashi, H. & Nakamura, K. Factors associated with mortality following hip fracture in Japan. J. Bone Miner. Metab. 24, 100–104 (2006).

    Article  PubMed  Google Scholar 

  30. Schwartz, A. V. et al. Older women with diabetes have a higher risk of falls: a prospective study. Diabetes Care 25, 1749–1754 (2002).

    Article  PubMed  Google Scholar 

  31. Maurer, M. S., Burcham, J. & Cheng, H. Diabetes mellitus is associated with an increased risk of falls in elderly residents of a long-term care facility. J. Gerontol. A Biol. Sci. Med. Sci. 60, 1157–1162 (2005).

    Article  PubMed  Google Scholar 

  32. Gregg, E. W., Pereira, M. A. & Caspersen, C. J. Physical activity, falls, and fractures among older adults: a review of the epidemiologic evidence. J. Am. Geriatr. Soc. 48, 883–893 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Schwartz, A. V. et al. Diabetes-related complications, glycemic control, and falls in older adults. Diabetes Care 31, 391–396 (2008).

    Article  PubMed  Google Scholar 

  34. Hewston, P. & Deshpande, N. Falls and balance impairments in older adults with type 2 diabetes: thinking beyond diabetic peripheral neuropathy. Can. J. Diabetes 40, 6–9 (2016).

    Article  PubMed  Google Scholar 

  35. Berlie, H. D. & Garwood, C. L. Diabetes medications related to an increased risk of falls and fall-related morbidity in the elderly. Ann. Pharmacother. 44, 712–717 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Vinik, A. I., Vinik, E. J., Colberg, S. R. & Morrison, S. Falls risk in older adults with type 2 diabetes. Clin. Geriatr. Med. 31, 89–99 (2015).

    Article  PubMed  Google Scholar 

  37. Campos Pastor, M. M., Lopez-Ibarra, P. J., Escobar-Jimenez, F., Serrano Pardo, M. D. & Garcia-Cervigon, A. G. Intensive insulin therapy and bone mineral density in type 1 diabetes mellitus: a prospective study. Osteoporos. Int. 11, 455–459 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Eller-Vainicher, C. et al. Low bone mineral density and its predictors in type 1 diabetic patients evaluated by the classic statistics and artificial neural network analysis. Diabetes Care 34, 2186–2191 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Joshi, A., Varthakavi, P., Chadha, M. & Bhagwat, N. A study of bone mineral density and its determinants in type 1 diabetes mellitus. J. Osteoporos. 2013, 397814 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Soto, N. et al. Bone mass and sex steroids in postmenarcheal adolescents and adult women with type 1 diabetes mellitus. J. Diabetes Comp. 25, 19–24 (2011).

    Article  Google Scholar 

  41. Hampson, G. et al. Bone mineral density, collagen type 1 α 1 genotypes and bone turnover in premenopausal women with diabetes mellitus. Diabetologia 41, 1314–1320 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Mastrandrea, L. D. et al. Young women with type 1 diabetes have lower bone mineral density that persists over time. Diabetes Care 31, 1729–1735 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lopez-Ibarra, P. J. et al. Bone mineral density at time of clinical diagnosis of adult-onset type 1 diabetes mellitus. Endocr. Pract. 7, 346–351 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Ma, L. et al. Association between bone mineral density and type 2 diabetes mellitus: a meta-analysis of observational studies. Eur. J. Epidemiol. 27, 319–332 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Weinfeld, R. M., Olson, P. N., Maki, D. D. & Griffiths, H. J. The prevalence of diffuse idiopathic skeletal hyperostosis (DISH) in two large American Midwest metropolitan hospital populations. Skeletal Radiol. 26, 222–225 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Dhaliwal, R., Cibula, D., Ghosh, C., Weinstock, R. S. & Moses, A. M. Bone quality assessment in type 2 diabetes mellitus. Osteoporos. Int. 25, 1969–1973 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Leslie, W. D., Aubry-Rozier, B., Lamy, O., Hans, D. & Manitoba Bone Density Program. TBS (trabecular bone score) and diabetes-related fracture risk. J. Clin. Endocrinol. Metab. 98, 602–609 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Rubin, J. et al. Trabecular bone assessment in type 2 diabetes mellitus. J. Bone Miner. Res. 28, S398 (2013).

    Article  Google Scholar 

  49. Tao, B. et al. Differences between measurements of bone mineral densities by quantitative ultrasound and dual-energy X-ray absorptiometry in type 2 diabetic postmenopausal women. J. Clin. Endocrinol. Metab. 93, 1670–1675 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Yamaguchi, T. et al. Quantitative ultrasound and vertebral fractures in patients with type 2 diabetes. J. Bone Miner. Metab. 29, 626–632 (2011).

    Article  PubMed  Google Scholar 

  51. Bechtold, S. et al. Early manifestation of type 1 diabetes in children is a risk factor for changed bone geometry: data using peripheral quantitative computed tomography. Pediatrics 118, e627–e634 (2006).

    Article  PubMed  Google Scholar 

  52. Danielson, K. K., Elliott, M. E., LeCaire, T., Binkley, N. & Palta, M. Poor glycemic control is associated with low BMD detected in premenopausal women with type 1 diabetes. Osteoporos. Int. 20, 923–933 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Forst, T. et al. Peripheral osteopenia in adult patients with insulin-dependent diabetes mellitus. Diabet. Med. 12, 874–879 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Heap, J., Murray, M. A., Miller, S. C., Jalili, T. & Moyer-Mileur, L. J. Alterations in bone characteristics associated with glycemic control in adolescents with type 1 diabetes mellitus. J. Pediatr. 144, 56–62 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Lettgen, B., Hauffa, B., Mohlmann, C., Jeken, C. & Reiners, C. Bone mineral density in children and adolescents with juvenile diabetes: selective measurement of bone mineral density of trabecular and cortical bone using peripheral quantitative computed tomography. Hormone Res. 43, 173–175 (1995).

    Article  CAS  PubMed  Google Scholar 

  56. Saha, M. T., Sievanen, H., Salo, M. K., Tulokas, S. & Saha, H. H. Bone mass and structure in adolescents with type 1 diabetes compared to healthy peers. Osteoporos. Ont. 20, 1401–1406 (2009).

    Article  CAS  Google Scholar 

  57. Roggen, I., Gies, I., Vanbesien, J., Louis, O. & De Schepper, J. Trabecular bone mineral density and bone geometry of the distal radius at completion of pubertal growth in childhood type 1 diabetes. Hormone Res. Paediatr. 79, 68–74 (2013).

    Article  CAS  Google Scholar 

  58. Pritchard, J. M. et al. Changes in trabecular bone microarchitecture in postmenopausal women with and without type 2 diabetes: a two year longitudinal study. BMC Musculoskelet. Disord. 14, 114 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pritchard, J. M. et al. Association of larger holes in the trabecular bone at the distal radius in postmenopausal women with type 2 diabetes mellitus compared to controls. Arthritis Care Res. 64, 83–91 (2012).

    Article  Google Scholar 

  60. Burghardt, A. J. et al. High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 95, 5045–5055 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Farr, J. N. et al. In vivo assessment of bone quality in postmenopausal women with type 2 diabetes. J. Bone Miner. Res. 29, 787–795 (2014).

    Article  PubMed  Google Scholar 

  62. Patsch, J. M. et al. Increased cortical porosity in type 2 diabetic postmenopausal women with fragility fractures. J. Bone Miner. Res. 28, 313–324 (2013).

    Article  PubMed  Google Scholar 

  63. Shanbhogue, V. V. et al. Compromised cortical bone compartment in type 2 diabetes mellitus patients with microvascular disease. Eur. J. Endocrinol. 174, 115–124 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Bala, Y. et al. Trabecular and cortical microstructure and fragility of the distal radius in women. J. Bone Miner. Res. 30, 621–629 (2015).

    Article  PubMed  Google Scholar 

  65. Yu, E. W. et al. Defects in cortical microarchitecture among African-American women with type 2 diabetes. Osteoporos. Int. 26, 673–679 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Ogawa, N. et al. The combination of high glucose and advanced glycation end-products (AGEs) inhibits the mineralization of osteoblastic MC3T3-E1 cells through glucose-induced increase in the receptor for AGEs. Horm. Metab. Res. 39, 871–875 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Hough, F. S. et al. Mechanisms in endocrinology: mechanisms and evaluation of bone fragility in type 1 diabetes mellitus. Eur. J. Endocrinol. 174, R127–138 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Napoli, N. et al. The alliance of mesenchymal stem cells, bone, and diabetes. Int. J. Endocrinol. 2014, 690783 (2014).

    PubMed  PubMed Central  Google Scholar 

  69. Maggio, A. B. et al. Decreased bone turnover in children and adolescents with well controlled type 1 diabetes. J. Pediatr. Endocrinol. Metab. 23, 697–707 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Adami, S. Bone health in diabetes: considerations for clinical management. Curr. Med. Res. Opin. 25, 1057–1072 (2009).

    Article  PubMed  Google Scholar 

  71. Diaz-Lopez, A. et al. Reduced serum concentrations of carboxylated and undercarboxylated osteocalcin are associated with risk of developing type 2 diabetes mellitus in a high cardiovascular risk population: a nested case-control study. J. Clin. Endocrinol. Metab. 98, 4524–4531 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Kanazawa, I. et al. Serum osteocalcin level is associated with glucose metabolism and atherosclerosis parameters in type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 94, 45–49 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Starup-Linde, J., Eriksen, S. A., Lykkeboe, S., Handberg, A. & Vestergaard, P. Biochemical markers of bone turnover in diabetes patients — a meta-analysis, and a methodological study on the effects of glucose on bone markers. Osteoporos. Int. 25, 1697–1708 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Starup-Linde, J. & Vestergaard, P. Biochemical bone turnover markers in diabetes mellitus — a systematic review. Bone 82, 69–78 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Leite Duarte, M. E. & da Silva, R. D. [Histomorphometric analysis of the bone tissue in patients with non-insulin-dependent diabetes (DMNID)]. Rev. Hosp. Clin. Fac. Med. Sao Paulo 51, 7–11 (in Portuguese) (1996).

    CAS  PubMed  Google Scholar 

  76. Manavalan, J. S. et al. Circulating osteogenic precursor cells in type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 97, 3240–3250 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Armas, L. A., Akhter, M. P., Drincic, A. & Recker, R. R. Trabecular bone histomorphometry in humans with type 1 diabetes mellitus. Bone 50, 91–96 (2012).

    Article  PubMed  Google Scholar 

  78. Farlay, D. et al. Nonenzymatic glycation and degree of mineralization are higher in bone from fractured patients with type 1 diabetes mellitus. J. Bone Miner. Res. 31, 190–195 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Reyes-Garcia, R. et al. Serum levels of bone resorption markers are decreased in patients with type 2 diabetes. Acta Diabetol. 50, 47–52 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Yamamoto, M., Yamaguchi, T., Nawata, K., Yamauchi, M. & Sugimoto, T. Decreased PTH levels accompanied by low bone formation are associated with vertebral fractures in postmenopausal women with type 2 diabetes. J. Clin. Endocrinol. Metab. 97, 1277–1284 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. McNair, P., Christensen, M. S., Madsbad, S., Christiansen, C. & Transbol, I. Hypoparathyroidism in diabetes mellitus. Acta Endocrinol. 96, 81–86 (1981).

    Article  CAS  Google Scholar 

  82. Thalassinos, N. C., Hadjiyanni, P., Tzanela, M., Alevizaki, C. & Philokiprou, D. Calcium metabolism in diabetes mellitus: effect of improved blood glucose control. Diabet. Med. 10, 341–344 (1993).

    Article  CAS  PubMed  Google Scholar 

  83. Weyer, C. et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J. Clin. Endocrinol. Metab. 86, 1930–1935 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Williams, G. A. et al. In vitro and in vivo effects of adiponectin on bone. Endocrinology 150, 3603–3610 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Lenchik, L. et al. Adiponectin as a novel determinant of bone mineral density and visceral fat. Bone 33, 646–651 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Napoli, N. et al. Adiponectin and bone mass density: The InCHIANTI study. Bone 47, 1001–1005 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tamura, T. et al. Serum leptin and adiponectin are positively associated with bone mineral density at the distal radius in patients with type 2 diabetes mellitus. Metabolism 56, 623–628 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Hamrick, M. W. & Ferrari, S. L. Leptin and the sympathetic connection of fat to bone. Osteoporos. Int. 19, 905–912 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Nuche-Berenguer, B. et al. Exendin-4 exerts osteogenic actions in insulin-resistant and type 2 diabetic states. Regul. Pept. 159, 61–66 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Gennari, L. et al. Circulating sclerostin levels and bone turnover in type 1 and type 2 diabetes. J. Clin. Endocrinol. Metab. 97, 1737–1744 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Gaudio, A. et al. Sclero stin levels associated with inhibition of the Wnt/β-catenin signaling and reduced bone turnover in type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 97, 3744–3750 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Yamamoto, M., Yamauchi, M. & Sugimoto, T. Elevated sclerostin levels are associated with vertebral fractures in patients with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 98, 4030–4037 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Heilmeier, U. et al. Volumetric femoral BMD, bone geometry, and serum sclerostin levels differ between type 2 diabetic postmenopausal women with and without fragility fractures. Osteoporos. Int. 26, 1283–1293 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Bucala, R. & Vlassara, H. Advanced glycosylation end products in diabetic renal and vascular disease. Am. J. Kidney Dis. 26, 875–888 (1995).

    Article  CAS  PubMed  Google Scholar 

  95. Hein, G. E. Glycation endproducts in osteoporosis — is there a pathophysiologic importance? Clin. Chim. Acta 371, 32–36 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Leslie, W. D., Rubin, M. R., Schwartz, A. V. & Kanis, J. A. Type 2 diabetes and bone. J. Bone Miner. Res. 27, 2231–2237 (2012).

    Article  PubMed  Google Scholar 

  97. Vashishth, D. et al. Influence of nonenzymatic glycation on biomechanical properties of cortical bone. Bone 28, 195–201 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Saito, M., Fujii, K., Mori, Y. & Marumo, K. Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. Osteoporos. Int. 17, 1514–1523 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Kerkeni, M., Saidi, A., Bouzidi, H., Ben Yahya, S. & Hammami, M. Elevated serum levels of AGEs, sRAGE, and pentosidine in Tunisian patients with severity of diabetic retinopathy. Microvasc. Res. 84, 378–383 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Saito, M., Fujii, K. & Marumo, K. Degree of mineralization-related collagen crosslinking in the femoral neck cancellous bone in cases of hip fracture and controls. Calcif. Tissue Int. 79, 160–168 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Schwartz, A. V. et al. Pentosidine and increased fracture risk in older adults with type 2 diabetes. J. Clin. Endocrinol. Metab. 94, 2380–2386 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yamamoto, M., Yamaguchi, T., Yamauchi, M., Yano, S. & Sugimoto, T. Serum pentosidine levels are positively associated with the presence of vertebral fractures in postmenopausal women with type 2 diabetes. J. Clin. Endocrinol. Metab. 93, 1013–1019 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Takagi, M. et al. Advanced glycation endproducts stimulate interleukin-6 production by human bone-derived cells. J. Bone Miner. Res. 12, 439–446 (1997).

    Article  CAS  PubMed  Google Scholar 

  104. Yamamoto, T. et al. Role of advanced glycation end products in adynamic bone disease in patients with diabetic nephropathy. Am. J. Kidney Dis. 38, S161–S164 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Katayama, Y., Akatsu, T., Yamamoto, M., Kugai, N. & Nagata, N. Role of nonenzymatic glycosylation of type I collagen in diabetic osteopenia. J. Bone Miner. Res. 11, 931–937 (1996).

    Article  CAS  PubMed  Google Scholar 

  106. Kume, S. et al. Advanced glycation end-products attenuate human mesenchymal stem cells and prevent cognate differentiation into adipose tissue, cartilage, and bone. J. Bone Miner. Res. 20, 1647–1658 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Sanguineti, R., Storace, D., Monacelli, F., Federici, A. & Odetti, P. Pentosidine effects on human osteoblasts in vitro. Ann. NY Acad. Sci. 1126, 166–172 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. McCarthy, A. D., Uemura, T., Etcheverry, S. B. & Cortizo, A. M. Advanced glycation endproducts interefere with integrin-mediated osteoblastic attachment to a type-I collagen matrix. Int. J. Biochem. Cell Biol. 36, 840–848 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Yonekura, H. et al. Novel splice variants of the receptor for advanced glycation end-products expressed in human vascular endothelial cells and pericytes, and their putative roles in diabetes-induced vascular injury. Biochem. J. 370, 1097–1109 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yamamoto, M., Yamaguchi, T., Yamauchi, M. & Sugimoto, T. Low serum level of the endogenous secretory receptor for advanced glycation end products (esRAGE) is a risk factor for prevalent vertebral fractures independent of bone mineral density in patients with type 2 diabetes. Diabetes Care 32, 2263–2268 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Cunha, J. S., Ferreira, V. M., Maquigussa, E., Naves, M. A. & Boim, M. A. Effects of high glucose and high insulin concentrations on osteoblast function in vitro. Cell Tissue Res. 358, 249–256 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Zayzafoon, M., Stell, C., Irwin, R. & McCabe, L. R. Extracellular glucose influences osteoblast differentiation and c-Jun expression. J. Cell. Biochem. 79, 301–310 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Botolin, S. & McCabe, L. R. Chronic hyperglycemia modulates osteoblast gene expression through osmotic and non-osmotic pathways. J. Cell. Biochem. 99, 411–424 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Wei, J. et al. Bone-specific insulin resistance disrupts whole-body glucose homeostasis via decreased osteocalcin activation. J. Clin. Invest. 124, 1–13 (2014).

    Article  PubMed  CAS  Google Scholar 

  115. Balint, E., Szabo, P., Marshall, C. F. & Sprague, S. M. Glucose-induced inhibition of in vitro bone mineralization. Bone 28, 21–28 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Frassetto, L. A. & Sebastian, A. How metabolic acidosis and oxidative stress alone and interacting may increase the risk of fracture in diabetic subjects. Med. Hypotheses 79, 189–192 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Aguiari, P. et al. High glucose induces adipogenic differentiation of muscle-derived stem cells. Proc. Natl Acad. Sci. USA 105, 1226–1231 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Oei, L. et al. High bone mineral density and fracture risk in type 2 diabetes as skeletal complications of inadequate glucose control: the Rotterdam Study. Diabetes Care 36, 1619–1628 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Yang, J., Zhang, X., Wang, W. & Liu, J. Insulin stimulates osteoblast proliferation and differentiation through ERK and PI3K in MG-63 cells. Cell Biochem. Funct. 28, 334–341 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Gandhi, A., Beam, H. A., O'Connor, J. P., Parsons, J. R. & Lin, S. S. The effects of local insulin delivery on diabetic fracture healing. Bone 37, 482–490 (2005).

    Article  CAS  PubMed  Google Scholar 

  121. Fulzele, K. et al. Disruption of the insulin-like growth factor type 1 receptor in osteoblasts enhances insulin signaling and action. J. Biol. Chem. 282, 25649–25658 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. McCarthy, A. D., Etcheverry, S. B. & Cortizo, A. M. Effect of advanced glycation endproducts on the secretion of insulin-like growth factor-I and its binding proteins: role in osteoblast development. Acta Diabetol. 38, 113–122 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Terada, M. et al. Growth-inhibitory effect of a high glucose concentration on osteoblast-like cells. Bone 22, 17–23 (1998).

    Article  CAS  PubMed  Google Scholar 

  124. Kanazawa, I., Yamaguchi, T. & Sugimoto, T. Serum insulin-like growth factor-I is a marker for assessing the severity of vertebral fractures in postmenopausal women with type 2 diabetes mellitus. Osteoporos. Int. 22, 1191–1198 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Cornish, J. & Naot, D. Amylin and adrenomedullin: novel regulators of bone growth. Curr. Pharm. Design 8, 2009–2021 (2002).

    Article  CAS  Google Scholar 

  126. Gilbert, L. et al. Inhibition of osteoblast differentiation by tumor necrosis factor-α. Endocrinology 141, 3956–3964 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Glantschnig, H., Fisher, J. E., Wesolowski, G., Rodan, G. A. & Reszka, A. A. M-CSF TNFα and RANK ligand promote osteoclast survival by signaling through mTOR/S6 kinase. Cell Death Differ. 10, 1165–1177 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. Manolagas, S. C. From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr. Rev. 31, 266–300 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hotta, K. et al. Age-related adipose tissue mRNA expression of ADD1/SREBP1, PPARγ, lipoprotein lipase, and GLUT4 glucose transporter in rhesus monkeys. J. Gerontol. A Biol. Sci. Med. Sci. 54, B183–B188 (1999).

    Article  CAS  PubMed  Google Scholar 

  130. Dong, X. et al. FFAs–ROS–ERK/P38 pathway plays a key role in adipocyte lipotoxicity on osteoblasts in co-culture. Biochimie 101, 123–131 (2014).

    Article  CAS  PubMed  Google Scholar 

  131. Blonde, L. et al. Interim analysis of the effects of exenatide treatment on A1C, weight and cardiovascular risk factors over 82 weeks in 314 overweight patients with type 2 diabetes. Diabetes Obes. Metab. 8, 436–447 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Fazeli, P. K. et al. Marrow fat and bone — new perspectives. J. Clin. Endocrinol. Metab. 98, 935–945 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Giralt, M. & Villarroya, F. White, brown, beige/brite: different adipose cells for different functions? Endocrinology 154, 2992–3000 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Rahman, S. et al. Inducible brown adipose tissue, or beige fat, is anabolic for the skeleton. Endocrinology 154, 2687–2701 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Singh, R., Braga, M. & Pervin, S. Regulation of brown adipocyte metabolism by myostatin/follistatin signaling. Front. Cell Dev. Biol. 2, 60 (2014).

    PubMed  PubMed Central  Google Scholar 

  136. Knop, F. K. et al. Reduced incretin effect in type 2 diabetes: cause or consequence of the diabetic state? Diabetes 56, 1951–1959 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Nuche-Berenguer, B. et al. Presence of a functional receptor for GLP-1 in osteoblastic cells, independent of the cAMP-linked GLP-1 receptor. J. Cell. Physiol. 225, 585–592 (2010).

    Article  CAS  PubMed  Google Scholar 

  138. Sanz, C. et al. Signaling and biological effects of glucagon-like peptide 1 on the differentiation of mesenchymal stem cells from human bone marrow. Am. J. Physiol. Endocrinol. Metab. 298, E634–E643 (2010).

    Article  CAS  PubMed  Google Scholar 

  139. Kim, J. Y. et al. Exendin-4 increases bone mineral density in type 2 diabetic OLETF rats potentially through the down-regulation of SOST/sclerostin in osteocytes. Life Sci. 92, 533–540 (2013).

    Article  PubMed  CAS  Google Scholar 

  140. Ma, X. et al. Exendin-4, a glucagon-like peptide-1 receptor agonist, prevents osteopenia by promoting bone formation and suppressing bone resorption in aged ovariectomized rats. J. Bone Miner. Res. 28, 1641–1652 (2013).

    Article  CAS  PubMed  Google Scholar 

  141. Stratton, I. M. et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 321, 405–412 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Schneider, A. L. et al. Diabetes and risk of fracture-related hospitalization: the Atherosclerosis Risk in Communities Study. Diabetes Care 36, 1153–1158 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Schwartz, A. V. et al. Intensive glycemic control is not associated with fractures or falls in the ACCORD randomized trial. Diabetes Care 35, 1525–1531 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Inzucchi, S. E. et al. Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 38, 140–149 (2015).

    Article  PubMed  Google Scholar 

  145. Villareal, D. T. et al. Weight loss, exercise, or both and physical function in obese older adults. N. Engl. J. Med. 364, 1218–1229 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Shah, K. et al. Exercise training in obese older adults prevents increase in bone turnover and attenuates decrease in hip bone mineral density induced by weight loss despite decline in bone-active hormones. J. Bone Miner. Res. 26, 2851–2859 (2011).

    Article  CAS  PubMed  Google Scholar 

  147. Armamento-Villareal, R. et al. Weight loss in obese older adults increases serum sclerostin and impairs hip geometry but both are prevented by exercise training. J. Bone Miner. Res. 27, 1215–1221 (2012).

    Article  CAS  PubMed  Google Scholar 

  148. Palermo, A. et al. Oral anti-diabetic drugs and fracture risk, cut to the bone: safe or dangerous? A narrative review. Osteoporos. Int. 26, 2073–2089 (2015).

    Article  CAS  PubMed  Google Scholar 

  149. Monami, M. et al. Bone fractures and hypoglycemic treatment in type 2 diabetic patients: a case-control study. Diabetes Care 31, 199–203 (2008).

    Article  PubMed  Google Scholar 

  150. Kanazawa, I., Yamaguchi, T., Yano, S., Yamauchi, M. & Sugimoto, T. Metformin enhances the differentiation and mineralization of osteoblastic MC3T3-E1 cells via AMP kinase activation as well as eNOS and BMP-2 expression. Biochem. Biophys. Res. Commun. 375, 414–419 (2008).

    Article  CAS  PubMed  Google Scholar 

  151. Solomon, D. H. et al. A cohort study of thiazolidinediones and fractures in older adults with diabetes. J. Clin. Endocrinol. Metab. 94, 2792–2798 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Del Prato, S., Camisasca, R., Wilson, C. & Fleck, P. Durability of the efficacy and safety of alogliptin compared with glipizide in type 2 diabetes mellitus: a 2-year study. Diabetes Obes. Metab. 16, 1239–1246 (2014).

    Article  CAS  PubMed  Google Scholar 

  153. Kawai, M. & Rosen, C. J. PPARγ: a circadian transcription factor in adipogenesis and osteogenesis. Nat. Rev. Endocrinol. 6, 629–636 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Loke, Y. K., Singh, S. & Furberg, C. D. Long-term use of thiazolidinediones and fractures in type 2 diabetes: a meta-analysis. CMAJ 180, 32–39 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Toulis, K. A., Goulis, D. G. & Anastasilakis, A. D. Thiazolidinedione use and the risk of fractures. CMAJ 180, 841–842; author reply 842–843 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Zhu, Z. N., Jiang, Y. F. & Ding, T. Risk of fracture with thiazolidinediones: an updated meta-analysis of randomized clinical trials. Bone 68, 115–123 (2014).

    Article  CAS  PubMed  Google Scholar 

  157. Mabilleau, G., Mieczkowska, A. & Chappard, D. Use of glucagon-like peptide-1 receptor agonists and bone fractures: a meta-analysis of randomized clinical trials. J. Diabetes 6, 260–266 (2014).

    Article  CAS  PubMed  Google Scholar 

  158. Su, B. et al. Risk of bone fractures associated with glucagon-like peptide-1 receptor agonists' treatment: a meta-analysis of randomized controlled trials. Endocrine 48, 107–115 (2015).

    Article  CAS  PubMed  Google Scholar 

  159. Monami, M., Dicembrini, I., Antenore, A. & Mannucci, E. Dipeptidyl peptidase-4 inhibitors and bone fractures: a meta-analysis of randomized clinical trials. Diabetes Care 34, 2474–2476 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Mosenzon, O. et al. Incidence of fractures in patients with type 2 diabetes in the SAVOR-TIMI 53 trial. Diabetes Care 38, 2142–2150 (2015).

    Article  PubMed  Google Scholar 

  161. DeFronzo, R. A., Davidson, J. A. & Del Prato, S. The role of the kidneys in glucose homeostasis: a new path towards normalizing glycaemia. Diabetes Obes. Metab. 14, 5–14 (2012).

    Article  CAS  PubMed  Google Scholar 

  162. Ljunggren, O. et al. Dapagliflozin has no effect on markers of bone formation and resorption or bone mineral density in patients with inadequately controlled type 2 diabetes mellitus on metformin. Diabetes Obes. Metab. 14, 990–999 (2012).

    Article  CAS  PubMed  Google Scholar 

  163. Bilezikian, J. P. et al. Evaluation of bone mineral density and bone biomarkers in patients with type 2 diabetes treated with canagliflozin. J. Clin. Endocrinol. Metab. 101, 44–51 (2016).

    Article  CAS  PubMed  Google Scholar 

  164. Watts, N. B. et al. Effects of canagliflozin on fracture risk in patients with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 101, 157–166 (2016).

    Article  CAS  PubMed  Google Scholar 

  165. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352, 837–853 (1998).

  166. U.K. Prospective Diabetes Study Group. U.K. prospective diabetes study 16. Overview of 6 years' therapy of type II diabetes: a progressive disease. Diabetes 44, 1249–1258 (1995).

  167. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 352, 854–865 (1998).

  168. Kahn, S. E. et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N. Engl. J. Med. 355, 2427–2443 (2006).

    Article  CAS  PubMed  Google Scholar 

  169. Lebovitz, H. E. Insulin secretagogues: old and new. Diabetes Rev. 7, 139–153 (1999).

    Google Scholar 

  170. Aguirre, L. et al. Increasing adiposity is associated with higher adipokine levels and lower bone mineral density in obese older adults. J. Clin. Endocrinol. Metab. 99, 3290–3297 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Ma, Y. H. et al. Circulating sclerostin associated with vertebral bone marrow fat in older men but not women. J. Clin. Endocrinol. Metab. 99, E2584–E2590 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Napoli, N. et al. Effect of ghrelin on bone mass density: The InChianti study. Bone. 49, 257–263 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Iacobellis, G. et al. Relation of adiponectin, visfatin and bone mineral density in patients with metabolic syndrome. J. Endocrinol. Invest. 34, e12–e15 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the other members of the CSA IOF Bone and Diabetes Working Group: K. Akesson, M. S. M. Ardawi, C. Cooper, R. Eastell, G. El Hajj Fuleihan, S. Hough, R. Josse, D. Kendler, M. Kraenzlin, W. Leslie, M. Massi Benedetti, A. Mithal and A. Suzuki.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

N.N. and D.D.P. researched data for the article. N.N., M.C., B.A., A.V.S. and S.L.F. made substantial contributions to discussions of the content. N.N., M.C., B.A., A.V.S. and S.L.F. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Nicola Napoli.

Ethics declarations

Competing interests

N.N. has served as a consultant for Amgen and Takeda. A.V.S is a consultant for Amgen and Jansen. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Napoli, N., Chandran, M., Pierroz, D. et al. Mechanisms of diabetes mellitus-induced bone fragility. Nat Rev Endocrinol 13, 208–219 (2017). https://doi.org/10.1038/nrendo.2016.153

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2016.153

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing