Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fertility preservation in women

Key Points

  • Approximately 10% of cancers in women occur in those <45 years old, and in the USA, the number of new cases of invasive cancer diagnosed in women during 2012 was almost 800,000

  • Chemotherapy, radiotherapy, surgery and bone marrow transplantation have led to a considerable improvement in survival rates, but these treatments can result in premature ovarian failure (POF)

  • The risk of POF depends on the follicular reserve, the age of the patient and the type and dose of drugs used

  • Different options exist to preserve fertility in women at risk of POF, including ovarian transposition, embryo and oocyte cryopreservation, and ovarian tissue cryopreservation

  • In prepubertal girls or patients requiring immediate chemotherapy, ovarian tissue cryopreservation is the only method currently available

  • Medical therapy (with a gonadotropin-releasing hormone agonist) before chemotherapy is still controversial

Abstract

In women, 10% of cancers occur in those <45 years old. Chemotherapy, radiotherapy and bone marrow transplantation can cure >90% of girls and young women with diseases that require such treatments. However, these treatments can result in premature ovarian failure, depending on the follicular reserve, the age of the patient and the type and dose of drugs used. This article discusses the different fertility preservation strategies: medical therapy before chemotherapy; ovarian transposition; embryo cryopreservation; oocyte vitrification; and ovarian tissue cryopreservation. The indications, results and risks of these options are discussed. Whether medical therapy should be used to protect the gonads during chemotherapy remains a source of debate. Fertility preservation needs to be completed before chemotherapy and/or irradiation is started and might take 2–3 weeks with established techniques such as embryo or oocyte cryopreservation. Further studies are needed in patients with cancer to confirm the excellent outcomes obtained in patients without cancer or in egg donation programmes. For prepubertal girls or cases where immediate therapy is required, cryopreservation of ovarian tissue is the only available option. Finally, possible future approaches are reviewed, including in vitro maturation of nonantral follicles, the artificial ovary, oogonial stem cells and drugs to prevent follicle loss.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The ovarian reserve: the model that best fits histological data according to Wallace and Kelsey.
Figure 2: FSH values in the months after orthotopic transplantation of frozen–thawed ovarian tissue.
Figure 3: Options for cryopreservation of ovarian tissue and reimplantation.
Figure 4: Fertility preservation methods in women at risk of premature ovarian failure.

Similar content being viewed by others

References

  1. Letourneau, J. M. et al. Pretreatment fertility counseling and fertility preservation improve quality of life in reproductive age women with cancer. Cancer 118, 1710–1717 (2012).

    Article  PubMed  Google Scholar 

  2. Siegel, R., Naishadham, D. &. Jemal, A. Cancer statistics, 2012. CA Cancer J. Clin. 62, 10–29 (2012).

    Article  PubMed  Google Scholar 

  3. Bedoschi, G. & Oktay, K. Current approach to fertility preservation by embryo cryopreservation. Fertil. Steril. 99, 1496–1502 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Donnez, J. et al. Ovarian tissue cryopreservation and transplantation: a review. Hum. Reprod. Update 12, 519–535 (2006).

    Article  PubMed  Google Scholar 

  5. Donnez, J. et al. Ovarian tissue cryopreservation and transplantation in cancer patients. Best Pract. Res. Clin. Obstet. Gynaecol. 24, 87–100 (2010).

    Article  PubMed  Google Scholar 

  6. Wallace, W. H. B., Anderson, R. A. & Irvine, D. S. Fertility preservation for young patients with cancer: who is at risk and what can be offered? Lancet Oncol. 6, 209–219 (2005).

    Article  PubMed  Google Scholar 

  7. Donnez, J. et al. Restoration of ovarian function after orthotopic (intraovarian and periovarian) transplantation of cryopreserved ovarian tissue in a woman treated by bone marrow transplantation for sickle cell anemia: case report. Hum. Reprod. 21, 183–188 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Meirow, D. & Nugent, D. The effects of radiotherapy and chemotherapy on female reproduction. Hum. Reprod. Update 7, 535–543 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Teinturier, C., Hartmann, O., Valteau-Couanet, D., Benhamou, E. & Bougneres, P. F. Ovarian function after autologous bone marrow transplantation in childhood: high-dose busulfan is a major cause of ovarian failure. Bone Marrow Transplant. 22, 989–994 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Donnez, J. et al. Pregnancy and live birth after autotransplantation of frozen-thawed ovarian tissue in a patient with metastatic disease undergoing chemotherapy and hematopoietic stem cell transplantation. Fertil. Steril. 95, 1787.e1–1787.e4 (2011).

    Article  Google Scholar 

  11. Jadoul, P. & Donnez, J. How does bone marrow transplantation affect ovarian function and fertility? Curr. Opin. Obstet. Gynecol. 24, 164–171 (2012).

    Article  PubMed  Google Scholar 

  12. Wallace, W. H., Thomson, A. B., Saran, F. & Kelsey, T. W. Predicting age of ovarian failure after radiation to a field that includes the ovaries. Int. J. Radiat. Oncol. Biol. Phys. 62, 738–744 (2005).

    Article  PubMed  Google Scholar 

  13. Schmidt, K. T. et al. Autotransplantation of cryopreserved ovarian tissue in 12 women with chemotherapy-induced premature ovarian failure: the Danish experience. Fertil. Steril. 95, 695–701 (2011).

    Article  PubMed  Google Scholar 

  14. Anderson, R. A. & Wallace, H. B. Antimüllerian hormone, the assessment of the ovarian reserve, and the reproductive outcome of the young patient with cancer. Fertil. Steril. 99, 1469–1475 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Wallace, W. H., Thomson, A. B. & Kelsey, T. W. The radiosensitivity of the human oocyte. Hum. Reprod. 18, 117–121 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Donnez, J. & Dolmans, M. M. Preservation of fertility in females with haematological malignancy. Br. J. Haematol. 154, 175–184 (2011).

    Article  PubMed  Google Scholar 

  17. Jadoul, P., Dolmans, M. M. & Donnez, J. Fertility preservation in girls during childhood: is it feasible, efficient and safe and to whom should it be proposed? Hum. Reprod. Update 16, 617–630 (2010).

    Article  PubMed  Google Scholar 

  18. Wallace, W. H. & Kelsey, T. W. Human ovarian reserve from conception to the menopause. PLoS ONE 27, e8772 (2010).

    Article  CAS  Google Scholar 

  19. Rodriguez-Wallberg, K. A. & Oktay, K. Fertility preservation medicine: options for young adults and children with cancer. J. Pediatr. Hematol. Oncol. 32, 390–396 (2010).

    Article  PubMed  Google Scholar 

  20. Wallace, W. H., Kelsey, T. W. & Anderson, R. A. Ovarian cryopreservation: experimental or established and a cure for the menopause? Reprod. Biomed. Online 25, 93–95 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Kelsey, T. W. & Wallace, W. H. Ovarian volume correlates strongly with the number of nongrowing follicles in the human ovary. Obstet. Gynecol. Int. 2012, 305025 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Albamonte, M. I., Albamonte, M. S., Stella, I., Zuccardi, L. & Vitullo, A. D. The infant and pubertal human ovary: Balbiani's body-associated VASA expression, immunohistochemical detection of apoptosis-related BCL2 and BAX proteins, and DNA fragmentation. Hum. Reprod. 28, 698–706 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Tilly, J. L. Commuting the death sentence: How oocytes strive to survive. Nat. Rev. Mol. Cell Biol. 2, 838–848 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Tilly, J. L. & Sinclair, D. A. Germline energetics, aging, and female infertility. Cell. Metab. 17, 838–850 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu, L. & Keefe, D. L. Ageing-associated aberration in meiosis of oocytes from senescence-accelerated mice. Hum. Reprod. 17, 267–685 (2002).

    Google Scholar 

  26. Liu, J. P. & Li, H. Telomerase in the ovary. Reproduction 140, 215–222 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Zou, K. et al. Production of offspring from a germline stem cell line derived from neonatal ovaries. Nat. Cell Biol. 11, 631–636 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. White, Y. A. et al. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nat. Med. 18, 413–421 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Telfer, E. E. & Zelinski, M. B. Ovarian follicle culture: advances and challenges for human and nonhuman primates. Fertil. Steril. 99, 1523–1533 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Woods, D. C. & Tilly, J. L. Isolation, characterization and propagation of mitotically active germ cells from adult mouse and human ovaries. Nat. Protoc. 8, 966–988 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brougham, M. F. et al. Anti-Müllerian hormone is a marker of gonadotoxicity in pre- and postpubertal girls treated for cancer: a prospective study. J. Clin. Endocrinol. Metab. 97, 2059–2067 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Anderson, R. A. & Cameron, D. A. Pretreatment serum anti-Müllerian hormone predict long-term ovarian function and bone mass after chemotherapy for early breast cancer. J. Clin. Endocrinol. Metab. 96, 1336–1343 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Decanter, C. et al. Anti-Müllerian hormone follow-up in young women treated by chemotherapy for lymphoma: preliminary results. Reprod. Biomed. Online 20, 280–285 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Hagen, C. P. et al. Low concentration of circulating anti-Müllerian hormone is not predictive of reduced fecundability in young healthy women: a prospective cohort study. Fertil. Steril. 98, 1602–1608 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Hamre, H., Kiserud, C. E., Ruud, E., Thorsby, P. M. & Fossa, S. D. Gonadal function and parenthood 20 years after treatment for childhood lymphoma: a crosssectional study. Pediatr. Blood Cancer 59, 271–277 (2012).

    Article  PubMed  Google Scholar 

  36. Janse, F. et al. Limited value of ovarian function markers following orthotopic transplantation of ovarian tissue after gonadotoxic treatment. J. Clin. Endocrinol. Metab. 96, 1136–1144 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Lawrenz, B. et al. Centers of FertiPROTEKT Network. Reduced pretreatment ovarian reserve in premenopausal female patients with Hodgkin lymphoma or non-Hodgkin-lymphoma-evaluation by using antimüllerian hormone and retrieved oocytes. Fertil. Steril. 98, 141–144 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Ebbel, E., Katz, A., Kao, C. N. & Cedars, M. Reproductive aged women with cancer have a lower antral follicle count than expected. Fertil. Steril. 96, S199–S200 (2011).

    Article  Google Scholar 

  39. Donnez, J. Introduction: Fertility preservation, from cancer to benign disease to social reasons: the challenge of the present decade. Fertil. Steril. 99, 1467–1468 (2013).

    Article  PubMed  Google Scholar 

  40. Donnez, J. et al. Restoration of ovarian activity and pregnancy after transplantation of cryopreserved ovarian tissue: a review of 60 cases of reimplantation. Fertil. Steril. 99, 1503–1513 (2013).

    Article  PubMed  Google Scholar 

  41. Andersen, C. Y. et al. Two successful pregnancies following autotransplantation of frozen/thawed ovarian tissue. Hum. Reprod. 23, 2266–2272 (2008).

    Article  PubMed  Google Scholar 

  42. Silber, S. J. et al. Ovarian transplantation between monozygotic twins discordant for premature ovarian failure. N. Engl. J. Med. 353, 58–63 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Silber, S. J. Ovary cryopreservation and transplantation for fertility preservation. Mol. Hum. Reprod. 18, 59–67 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Meirow, D. et al. Pregnancy after transplantation of cryopreserved ovarian tissue in a patient with ovarian failure after chemotherapy. N. Engl. J. Med. 353, 318–321 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Poirot, C. J. et al. Feasibility of ovarian tissue cryopreservation for prepubertal females with cancer. Pediatr. Blood Cancer 49, 74–78 (2007).

    Article  PubMed  Google Scholar 

  46. Donnez, J. et al. Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet 364, 1405–1410 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Donnez, J. et al. Children born after autotransplantation of cryopreserved ovarian tissue, a review of 13 live births. Ann. Med. 43, 437–450 (2011).

    Article  PubMed  Google Scholar 

  48. Glode, L. M., Robinson, J. & Gould, S. F. Protection from cyclophosphamide-induced testicular damage with an analogue of gonadotropin-releasing hormone. Lancet 1, 1132–1134 (1981).

    Article  CAS  PubMed  Google Scholar 

  49. Blumenfeld, Z. & von Wolff, M. GnRH-analogues and oral contraceptives for fertility preservation in women during chemotherapy. Hum. Reprod. Update 14, 543–552 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Bedaiwy, M. A. et al. Gonadotropin-releasing hormone analog cotreatment for preservation of ovarian function during gonadotoxic chemotherapy: a systematic review and meta-analysis. Fertil. Steril. 95, 906–914 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Elgindy, E. A. et al. Gonadatrophin suppression to prevent chemotherapy-induced ovarian damage: a randomized controlled trial. Obstet. Gynecol. 121, 78–86 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Del Mastro, L. et al. Effect of the gonadotropin-releasing hormone analogue triptorelin on the occurrence of chemotherapy-induced early menopause in premenopausal women with breast cancer: a randomized trial. JAMA 306, 269–276 (2011).

    CAS  PubMed  Google Scholar 

  53. Demeestere, I. et al. Gonadotropin-releasing hormone agonist for the prevention of chemotherapy-induced ovarian failure in patients with lymphoma: 1-year follow-up of a prospective randomized trial. J. Clin. Oncol. 31, 903–909 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Loren, A. W. et al. Fertility preservation for patients with cancer: American society of clinical oncology clinical practice guideline update. J. Clin. Oncol. 31, 2500–2510 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Morice, P. et al. Fertility results after ovarian transposition for pelvic malignancies treated by external irradiation or brachytherapy. Hum. Reprod. 13, 660–663 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Morice, P. et al. Ovarian transposition for patients with cervical carcinoma treated by radiosurgical combination. Fertil. Steril. 74, 743–748 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Al-Asari, S. & Abduljabbar, A. Laparoscopic ovarian transposition before pelvic radiation in rectal cancer patient: safety and feasibility. Ann. Surg. Innov. Res. 6, 9 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Han, S. S. et al. Underuse of ovarian transposition in reproductive-aged cancer patients treated by primary or adjuvant pelvic irradiation. J. Obstet. Gynaecol. Res. 37, 825–829 (2011).

    Article  PubMed  Google Scholar 

  59. Bisharah, M. & Tulandi, T. Laparoscopic preservation of ovarian function: an underused procedure. Am. J. Obstet. Gynecol. 188, 367–370 (2003).

    Article  PubMed  Google Scholar 

  60. Barahmeh, S. et al. Ovarian transposition before pelvic irradiation: Indications and functional outcome. J. Obstet. Gynaecol. Res. http://dx.doi.org/10.1111/jog.12096.

  61. Morice, P., Haie-Meder, C., Pautier, P., Lhomme, C. & Castaigne, D. Ovarian metastasis on transposed ovary in patients treated for squamous cell carcinoma of the uterine cervix: report of two cases and surgical implications. Gynecol. Oncol. 83, 605–607 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Cakmak, H. & Rosen, M. P. Ovarian stimulation in cancer patients. Fertil. Steril. 99, 1476–1484 (2013).

    Article  PubMed  Google Scholar 

  63. Devroey, P., Polyzos, N. P. & Blockeel, C. An OHSS-Free Clinic by segmentation of IVF treatment. Hum. Reprod. 26, 2593–2597 (2011).

    Article  PubMed  Google Scholar 

  64. Roque, M. et al. Fresh embryo transfer versus frozen embryo transfer in in vitro fertilization cycles: a systematic review and meta-analysis. Fertil. Steril. 9, 156–162 (2013).

    Article  Google Scholar 

  65. Von Wolff, M. et al. Ovarian stimulation to cryopreserve fertilized oocytes in cancer patients can be started in the luteal phase. Fertil. Steril. 92, 1360–1365 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Bedoschi, G. M., De Albuquerque, F. O., Ferriani, R. A. & Navarro, P. A. Ovarian stimulation during the luteal phase for fertility preservation of cancer patients: case reports and review of the literature. J. Assist. Reprod. Genet. 27, 491–494 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Oktay, K. Further evidence on the safety and success of ovarian stimulation with letrozole and tamoxifen in breast cancer patients undergoing in vitro fertilization to cryopreserve their embryos for fertility preservation. J. Clin. Oncol. 23, 3858–3859 (2005).

    Article  PubMed  Google Scholar 

  68. Oktay, K., Buyuk, E., Libertella, N., Akar, M. & Rosenwaks, Z. Fertility preservation in breast cancer patients: a prospective controlled comparison of ovarian stimulation with tamoxifen and letrozole for embryo cryopreservation. J. Clin. Oncol. 23, 4347–4353 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Cobo, A., Garcia-Velasco, J. A., Domingo, J., Remohí, J. & Pellicer, A. Is vitrification of oocytes useful for fertility preservation for age-related fertility decline and in cancer patients? Fertil. Steril. 99, 1485–1495 (2013).

    Article  PubMed  Google Scholar 

  70. Chung, K., Donnez, J., Ginsburg, E. & Meirow, D. Emergency IVF versus ovarian tissue cryopreservation: decision making in fertility preservation for female cancer patients. Fertil. Steril. 99, 1534–1542 (2013).

    Article  PubMed  Google Scholar 

  71. Cobo, A. & Diaz, C. Clinical application of oocyte vitrification: a systematic review and meta-analysis of randomized controlled trials. Fertil. Steril. 96, 277–285 (2011).

    Article  PubMed  Google Scholar 

  72. Cobo, A., Bellver, J., de los Santos, M. J. & Remohí, J. Viral screening of spent culture media and liquid nitrogen samples of oocytes and embryos from hepatitis B, hepatitis C, and human immunodeficiency virus chronically infected women undergoing in vitro fertilization cycles. Fertil. Steril. 97, 74–78 (2012).

    Article  PubMed  Google Scholar 

  73. Cobo, A. et al. Storage of human oocytes in the vapor phase of nitrogen. Fertil. Steril. 94, 1903–1907 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Cobo, A., Remohí, J., Chang, C. C. & Nagy, Z. P. Oocyte cryopreservation for donor egg banking. Reprod. Biomed. Online 23, 341–346 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Cobo, A., Meseguer, M., Remohí, J. & Pellicer, A. Use of cryo-banked oocytes in an ovum donation programme: a prospective, randomized, controlled, clinical trial. Hum. Reprod. 25, 2239–2246 (2010).

    Article  PubMed  Google Scholar 

  76. Ubaldi, F. et al. Cumulative ongoing pregnancy rate achieved with oocyte vitrification and cleavage stage transfer without embryo selection in a standard infertility program. Hum. Reprod. 25, 1199–1205 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Rienzi, L. et al. Consistent and predictable delivery rates after oocyte vitrification: an observational longitudinal cohort multicentric study. Hum. Reprod. 27, 1606–1612 (2012).

    Article  PubMed  Google Scholar 

  78. Rienzi, L. et al. Embryo development of fresh 'versus' vitrified metaphase II oocytes after ICSI: a prospective randomized sibling-oocyte study. Hum. Reprod. 25, 66–73 (2010).

    Article  PubMed  Google Scholar 

  79. Noyes, N., Porcu, E. & Borini, A. Over 900 oocyte cryopreservation babies born with no apparent increase in congenital anomalies. Reprod. Biomed. Online 18, 769–776 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Katayama, K. P., Stehlik, J., Kuwayama, M., Kato, O. & Stehlik, E. High survival rate of vitrified human oocytes results in clinical pregnancy. Fertil. Steril. 80, 223–224 (2003).

    Article  PubMed  Google Scholar 

  81. Nagy, Z. P. et al. The efficacy and safety of human oocyte vitrification. Semin. Reprod. Med. 27, 450–455 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Edgar, D. H. & Gook, D. A. A critical appraisal of cryopreservation (slow cooling versus vitrification) of human oocytes and embryos. Hum. Reprod. Update 18, 536–554 (2012).

    Article  PubMed  Google Scholar 

  83. Kuwayama, M., Vajta, G., Kato, O. & Leibo, S. P. Highly efficient vitrification method for cryopreservation of human oocytes. Reprod. Biomed. Online 11, 300–308 (2005).

    Article  PubMed  Google Scholar 

  84. Lucena, E. et al. Successful ongoing pregnancies after vitrification of oocytes. Fertil. Steril. 85, 108–111 (2006).

    Article  PubMed  Google Scholar 

  85. Kim, M. K. et al. Live birth with vitrified-warmed oocytes of a chronic myeloid leukemia patient nine years after allogenic bone marrow transplantation. J. Assist. Reprod. Genet. 28, 1167–1170 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Garcia-Velasco, J. A. et al. Five years' experience using oocyte vitrification to preserve fertility for medical and nonmedical indications. Fertil. Steril. 99, 1994–1999 (2013).

    Article  PubMed  Google Scholar 

  87. Vajta, G., Rienzi, L., Cobo, A. & Yovich, J. Embryo culture: can we perform better than nature? Reprod. Biomed. Online 20, 453–469 (2010).

    Article  PubMed  Google Scholar 

  88. Dittrich, R. et al. Oncofertility: combination of ovarian stimulation with subsequent ovarian tissue extraction on the day of oocyte retrieval. Reprod. Biol. Endocrinol. 11, 1–6 (2013).

    Article  Google Scholar 

  89. Sanchez, M., Novella-Maestre, E., Teruel, J., Ortiz, E. & Pellicer, A. The Valencia programme for fertility preservation. Clin. Transl. Oncol. 10, 433–438 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Ozkaya, E., San Roman, G. & Oktay, K. Luteal phase GnRHa trigger in random start fertility preservation cycles. J. Assist. Reprod. Genet. 29, 503–505 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  91. McLaren, J. F. & Bates, G. W. Fertility preservation in women of reproductive age with cancer. Am. J. Obstet. Gynecol. 207; 455–462 (2012).

    Article  PubMed  Google Scholar 

  92. Sönmezer, M., Türkçüoglu, I., Coskun, U. & Oktay, K. Random-start controlled ovarian hyperstimulation for emergency fertility preservation in letrozole cycles. Fertil. Steril. 95, 2125.e9–11 (2011).

    Article  CAS  Google Scholar 

  93. Cakmak, H., Zamah, A. M., Katz, A., Cedars, M. & Rosen, M. P. Effective method for emergency fertility preservation: random-start controlled ovarian hyperstimulation. Fertil. Steril. 98, S170 (2012).

    Article  Google Scholar 

  94. Oktay, K. et al. Letrozole reduces estrogen and gonadotropin exposure in women with breast cancer undergoing ovarian stimulation before chemotherapy. J. Clin. Endocrinol. Metab. 91, 3885–3890 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Oktay, K., Türkçüoglu, I. & Rodriguez-Wallberg, K. A. GnRH agonist trigger for women with breast cancer undergoing fertility preservation by aromatase inhibitor/FSH stimulation. Reprod. Biomed. Online 20, 783–788 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Azim, A. A., Costantini-Ferrando, M., Lostritto, K. & Oktay, K. Relative potencies of anastrozole and letrozole to suppress estradiol in breast cancer patients undergoing ovarian stimulation before in vitro fertilization. J. Clin. Endocrinol. Metab. 92, 2197–2200 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Azim, A. A., Costantini-Ferrando, M. & Oktay, K. Safety of fertility preservation by ovarian stimulation with letrozole and gonadotropins in patients with breast cancer: a prospective controlled study. J. Clin. Oncol. 26, 2630–2635 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Johnson, L. N. et al. Response to ovarian stimulation in patients facing gonadotoxic therapy. Reprod. Biomed. Online 26, 337–344 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Engmann, L. et al. The use of gonadotropin-releasing hormone (GnRH) agonist to induce oocyte maturation after cotreatment with GnRH antagonist in high-risk patients undergoing in vitro fertilization prevents the risk of ovarian hyperstimulation syndrome: a prospective randomized controlled study. Fertil. Steril. 89, 84–91 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Pirard, C., Donnez, J. & Loumaye, E. GnRH agonist as luteal phase support in assisted reproduction technique cycles: results of a pilot study. Hum. Reprod. 2, 1894–1900 (2006).

    Article  Google Scholar 

  101. Friedler, S., Koc, O., Gidoni, Y., Raziel, A. & Ron-El, R. Ovarian response to stimulation for fertility preservation in women with malignant disease: a systematic review and meta-analysis. Fertil Steril. 97, 125–133 (2012).

    Article  PubMed  Google Scholar 

  102. Waimey, K. E. et al. Future directions in oncofertility and fertility preservation: a report from the 2011 Oncofertility Consortium Conference. J. Adolesc. Young Adult. Oncol. 2, 25–30 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Poirot, C. J. et al. Feasibility of ovarian tissue cryopreservation for prepubertal females with cancer. Pediatr. Blood Cancer 49, 74–78 (2007).

    Article  PubMed  Google Scholar 

  104. Martin, J. R. & Patrizio, P. Options for fertility preservation in pediatric populations undergoing cancer chemotherapy. Pediatr. Endocrinol. Rev. 6, 306–314 (2009).

    PubMed  Google Scholar 

  105. Sauvat, F., Binart, N., Poirot, C. & Sarnacki, S. Preserving fertility in prepubertal children. Horm. Res. 71, 82–86 (2009).

    CAS  PubMed  Google Scholar 

  106. Donnez, J. et al. Live birth after transplantation of frozen-thawed ovarian tissue after bilateral oophorectomy for benign disease. Fertil. Steril. 98, 720–725 (2012).

    Article  PubMed  Google Scholar 

  107. Oktay, K. et al. Endocrine function and oocyte retrieval after autologous transplantation of ovarian cortical strips to the forearm. JAMA 26, 1490–1493 (2001).

    Article  Google Scholar 

  108. Kim, S. S. Assessment of long term endocrine function after transplantation of frozen-thawed human ovarian tissue to the heterotopic site: 10 year longitudinal follow-up study. J. Assist. Reprod. Genet. 29, 489–493 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Rodriguez-Wallberg, K. A. & Oktay, K. Fertility preservation and pregnancy in women with and without BRCA mutation-positive breast cancer. Oncologist 17, 1409–1417 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Stern, C. J. et al. First reported clinical pregnancy following heterotopic grafting of cryopreserved ovarian tissue in a woman after a bilateral oophorectomy. 28, 2996–2999 (2013).

  111. Callejo, J. et al. Live birth in a woman without ovaries after autograft of frozen-thawed ovarian tissue combined with growth factors. J. Ovarian Res. 7, 33 (2013).

    Article  Google Scholar 

  112. Meirow, D., Raanani, H., Brengauz, M. & Dor, J. Results of one center indicate that transplantation of thawed ovarian tissue is effective. Repeated IVF reveals good egg quality and high pregnancy rate. Presented at the 28th meeting of the European Society of Human Reproduction and Embryology, Istanbul, Turkey (2012).

  113. Schmidt, K. L. T. et al. Follow up of ovarian function post chemotherapy following ovarian cryopreservation and transplantation. Hum. Reprod. 20, 3539–3546 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Dolmans, M. M. et al. IVF outcome in patients with orthotopically transplanted ovarian tissue. Hum. Reprod. 24, 2778–8277 (2009).

    Article  PubMed  Google Scholar 

  115. Nottola, S. A. et al. Cryopreservation and xenotransplantation of human ovarian tissue: an ultrastructural study. Fertil. Steril. 90, 23–32 (2008).

    Article  PubMed  Google Scholar 

  116. Van Eyck, A. S. et al. Both host and graft vessels contribute to revascularization of xenografted human ovarian tissue in a murine model. Fertil. Steril. 93, 1676–1685 (2010).

    Article  PubMed  Google Scholar 

  117. Van Eyck, A. S. et al. Electron paramagnetic resonance as a tool to evaluate human ovarian tissue reoxygenation after xenografting. Fertil. Steril. 92, 374–381 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Dolmans, M. M. et al. Short-term transplantation of isolated human ovarian follicles and cortical tissue into nude mice. Reproduction. 134, 253–262 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. David, A. et al. Effect of cryopreservation and transplantation on the expression of kit ligand and anti-Müllerian hormone in human ovarian tissue. Hum. Reprod. 27, 1088–1095 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Amorim, C. A., Curaba, M., Van Langendonckt, A., Dolmans, M. M. & Donnez, J. Vitrification as an alternative means of cryopreserving ovarian tissue. Reprod. Biomed. Online 23, 160–186 (2011).

    Article  PubMed  Google Scholar 

  121. Amorim, C. A., Van Langendonckt, A., David, A., Dolmans, M. M. & Donnez, J. Survival of human pre-antral follicles after cryopreservation of ovarian tissue, follicular isolation and in vitro culture in a calcium alginate matrix. Hum. Reprod. 24, 92–99 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Keros, V. et al. Vitrification versus controlled-rate freezing in cryopreservation of human ovarian tissue. Hum. Reprod. 24, 1670–1683 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Ting, A. Y., Yeoman, R. R., Lawson, M. S. & Zelinski, M. B. In vitro development of secondary follicles from cryopreserved rhesus macaque ovarian tissue after slow-rate freeze or vitrification. Hum. Reprod. 26, 2461–2672 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Ting, A. Y. et al. Morphological and functional preservation of pre-antral follicles after vitrification of macaque ovarian tissue in a closed system. Hum. Reprod. 28, 1267–1279 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Amorim, C. A. et al. Successful vitrification and autografting of baboon (Papio anubis) ovarian tissue. Hum. Reprod. 28, 2146–2156 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. David, A., Dolmans, M. M., Van Langendonckt, A., Donnez, J. & Amorim, C. A. Immunohistochemical localization of growth factors after cryopreservation and 3 weeks' xenotransplantation of human ovarian tissue. Fertil. Steril. 95, 1241–1246 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. des Rieux, A. et al. 3D systems delivering VEGF to promote angiogenesis for tissue engineering. J. Control Release 30, 272–278 (2011).

    Article  CAS  Google Scholar 

  128. Dath, C. et al. Endothelial cells are essential for ovarian stromal tissue restructuring after xenotransplantation of isolated ovarian stromal cells. Hum. Reprod. 26, 1431–1439 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Dolmans, M. M., Luyckx, V., Donnez, J., Andersen, C. Y. & Greve, T. Risk of transferring malignant cells with transplanted frozen-thawed ovarian tissue. Fertil. Steril. 99, 1514–1522 (2013).

    Article  PubMed  Google Scholar 

  130. Dolmans, M. M. et al. Reimplantation of cryopreserved ovarian tissue from patients with acute lymphoblastic leukemia is potentially unsafe. Blood 116, 2908–2914 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. Greve, T. et al. No signs of viable malignant cells in frozen-thawed ovarian cortex intended for fertility preservation from patients with leukaemia. Blood 22, 4311–4316 (2012).

    Article  CAS  Google Scholar 

  132. Dolmans, M. M. Safety of ovarian autotransplantation. Blood. 22, 4275–4276 (2012).

    Article  Google Scholar 

  133. Vanacker, J. et al. Transplantation of an alginate-matrigel matrix containing isolated ovarian cells: first step in developing a biodegradable scaffold to transplant isolated preantral follicles and ovarian cells. Biomaterials 33, 6079–6085 (2012).

    Article  CAS  PubMed  Google Scholar 

  134. Meirow, D. et al. Searching for evidence of disease and malignant cell contamination in ovarian tissue stored from hematologic cancer patients. Hum. Reprod. 23, 1007–1013 (2008).

    Article  PubMed  Google Scholar 

  135. Meirow, D. et al. Ovarian tissue banking in patients with Hodgkin's disease: is it safe? Fertil. Steril. 69, 996–998 (1998).

    Article  CAS  PubMed  Google Scholar 

  136. Kim, S. S. et al. Ovarian tissue harvested from lymphoma patients to preserve fertility may be safe for autotransplantation. Hum. Reprod. 16, 2056–2060 (2001).

    Article  CAS  PubMed  Google Scholar 

  137. Seshadri, T. et al. Lack of evidence of disease contamination in ovarian tissue harvested for cryopreservation from patients with Hodgkin lymphoma and analysis of factors predictive of oocyte yield. Br. J. Cancer 94, 1007–1010 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Bittinger, S. E. et al. Detection of Hodgkin lymphoma within ovarian tissue. Fertil. Steril. 95, 803 (2011).

    Article  PubMed  Google Scholar 

  139. Kyono, K. et al. Potential indications for ovarian autotransplantation based on the analysis of 5571 autopsy finding of females under the age of 40 in Japan. Fertil. Steril. 1, 2429–2430 (2010).

    Article  Google Scholar 

  140. Radford, J. A. et al. Orthotopic reimplantation of cryopreserved ovarian cortical strips after high-dose chemotherapy for Hodgkin's lymphoma. Lancet 357, 1172–1175 (2001).

    Article  CAS  PubMed  Google Scholar 

  141. Demeestere, I. et al. Ovarian function and spontaneous pregnancy after combined heterotopic and orthotopic cryopreserved ovarian tissue transplantation in a patient previously treated with bone marrow transplantation: case report. Hum. Reprod. 21, 2010–2014 (2006).

    Article  PubMed  Google Scholar 

  142. Rosendahl, M. et al. Biochemical pregnancy after fertilization of an oocyte aspirated from a heterotopic autotransplant of cryopreserved ovarian tissue: case report. Hum. Reprod. 21, 2006–2009 (2006).

    Article  CAS  PubMed  Google Scholar 

  143. Demeestere, I., Simon, P., Emiliani, S., Delbaere, A. & Englert, Y. Fertility preservation: successful transplantation of cryopreserved ovarian tissue in a young patient previously treated for Hodgkin's disease. Oncologist 12, 1437–1442 (2007).

    Article  PubMed  Google Scholar 

  144. Meirow, D. et al. Ovarian tissue cryopreservation in hematologic malignancy: ten years' experience. Leuk. Lymphoma 48, 1569–1576 (2007).

    Article  PubMed  Google Scholar 

  145. Azem, F. et al. Histologic evaluation of fresh human ovarian tissue before cryopreservation. Int. J. Gynecol. Pathol. 29, 19–23 (2010).

    Article  PubMed  Google Scholar 

  146. American Cancer Society. Breast Cancer Facts & Figures 2011–2012 [online], (2013).

  147. Perrotin, F. et al. Incidence, diagnosis and prognosis of ovarian metastasis in breast cancer. Gynecol. Obstet. Fertil. 29, 308–315 (2001).

    Article  CAS  PubMed  Google Scholar 

  148. Gagnon, Y. & Têtu, B. Ovarian metastases of breast carcinoma. A clinicopathologic study of 59 cases. Cancer 64, 892–898 (1989).

    Article  CAS  PubMed  Google Scholar 

  149. Li, C. I., Anderson, B. O., Daling, J. R. & Moe, R. E. Trends in incidence rates of invasive lobular and ductal breast carcinoma. JAMA 289, 1421–1424 (2003).

    Article  PubMed  Google Scholar 

  150. Sánchez-Serrano, M. et al. Malignant cells are not found in ovarian cortex from breast cancer patients undergoing ovarian cortex cryopreservation. Hum. Reprod. 24, 2238–2243 (2009).

    Article  PubMed  Google Scholar 

  151. Rosendahl, M. et al. Cryopreservation of ovarian tissue for fertility preservation: no evidence of malignant cell contamination in ovarian tissue from patients with breast cancer. Fertil. Steril. 95, 2158–2161 (2011).

    Article  PubMed  Google Scholar 

  152. Luyckx, V. et al. Is transplantation of cryopreserved ovarian tissue from patients with advanced-stage breast cancer safe? A pilot study. J. Assist. Reprod. Genet. http://dx.doi.org/10.1007/s10815-013-0065-0063.

  153. Nakanishi, T. et al. A comparison of ovarian metastasis between squamous cell carcinoma and adenocarcinoma of the uterine cervix. Gynecol. Oncol. 82, 504–509 (2001).

    Article  CAS  PubMed  Google Scholar 

  154. Pan, Z., Wang, X., Zhang, X., Chen, X. & Xie, X. Retrospective analysis on coexisting ovarian cancer in 976 patients with clinical stage I endometrial carcinoma. J. Obstet. Gynaecol. Res. 37, 352–358 (2011).

    Article  PubMed  Google Scholar 

  155. Dundar, E. et al. The significance of local cellular immune response of women 50 years of age and younger with endometrial carcinoma. Eur. J. Gynaecol. Oncol. 23, 243–246 (2002).

    CAS  PubMed  Google Scholar 

  156. Oktay, K. Ovarian tissue cryopreservation and transplantation: preliminary findings and implications for cancer patients. Hum. Reprod Update 7, 526–534 (2001).

    Article  CAS  PubMed  Google Scholar 

  157. Ernst, E., Bergholdt, S., Jørgensen, J. S. & Andersen, C. Y. The first woman to give birth to two children following transplantation of frozen/thawed ovarian tissue. Hum. Reprod. 25, 1280–1281 (2010).

    Article  PubMed  Google Scholar 

  158. Telfer, E. E. & McLaughlin, M. Strategies to support human oocyte development in vitro. Int. J. Dev. Biol. 56, 901–907 (2012).

    Article  CAS  PubMed  Google Scholar 

  159. McLaughlin, M. & Telfer, E. E. Oocyte development in bovine primordial follicles is promoted by activin and FSH within a two-step serum-free culture system. Reproduction 139, 971–978 (2010).

    Article  CAS  PubMed  Google Scholar 

  160. Vanacker, J. et al. Should we isolate human preantral follicles before or after cryopreservation of ovarian tissue? Fertil. Steril. 99, 1363–1368e2 (2013).

    Article  PubMed  Google Scholar 

  161. Amorim, C. A. et al. Vitrification and xenografting of human ovarian tissue. Fertil. Steril. 98, 1291–1298 (2012).

    Article  PubMed  Google Scholar 

  162. Johnson, J., Canning, J., Kaneko, T., Pru, J. K. & Tilly, J. L. Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature 428, 145–150 (2004).

    Article  CAS  PubMed  Google Scholar 

  163. Hayashi, K. et al. Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science 338, 971–975 (2012).

    Article  CAS  PubMed  Google Scholar 

  164. Dunlop, C., Telfer, E. & Anderson, A. Ovarian stem cells—potential roles in infertility treatment and fertility preservation. Maturitas http://dx.doi.org/10.1016/j.maturitas.2013.04.017.

  165. Telfer, E. E. & McLaughlin, M. Natural history of the mammalian oocyte. Reprod. Biomed. Online 15, 288–295 (2007).

    Article  PubMed  Google Scholar 

  166. Anckaert, E., De Rycke, M. & Smitz, J. Culture of oocytes and risk of imprinting defects. Hum. Reprod. Update 19, 52–66 (2013).

    Article  CAS  PubMed  Google Scholar 

  167. Woods, D. C. & Tilly, J. L. Isolation, characterization and propagation of mitotically active germ cells from adult mouse and human ovaries. Nat. Protoc. 8, 966–988 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kalich-Philosoph, L. et al. Cyclophosphamide triggers follicle activation and “burnout”; AS101 prevents follicle loss and preserves fertility. Sci. Transl. Med. 15, 185ra62 (2013).

    Article  CAS  Google Scholar 

  169. Morita, Y. et al. Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy. Nat. Med. 6, 1109–1114 (2000).

    Article  CAS  PubMed  Google Scholar 

  170. Soleimani, R., Heytens, E. & Oktay, K. Enhancement of neoangiogenesis and follicle survival by sphingosine-1-phosphate in human ovarian tissue xenotransplants. PLoS ONE 6, e19475 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Tsai, Y. C. et al. Antiapoptotic agent sphingosine-1-phosphate protects vitrified murine ovarian grafts. Reprod. Sci. http://dx.doi.org/10.1177/1933719113493515.

  172. Dolmans, M. M. et al. A review of 15 years of ovarian tissue bank activities. J. Assist. Reprod. Genet. 30, 305–314 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of the manuscript.

Corresponding author

Correspondence to Jacques Donnez.

Ethics declarations

Competing interests

J. Donnez is a board member of PregLem SA and has received payment for lectures and scientific presentations at congresses from Ferring, MSD, Organon and Serono. M.-M. Dolmans declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donnez, J., Dolmans, MM. Fertility preservation in women. Nat Rev Endocrinol 9, 735–749 (2013). https://doi.org/10.1038/nrendo.2013.205

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2013.205

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing