Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Circulating microRNAs as novel biomarkers for diabetes mellitus

Abstract

Diabetes mellitus is characterized by insulin secretion from pancreatic β cells that is insufficient to maintain blood glucose homeostasis. Autoimmune destruction of β cells results in type 1 diabetes mellitus, whereas conditions that reduce insulin sensitivity and negatively affect β-cell activities result in type 2 diabetes mellitus. Without proper management, patients with diabetes mellitus develop serious complications that reduce their quality of life and life expectancy. Biomarkers for early detection of the disease and identification of individuals at risk of developing complications would greatly improve the care of these patients. Small non-coding RNAs called microRNAs (miRNAs) control gene expression and participate in many physiopathological processes. Hundreds of miRNAs are actively or passively released in the circulation and can be used to evaluate health status and disease progression. Both type 1 diabetes mellitus and type 2 diabetes mellitus are associated with distinct modifications in the profile of miRNAs in the blood, which are sometimes detectable several years before the disease manifests. Moreover, circulating levels of certain miRNAs seem to be predictive of long-term complications. Technical and scientific obstacles still exist that need to be overcome, but circulating miRNAs might soon become part of the diagnostic arsenal to identify individuals at risk of developing diabetes mellitus and its devastating complications.

Key Points

  • New biomarkers are needed to improve the identification of individuals at risk of developing diabetes mellitus and its associated complications, monitor disease progression and assess the efficacy of therapeutic interventions

  • Circulating microRNAs (miRNAs) are attractive biomarker candidates as they can be easily collected, are stable under different storage conditions and can be measured using assays that are specific, sensitive and reproducible

  • Pioneering studies have identified characteristic changes in blood levels of miRNAs in samples from a range of cohorts of patients with diabetes mellitus

  • However, definitive miRNA signatures for type 1 diabetes mellitus, type 2 diabetes mellitus or their associated complications remain to be defined and agreed upon

  • Although measuring circulating miRNAs is a promising approach in individuals at risk of developing diabetes mellitus, several key issues still need to be addressed, including the determination of the most appropriate blood sampling protocols

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biogenesis and release of miRNAs.
Figure 2: Blood and other body fluids contain active miRNAs.

Similar content being viewed by others

References

  1. Whiting, D. R., Guariguata, L., Weil, C. & Shaw, J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res. Clin. Pract. 94, 311–321 (2011).

    Article  PubMed  Google Scholar 

  2. Li, R., Zhang, P., Barker, L. E., Chowdhury, F. M. & Zhang, X. Cost-effectiveness of interventions to prevent and control diabetes mellitus: a systematic review. Diabetes Care 33, 1872–1894 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pirot, P., Cardozo, A. K. & Eizirik, D. L. Mediators and mechanisms of pancreatic beta-cell death in type 1 diabetes. Arq. Bras. Endocrinol. Metabol. 52, 156–165 (2008).

    Article  PubMed  Google Scholar 

  4. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 28 (Suppl. 1), S37–S42 (2005).

  5. Prentki, M. & Nolan, C. J. Islet β cell failure in type 2 diabetes. J. Clin. Invest. 116, 1802–1812 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stumvoll, M., Goldstein, B. J. & van Haeften, T. W. Type 2 diabetes: principles of pathogenesis and therapy. Lancet 365, 1333–1346 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Winter, W. E., Harris, N. & Schatz, D. Type 1 diabetes islet autoantibody markers. Diabetes Technol. Ther. 4, 817–839 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Orban, T. et al. Co-stimulation modulation with abatacept in patients with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled trial. Lancet 378, 412–419 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sherry, N. et al. Teplizumab for treatment of type 1 diabetes (Protégé study): 1-year results from a randomised, placebo-controlled trial. Lancet 378, 487–497 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Purohit, S. & She, J. X. Biomarkers for type 1 diabetes. Int. J. Clin. Exp. Med. 1, 98–116 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Schulze, M. B. et al. Use of multiple metabolic and genetic markers to improve the prediction of type 2 diabetes: the EPIC-Potsdam Study. Diabetes Care 32, 2116–2119 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Muller, G. Microvesicles/exosomes as potential novel biomarkers of metabolic diseases. Diabetes Metab. Syndr. Obes. 5, 247–282 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kolberg, J. A. et al. Development of a type 2 diabetes risk model from a panel of serum biomarkers from the Inter99 cohort. Diabetes Care 32, 1207–1212 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. miRBase. The microRNA database [online], (2013).

  18. Flynt, A. S. & Lai, E. C. Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat. Rev. Genet. 9, 831–842 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Poy, M. N. et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432, 226–230 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Poy, M. N. et al. miR-375 maintains normal pancreatic α- and β-cell mass. Proc. Natl Acad. Sci. USA 106, 5813–5818 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kumar, M., Nath, S., Prasad, H. K., Sharma, G. D. & Li, Y. MicroRNAs: a new ray of hope for diabetes mellitus. Protein Cell 3, 726–738 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shantikumar, S., Caporali, A. & Emanueli, C. Role of microRNAs in diabetes and its cardiovascular complications. Cardiovasc. Res. 93, 583–593 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Guay, C., Roggli, E., Nesca, V., Jacovetti, C. & Regazzi, R. Diabetes mellitus, a microRNA-related disease? Transl. Res. 157, 253–264 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Roggli, E. et al. Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic β-cells. Diabetes 59, 978–986 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Roggli, E. et al. Changes in microRNA expression contribute to pancreatic β-cell dysfunction in prediabetic NOD mice. Diabetes 61, 1742–1751 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lovis, P. et al. Alterations in microRNA expression contribute to fatty acid-induced pancreatic β-cell dysfunction. Diabetes 57, 2728–2736 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao, E. et al. Obesity and genetics regulate microRNAs in islets, liver, and adipose of diabetic mice. Mamm. Genome 20, 476–485 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Herrera, B. M. et al. Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes. Diabetologia 53, 1099–1109 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Trajkovski, M. et al. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 474, 649–653 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Jordan, S. D. et al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat. Cell Biol. 13, 434–446 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Kornfeld, J. W. et al. Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b. Nature 494, 111–115 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Gallagher, I. J. et al. Integration of microRNA changes in vivo identifies novel molecular features of muscle insulin resistance in type 2 diabetes. Genome Med. 2, 9 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Granjon, A. et al. The microRNA signature in response to insulin reveals its implication in the transcriptional action of insulin in human skeletal muscle and the role of a sterol regulatory element-binding protein 1c/myocyte enhancer factor 2C pathway. Diabetes 58, 2555–2564 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kantharidis, P., Wang, B., Carew, R. M. & Lan, H. Y. Diabetes complications: the microRNA perspective. Diabetes 60, 1832–1837 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Natarajan, R., Putta, S. & Kato, M. MicroRNAs and diabetic complications. J. Cardiovasc. Transl. Res. 5, 413–422 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Arroyo, J. D. et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl Acad. Sci. USA 108, 5003–5008 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gibbings, D. J., Ciaudo, C., Erhardt, M. & Voinnet, O. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat. Cell Biol. 11, 1143–1149 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Vickers, K. C., Palmisano, B. T., Shoucri, B. M., Shamburek, R. D. & Remaley, A. T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol. 13, 423–433 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Kroh, E. M., Parkin, R. K., Mitchell, P. S. & Tewari, M. Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods 50, 298–301 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mitchell, P. S. et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl Acad. Sci. USA 105, 10513–10518 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mraz, M., Malinova, K., Mayer, J. & Pospisilova, S. MicroRNA isolation and stability in stored RNA samples. Biochem. Biophys. Res. Commun. 390, 1–4 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Weber, J. A. et al. The microRNA spectrum in 12 body fluids. Clin. Chem. 56, 1733–1741 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gilad, S. et al. Serum microRNAs are promising novel biomarkers. PLoS ONE 3, e3148 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Keller, A. et al. Toward the blood-borne miRNome of human diseases. Nat. Methods 8, 841–843 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Chen, X. et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 18, 997–1006 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Lawrie, C. H. et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br. J. Haematol. 141, 672–675 (2008).

    Article  PubMed  Google Scholar 

  48. Alevizos, I. & Illei, G. G. MicroRNAs as biomarkers in rheumatic diseases. Nat. Rev. Rheumatol. 6, 391–398 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang, J. F. et al. Serum miR-146a and miR-223 as potential new biomarkers for sepsis. Biochem. Biophys. Res. Commun. 394, 184–188 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Zampetaki, A. et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ. Res. 107, 810–817 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Kong, L. et al. Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol. 48, 61–69 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Karolina, D. S. et al. Circulating miRNA profiles in patients with metabolic syndrome. J. Clin. Endocrinol. Metab. 97, E2271–E2276 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Nielsen, L. B. et al. Circulating levels of microRNA from children with newly diagnosed type 1 diabetes and healthy controls: evidence that miR-25 associates to residual beta-cell function and glycaemic control during disease progression. Exp. Diabetes Res. 2012, 896362 (2012).

    PubMed  PubMed Central  Google Scholar 

  54. Sebastiani, G. et al. MicroRNA expression fingerprint in serum of type 1 diabetic patients. Diabetologia 55, S48 (2012).

    Google Scholar 

  55. Erener, S., Mojibian, M., Fox, J. K., Denroche, H. C. & Kieffer, T. J. Circulating miR-375 as a biomarker of β-cell death and diabetes in mice. Endocrinology 154, 603–608 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Salas-Perez, F. et al. MicroRNAs miR-21a and miR-93 are down regulated in peripheral blood mononuclear cells (PBMCs) from patients with type 1 diabetes. Immunobiology 218, 733–737 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Sebastiani, G. et al. Increased expression of microRNA miR-326 in type 1 diabetic patients with ongoing islet autoimmunity. Diabetes Metab. Res. Rev. 27, 862–866 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Winer, N. & Sowers, J. R. Epidemiology of diabetes. J. Clin. Pharmacol. 44, 397–405 (2004).

    Article  PubMed  Google Scholar 

  59. Fichtlscherer, S. et al. Circulating microRNAs in patients with coronary artery disease. Circ. Res. 107, 677–684 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Fish, J. E. et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev. Cell 15, 272–284 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang, S. et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev. Cell 15, 261–271 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Caporali, A. et al. Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia. Circulation 123, 282–291 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Creemers, E. E., Tijsen, A. J. & Pinto, Y. M. Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ. Res. 110, 483–495 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. van Empel, V. P., De Windt, L. J. & da Costa Martins, P. A. Circulating miRNAs: reflecting or affecting cardiovascular disease? Curr. Hypertens. Rep. 14, 498–509 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Pambianco, G. et al. The 30-year natural history of type 1 diabetes complications: the Pittsburgh Epidemiology of Diabetes Complications Study experience. Diabetes 55, 1463–1469 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Parving, H. H., Lewis, J. B., Ravid, M., Remuzzi, G. & Hunsicker, L. G. Prevalence and risk factors for microalbuminuria in a referred cohort of type II diabetic patients: a global perspective. Kidney Int. 69, 2057–2063 (2006).

    Article  PubMed  Google Scholar 

  67. Thomas, M. C., Groop, P. H. & Tryggvason, K. Towards understanding the inherited susceptibility for nephropathy in diabetes. Curr. Opin. Nephrol. Hypertens. 21, 195–202 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Macisaac, R. J. & Jerums, G. Diabetic kidney disease with and without albuminuria. Curr. Opin. Nephrol. Hypertens. 20, 246–257 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Perkins, B. A. et al. Microalbuminuria and the risk for early progressive renal function decline in type 1 diabetes. J. Am. Soc. Nephrol. 18, 1353–1361 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Perkins, B. A. et al. Regression of microalbuminuria in type 1 diabetes. N. Engl. J. Med. 348, 2285–2293 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Martino, F. et al. Circulating microRNAs are not eliminated by hemodialysis. PLoS ONE 7, e38269 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Neal, C. S. et al. Circulating microRNA expression is reduced in chronic kidney disease. Nephrol. Dial. Transplant 26, 3794–3802 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Wang, G. et al. Elevated levels of miR-146a and miR-155 in kidney biopsy and urine from patients with IgA nephropathy. Dis. Markers 30, 171–179 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wang, N. et al. Urinary microRNA-10a and microRNA-30d serve as novel, sensitive and specific biomarkers for kidney injury. PLoS ONE 7, e51140 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Alvarez, M. L. & Distefano, J. K. The role of non-coding RNAs in diabetic nephropathy: potential applications as biomarkers for disease development and progression. Diabetes Res. Clin. Pract. 99, 1–11 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Miranda, K. C. et al. Nucleic acids within urinary exosomes/microvesicles are potential biomarkers for renal disease. Kidney Int. 78, 191–199 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  77. van Balkom, B. W., Pisitkun, T., Verhaar, M. C. & Knepper, M. A. Exosomes and the kidney: prospects for diagnosis and therapy of renal diseases. Kidney Int. 80, 1138–1145 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Beltrami, C., Clayton, A., Phillips, A. O., Fraser, D. J. & Bowen, T. Analysis of urinary microRNAs in chronic kidney disease. Biochem. Soc. Trans. 40, 875–879 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Argyropoulos, C. et al. Urinary microRNA profiling in the nephropathy of type 1 diabetes. PLoS ONE 8, e54662 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhao, C. et al. Early second-trimester serum miRNA profiling predicts gestational diabetes mellitus. PLoS ONE 6, e23925 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chim, S. S. et al. Detection and characterization of placental microRNAs in maternal plasma. Clin. Chem. 54, 482–490 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. McDonald, J. S., Milosevic, D., Reddi, H. V., Grebe, S. K. & Algeciras-Schimnich, A. Analysis of circulating microRNA: preanalytical and analytical challenges. Clin. Chem. 57, 833–840 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Bryant, R. J. et al. Changes in circulating microRNA levels associated with prostate cancer. Br. J. Cancer 106, 768–774 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Komatsu, S. et al. Circulating microRNAs in plasma of patients with oesophageal squamous cell carcinoma. Br. J. Cancer 105, 104–111 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Li, L. M. et al. Serum microRNA profiles serve as novel biomarkers for HBV infection and diagnosis of HBV-positive hepatocarcinoma. Cancer Res. 70, 9798–9807 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Madhavan, D. et al. Circulating miRNAs as surrogate markers for circulating tumor cells and prognostic markers in metastatic breast cancer. Clin. Cancer Res. 18, 5972–5982 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Lee, H. S., Jeong, J. & Lee, K. J. Characterization of vesicles secreted from insulinoma NIT-1 cells. J. Proteome Res. 8, 2851–2862 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Palmisano, G. et al. Characterization of membrane-shed microvesicles from cytokine-stimulated β-cells using proteomics strategies. Mol. Cell Proteomics 11, 230–243 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sheng, H. et al. Insulinoma-released exosomes or microparticles are immunostimulatory and can activate autoreactive T cells spontaneously developed in nonobese diabetic mice. J. Immunol. 187, 1591–1600 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Guay, C., Menoud, V., Gattesco, S. & Regazzi, R. MicroRNA transfer as a new cell-to-cell communication mode between pancreatic β cells. Diabetologia 55, S95 (2012).

    Google Scholar 

  91. Rodriguez, A., Griffiths-Jones, S., Ashurst, J. L. & Bradley, A. Identification of mammalian microRNA host genes and transcription units. Genome Res. 14, 1902–1910 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lee, Y. et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051–4060 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cifuentes, D. et al. A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 328, 1694–1698 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ruby, J. G., Jan, C. H. & Bartel, D. P. Intronic microRNA precursors that bypass Drosha processing. Nature 448, 83–86 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Doench, J. G. & Sharp, P. A. Specificity of microRNA target selection in translational repression. Genes Dev. 18, 504–511 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Trams, E. G., Lauter, C. J., Salem, N. Jr & Heine, U. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim. Biophys. Acta 645, 63–70 (1981).

    Article  CAS  PubMed  Google Scholar 

  97. Pan, B. T., Teng, K., Wu, C., Adam, M. & Johnstone, R. M. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J. Cell Biol. 101, 942–948 (1985).

    Article  CAS  PubMed  Google Scholar 

  98. Harding, C., Heuser, J. & Stahl, P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J. Cell Biol. 97, 329–339 (1983).

    Article  CAS  PubMed  Google Scholar 

  99. Vlassov, A. V., Magdaleno, S., Setterquist, R. & Conrad, R. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim. Biophys. Acta 1820, 940–948 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Johnstone, R. M., Adam, M., Hammond, J. R., Orr, L. & Turbide, C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J. Biol. Chem. 262, 9412–9420 (1987).

    CAS  PubMed  Google Scholar 

  101. Kosaka, N. et al. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J. Biol. Chem. 285, 17442–17452 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhang, Y. et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol. Cell 39, 133–144 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by grants from the Swiss National Science Foundation, from the European Foundation for the Study of Diabetes and from the Société Francophone du Diabète (SFD)-Servier. C. Guay is supported by a fellowship from Fonds de la Recherche en Santé du Québec, the SFD and the Canadian Diabetes Association.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of this article.

Corresponding author

Correspondence to Romano Regazzi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guay, C., Regazzi, R. Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat Rev Endocrinol 9, 513–521 (2013). https://doi.org/10.1038/nrendo.2013.86

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2013.86

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research