Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Endogenous kynurenines as targets for drug discovery and development

Key Points

At-a-glance

  • Kynurenines are the main products of tryptophan metabolism.

  • The kynurenine pathway is activated by interferon-γ and other immune-system mediators.

  • Quinolinic acid is an agonist at N-methyl-d-aspartate (NMDA) receptors, and is excitatory and neurotoxic.

  • Kynurenic acid is an antagonist at glutamate receptors and nicotinic acetylcholine (nACh) receptors, and might act at other unidentified sites.

  • Quinolinic acid, acting at NMDA receptors during brain development, could contribute to neuronal growth and synaptogenesis.

  • 3-Hydroxykynurenine generates free radicals and is also neurotoxic.

  • The levels of kynurenines are elevated in disorders that involve brain damage, and might contribute to that damage. For example, quinolinic acid or 3-hydroxykynurenine levels are increased in AIDS–dementia, Huntington's disease and traumatic brain injury.

  • Kynurenic acid levels are raised in Down syndrome, neonatal asphyxia and schizophrenia.

  • As glutamate and nACh receptors are present in peripheral tissues, some peripheral disorders might be associated with altered kynurenine activity.

  • Several components of the pathway could contribute to type 2 diabetes.

  • Depletion of tryptophan inhibits cell growth and division.

  • As the predominant metabolites of tryptophan metabolic pathways also yield 5-hydroxytryptamine and melatonin, changes in the kynurenine pathway could influence the biology of all indole derivatives.

Abstract

The kynurenine pathway is the main pathway for tryptophan metabolism. It generates compounds that can modulate activity at glutamate receptors and possibly nicotinic receptors, in addition to some as-yet-unidentified sites. The pathway is in a unique position to regulate other aspects of the metabolism of tryptophan to neuroactive compounds, and also seems to be a key factor in the communication between the nervous and immune systems. It also has potentially important roles in the regulation of cell proliferation and tissue function in the periphery. As a result, the pathway presents a multitude of potential sites for drug discovery in neuroscience, oncology and visceral pathology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A summary of the various pathways of tryptophan metabolism.
Figure 2: Kynurenines and nitric oxide.
Figure 3: NMDA-receptor antagonists.
Figure 4: Kynurenine-pathway inhibitors.
Figure 5: The possible roles of kynurenines in diabetes.

Similar content being viewed by others

References

  1. Peters, J. C. Tryptophan nutrition and metabolism: an overview. Adv. Exp. Med. Biol. 294, 345–358 (1991).

    CAS  PubMed  Google Scholar 

  2. Stone, T. W. & Perkins, M. N. Quinolinic acid: a potent endogenous excitant at amino acid receptors in CNS. Eur. J. Pharmacol. 72, 411–412 (1981).The original report of the neuroactive properties of quinolinic acid at NMDA receptors, and the trigger for the current widespread interest in the kynurenine pathway.

    CAS  PubMed  Google Scholar 

  3. Schwarcz, R., Whetsell, W. O. Jr & Mangano, R. M. Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science 219, 316–318 (1983).The first paper to show directly the neurotoxic activity of quinolinic acid in the CNS.

    CAS  PubMed  Google Scholar 

  4. Perkins, M. N. & Stone, T. W. An iontophoretic investigation of the actions of convulsant kynurenines and their interaction with the endogenous excitant quinolinic acid. Brain Res. 247, 184–187 (1982).The first report of the ability of kynurenic acid to block glutamate receptors, including those for NMDA, kainate and quisqualate (used as an AMPA-receptor agonist before the discovery of metabotropic receptors).

    CAS  PubMed  Google Scholar 

  5. Thomas, S. R. & Stocker, R. Redox reactions related to IDO and tryptophan metabolism along the kynurenine pathway. Redox Rep. 4, 199–220 (1999).

    CAS  PubMed  Google Scholar 

  6. Pfefferkorn, E. R. Interferon-γ blocks the growth of Toxoplasma gondii in human fibroblasts by inducing the host cell to degrade tryptophan. Proc. Natl Acad. Sci. USA 81, 908–912 (1984).

    CAS  PubMed  Google Scholar 

  7. MacKenzie, C. R. et al. Growth inhibition of multiresistant enterococci by interferon-γ-activated human uro-epithelial cells. J. Med. Microbiol. 48, 935–941 (1999).

    CAS  PubMed  Google Scholar 

  8. Carlin, J. M., Ozaki, Y., Byrne, G. I., Brown, R. R. & Borden, E. C. Interferons and IDO: role in antimicrobial and antitumour effects. Experientia 45, 535–541 (1989).

    CAS  PubMed  Google Scholar 

  9. Rzeski, W., Turski, L. & Ikonomidou, C. Glutamate antagonists limit tumour growth. Proc. Natl Acad. Sci USA 98, 6372–6377 (2001).

    CAS  PubMed  Google Scholar 

  10. Moffett, J. R. et al. Quinolinate immunoreactivity in experimental rat brain tumors is present in macrophages but not in astrocytes. Exp. Neurol. 144, 287–301 (1997)

    CAS  PubMed  Google Scholar 

  11. Munn, D. H. et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281, 1191–1193 (1998).One of the clearest links between activation of the kynurenine pathway and modulation of the physiological/immune axis, with devastating pathological consequences.

    CAS  PubMed  Google Scholar 

  12. Thomas, S. R., Mohr, D. & Stocker, R. Nitric oxide inhibits IDO activity in IFN-γ primed mononuclear phagocytes. J. Biol. Chem. 269, 14457–14464 (1994).

    CAS  PubMed  Google Scholar 

  13. Sekkai, D., Guittet, O., Lemaire, G., Tenu, J.-P. & Lepoivre, M. Inhibition of nitric oxide synthase expression and activity in macrophages by 3-hydroxyanthranilic acid, a tryptophan metabolite. Arch. Biochem. Biophys. 340, 117–123 (1997).

    CAS  PubMed  Google Scholar 

  14. Stone, T. W. The neuropharmacology of quinolinic acid and kynurenic acid. Pharmacol. Rev. 45, 309–379 (1993).A major review of the first decade of kynurenine research in the CNS.

    CAS  PubMed  Google Scholar 

  15. Stone, T. W. The development and therapeutic potential of kynurenic acid and kynurenine derivatives for CNS neuroprotection. Trends Pharmacol. Sci. 21, 149–154 (2000).

    CAS  PubMed  Google Scholar 

  16. Stone, T. W. Kynurenines in the CNS: from obscurity to clinical relevance. Progr. Neurobiol. 64, 185–218 (2001).A review of the neurobiology of kynurenine, which concentrates on the relevance of quinolinic acid in various disease states.

    CAS  Google Scholar 

  17. Bordelon, Y. M., Chesselet, M.-F., Nelson, D., Welsh, F. & Erecinska, M. Energetic dysfunction in quinolinic acid-lesioned rat striatum. J. Neurochem. 69, 1629–1693 (1997).

    CAS  PubMed  Google Scholar 

  18. Baran, H. et al. Kynurenic acid influences the respiratory parameters of rat heart mitochondria. Pharmacology 62, 119–123 (2001).

    CAS  PubMed  Google Scholar 

  19. Santamaria, A. et al. In vivo hydroxyl radical formation after quinolinic acid infusion into rat corpus striatum. Neuroreport 12, 2693–2696 (2001)

    CAS  PubMed  Google Scholar 

  20. Behan, W. M. H., McDonald, M., Darlington, L. G. & Stone, T. W. Oxidative stress as a mechanism for quinolinic acid-induced hippocampal damage: protection by melatonin and deprenyl. Br. J. Pharmacol. 128, 1754–1760 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim, J. P. & Choi, D. W. Quinolinate neurotoxicity in cortical cell culture. Neuroscience 23, 423–432 (1987).

    CAS  PubMed  Google Scholar 

  22. Khaspekov, L., Kida, E., Victorov, I. & Mossakowski, M. J. Neurotoxic effect induced by quinolinic acid in dissociated cell culture of mouse hippocampus. J. Neurosci. Res. 22, 150–157 (1989).

    CAS  PubMed  Google Scholar 

  23. Whetsell, W. O. Jr & Schwarcz, R. Prolonged exposure to submicromolar concentrations of quinolinic acid causes excitotoxic damage in organotypic cultures of rat corticostriatal system. Neurosci. Lett. 97, 271–275 (1989).

    CAS  PubMed  Google Scholar 

  24. Kerr, S. J., Armati, P. J., Guillemin, G. J. & Brew, B. J. Chronic exposure of human neurones to quinolinic acid results in neuronal changes consistent with AIDS dementia complex. AIDS 12, 355–363 (1998).

    CAS  PubMed  Google Scholar 

  25. Guidetti, P. & Schwarcz, R. 3-Hydroxykynurenine potentiates quinolinate but not NMDA toxicity in the rat striatum. Eur. J. Neurosci. 11, 3857–3863 (1999).

    CAS  PubMed  Google Scholar 

  26. Ghorayeb, I. et al. Simultaneous intrastriatal 6-hydroxydopamine and quinolinic acid injection. A model of early-stage striatonigral degneration. Exp. Neurol. 167, 133–147 (2001).

    CAS  PubMed  Google Scholar 

  27. Behan, W. M. H. & Stone, T. W. Enhanced neuronal damage by co-administration of quinolinic acid and free radicals and protection by adenosine A2A receptor antagonists. Br. J. Pharmacol. 135, 1435–1442 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Dikranian, K. et al. Apoptosis in the developing mammalian forebrain. Neurobiol. Disease 8, 359–379 (2001).

    CAS  Google Scholar 

  29. Gurdon, J. B. & Bourillot, P.-Y. Morphogen gradient interpretation. Nature 413, 797–803 (2001).

    CAS  PubMed  Google Scholar 

  30. Rezaie, P. & Male, D. Colonisation of the developing human brain and spinal cord by microglia: a review. Microscopy Res. Tech. 45, 359–382 (1999).

    CAS  Google Scholar 

  31. McGowan, J. E. et al. Effect of dexamethasone treatment on maturational changes in the NMDA receptor in sheep brain. J. Neurosci. 20, 7424–7429 (2000).

    CAS  PubMed  Google Scholar 

  32. Dong-Ruyl, L., Sawada, M. & Nakano, K. Tryptophan and its metabolite, kynurenine, stimulate expression of NGF in cultured mouse astroglial cells. Neurosci. Lett. 244, 17–20 (1998).

    CAS  PubMed  Google Scholar 

  33. Heyes, M. P., Rubinow, D., Lane, C. & Markey, S. P. Cerebrospinal fluid quinolinic acid concentrations are increased in acquired immune deficiency syndrome. Ann. Neurol. 26, 275–277 (1989).A key paper, which shows the marked extent of the rise in quinolinic acid levels in the brains of patients with a major CNS disorder that is associated with cognitive dysfunction.

    CAS  PubMed  Google Scholar 

  34. Espey, M. G., Moffett, J. R. & Namboodiri, M. A. A. Temporal and spatial changes of quinolinic acid immunoreactivity in the immune system of lipopolysaccharide-stimulated mice. J. Leukocyte Biol. 57, 199–206 (1995).

    CAS  PubMed  Google Scholar 

  35. Namboodiri, A. M. A. et al. Increased quinolinate immunoreactivity in the peripheral blood macrocytes/macrophages from SIV-infected monkeys. J. Neurovirol. 2, 433–438 (1996).

    CAS  PubMed  Google Scholar 

  36. Heyes, M. P. et al. Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurologic disease. Brain 115, 1249–1273 (1992).An extensive study of the potential contribution of quinolinic acid to inflammatory brain disorders.

    PubMed  Google Scholar 

  37. Pemberton, L. A., Kerr, S. J., Smythe, G. & Brew, B. J. Quinolinic acid production by macrophages stimulated with IFN-γ, TNF-α and IFN-α. J. Int. Cytokine Res. 17, 589–595 (1997).

    CAS  Google Scholar 

  38. Kohler, C. et al. Quinolinic acid metabolism in the rat brain. Immunohistochemical identification of 3-hydroxyanthranilic acid oxygenase and quinolinic acid phosphoribosyltransferase in the hippocampal region. J. Neurosci. 8, 975–987 (1998).

    Google Scholar 

  39. Espey, M. G., Tang, Y., Morse, H. C., Moffett, J. R. & Namboodiri, M. A. A. Localisation of quinolinic acid in the murine AIDS model of retrovirus-induced immunodeficiency: implications for neurotoxicity and dendritic cell immunopathogenesis. AIDS 10, 151–158 (1996).

    CAS  PubMed  Google Scholar 

  40. Guidetti, P., Eastman, C. L. & Schwarcz, R. Metabolism of [5-3H]-kynurenine in rat brain in vivo: evidence for the existence of a functional kynurenine pathway. J. Neurochem. 65, 2621–2632 (1995).

    CAS  PubMed  Google Scholar 

  41. Guillemin, G. J. et al. Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection. J. Neurochem. 78, 842–853 (2001).

    CAS  PubMed  Google Scholar 

  42. Kazda, H., Taylor, N., Healy, D. & Walker, D. Maternal, umbilical and amniotic fluid concentrations of tryptophan and kynurenine after labor or cesarean section. Pediatr. Res. 44, 368–373 (1998).

    CAS  PubMed  Google Scholar 

  43. Milart, P., Urbanska, E. M., Turski, W. A., Paszkowski, T. &. Sikorski, R. Intrapartum levels of endogenous glutamate antagonist kynurenic acid in amniotic fluid, umbilical and maternal blood. Neurosci. Res. Commun. 24, 173–178 (1999).

    CAS  Google Scholar 

  44. Nicholls, T., Nitsos, I. & Walker, D. W. Tryptophan metabolism in pregnant sheep: increased fetal kynurenine production in response to maternal tryptophan loading. Am. J. Obst. Gyn. 181, 1452–1460 (1999).

    CAS  Google Scholar 

  45. Henderson, G., Johnson, J. W. & Ascher, P. Competitive antagonists and partial agonists at the glycine modulatory site of the mouse NMDA receptors. J. Physiol. 430, 189–212 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Birch, P. J., Grossman, C. J. & Hayes, A. G. Kynurenic acid antagonises responses to NMDA via an action at the strychnine-insensitive glycine receptor. Eur. J. Pharmacol. 154, 85–87 (1988).

    CAS  PubMed  Google Scholar 

  47. Scharfman, H. E., Hodgkin, P. S., Lee, S.-C. & Schwarcz, R. Quantitative differences in the effects of de novo produced and exogenous kynurenic acid in rat brain slices. Neurosci. Lett. 274, 111–114 (1999).A study that shows that the effects of endogenously generated kynurenines are far more effective than those added exogenously, which has implications for appreciating the potential functional disturbances that could follow alterations in their endogenous concentrations.

    CAS  PubMed  Google Scholar 

  48. Schwarcz, R. et al. Modulation and function of kynurenic acid in the immature rat brain. Adv. Exp. Med. Biol. 467, 113–123 (1999).

    CAS  PubMed  Google Scholar 

  49. Stone, T. W. Comparison of kynurenic acid and 2-APV suppression of epileptiform activity in rat hippocampal slices. Neurosci. Lett. 84, 234–238 (1988).

    CAS  PubMed  Google Scholar 

  50. Brady, R. J. & Swann, J. W. Suppression of ictal-like activity by kynurenic acid does not correlate with its efficacy as an NMDA receptor antagonist. Epilepsy Res. 2, 232–238 (1988).

    CAS  PubMed  Google Scholar 

  51. Carpenedo, R. et al. Presynaptic kynrenate-sensitive receptors inhibit glutamate release. Eur. J. Neurosci. 13, 2141–2147 (2001).

    CAS  PubMed  Google Scholar 

  52. Hilmas, C. et al. The brain metabolite kynurenic acid inhibits α7-nicotinic receptor activity and increases non-α7-nicotinic receptor expression: pathophysiological implications. J. Neurosci. 21, 7463–7473 (2001).One of the recent papers to propose an important site of action of kynurenic acid other than its blockade of glutamate receptors.

    CAS  PubMed  Google Scholar 

  53. Erhardt, S., Oberg, H. & Engberg, G. Pharmacologically elevated levels of endogenous kynurenic acid prevent nicotine-induced activation of nigral dopamine neurones. Arch. Pharmacol. 363, 21–27 (2001)

    CAS  Google Scholar 

  54. Eastman, C. L. & Guilarte, T. R. The role of hydrogen peroxide in the in vitro cytotoxicity of 3-hydroxykynurenine. Neurochem. Res. 15, 1101–1107 (1990).

    CAS  PubMed  Google Scholar 

  55. Okuda, S., Nishiyama, N., Saito, H. & Katsuki, H. 3-Hydroxykynurenine, an endogenous oxidative stress generator, causes neuronal cell death with apoptotic features and region selectivity. J. Neurochem. 70, 299–307 (1998).

    CAS  PubMed  Google Scholar 

  56. Chiarugi, A., Meli, E. & Moroni, F. Similarities and differences in the neuronal death processes activated by 3-hydroxykynurenine and quinolinic acid. J. Neurochem. 77, 1310–1318 (2001).

    CAS  PubMed  Google Scholar 

  57. Heyes, M. P. et al. Elevated CSF quinolinic acid levels are associated with region-specific cerebral volume loss in HIV infection. Brain Res. 124, 1033–1042 (2001).

    CAS  Google Scholar 

  58. Sardar, A. M. & Reynolds, G. P. Frontal cortex indoleamin-2,3-dioxygenase activity is increased in HIV-1-associated dementia. Neurosci. Lett. 187, 9–12 (1995).

    CAS  PubMed  Google Scholar 

  59. Heyes, M. P. et al. Inter-relationships between neuroactive kynurenines, neopterin and 2-microglobulin in CSF and serum of HIV-1 infected patients. J. Neuroimmunol. 40, 71–80 (1992).

    CAS  PubMed  Google Scholar 

  60. Beal, M. F. et al. Replication of the neurochemical characteristics of Huntington's disease by quinolinic acid. Nature 321, 168–171 (1986).

    CAS  PubMed  Google Scholar 

  61. Beal, M. F., Ferrante, R. J., Swartz, K. J. & Kowall, N. W. Chronic quinolinic acid lesions in rats closely resemble Huntington's Disease. J. Neurosci. 11, 1649–1659 (1991).A detailed analysis of the neurochemical changes after quinolinic acid administration compared with the changes in a major neurodegenerative disorder — Huntington's disease.

    CAS  PubMed  Google Scholar 

  62. Nicholson, L. F. B., Faull, R. L. M., Waldvogel, H. J. & Dragunow, M. GABA and GABAA receptor changes in the substantia nigra of the rat following quinolinic acid lesions in the striatum closely resemble Huntington's disease. Neuroscience 66, 507–521 (1995).

    CAS  PubMed  Google Scholar 

  63. Carlock, L., Walker, P. D., Shan, Y. & Gutridge, K. Transcription of the Huntington disease gene during the quinolinic acid excitotoxic cascade. Neuroreport 6, 1121–1124 (1995).

    CAS  PubMed  Google Scholar 

  64. Schwarcz, R., Okuno, E., White, R. J., Bird, E. D. & Whetsell, W. O. Jr. 3-Hydroxyanthranilate oxygenase activity is increased in the brains of Huntington disease victims. Proc. Natl Acad. Sci. USA 85, 4079–4081 (1988).

    CAS  PubMed  Google Scholar 

  65. Connick, J. H., Carla, V., Moroni, F. & Stone, T. W. Increase in kynurenic acid in Huntington's disease motor cortex. J. Neurochem. 52, 985–987 (1989).

    CAS  PubMed  Google Scholar 

  66. Beal, M. F. et al. Kynurenic acid concentrations are reduced in Huntington's disease cerebral cortex. J. Neurol. Sci. 108, 80–87 (1992).

    CAS  PubMed  Google Scholar 

  67. Jauch, D. et al. Dysfunction of brain kynurenic acid metabolism in Huntington's disease: Focus on kynurenine aminotransferases. J. Neurol. Sci. 130, 39–47 (1995).

    CAS  PubMed  Google Scholar 

  68. Pearson, S. J. & Reynolds, G. P. Increased brain concentrations of a neurotoxin, 3-hydroxykynurenine, in Huntington's disease. Neurosci. Lett. 144, 199–201 (1992).

    CAS  PubMed  Google Scholar 

  69. Guidetti, P., Reddy, P. H., Tagle, D. A. & Schwarcz, R. Early kynurenergic impairment in Huntington's disease and in a transgenic animal model. Neurosci. Lett. 283, 233–235 (2000).

    CAS  PubMed  Google Scholar 

  70. Hansson, O. et al. Mice expressing a Huntington's disease mutation are resistant to quinolinic acid-induced striatal excitotoxicity. Proc. Natl Acad. Sci. USA 96, 8727–8732 (1999).

    CAS  PubMed  Google Scholar 

  71. MacGibbon, G. A. et al. Immediate-early gene response to methamphetamine, haloperidol and quinolinic acid is not impaired in Huntington's disease transgenic mice. J. Neurosci. Res. 67, 372–378 (2002).

    CAS  PubMed  Google Scholar 

  72. Widner, B. et al. Tryptophan degradation and immune activation in Alzheimer's disease. J. Neural Transm. 107, 343–353 (2000).

    CAS  PubMed  Google Scholar 

  73. Darlington, L. G. et al. Concentrations of kynurenine pathway metabolites in patients with Huntington's disease. Soc. Neurosci. Abstr. (in the press).

  74. Widner, B. et al. Degradation of tryptophan in neurodegenerative disorders. Adv. Exp. Med. Biol. 467, 133–138 (1999).

    CAS  PubMed  Google Scholar 

  75. Baran, H., Cairns, N., Lubec, B. & Lubec, G. Increased kynurenic acid levels and decreased brain kynurenine aminotransferase I in patients with Down syndrome. Life Sci. 58, 1891–1899 (1996).

    CAS  PubMed  Google Scholar 

  76. Savvateeva, E. et al. Age-dependent memory loss, synaptic pathology and altered brain plasticity in the Drosophila mutant cardinal accumulating 3-hydroxykynurenine. J. Neural Transm. 107, 581–601 (2000).

    CAS  PubMed  Google Scholar 

  77. Heyes, M. P. et al. Poliovirus induces IDO and quinolinic acid synthesis in macaque brain. FASEB J. 6, 2977–2989 (1992).

    CAS  PubMed  Google Scholar 

  78. Halperin, J. J. & Heyes, M. P. Neuroactive kynurenines in Lyme borreliosis. Neurology 42, 43–50 (1992).

    CAS  PubMed  Google Scholar 

  79. Sanni, L. A. et al. Dramatic changes in oxidative tryptophan metabolism along the kynurenine pathway in experimental cerebral and non-cerebral malaria. Am. J. Pathol. 152, 611–619 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Heyes, M. P. & Nowak, T. S. Jr. Delayed increases in regional brain quinolinic acid follow transient ischemia in the gerbil. J. Cereb. Blood Flow Metab. 10, 660–667 (1990).A paper that highlights the fact that raised kynurenine-pathway activity can be part of a secondary, inflammatory response to tissue damage that could exacerbate or prolong that damage.

    CAS  PubMed  Google Scholar 

  81. Baratte, S. et al. Temporal and spatial changes of quinolinic acid immunoreactivity in the gerbil hippocampus following transient cerebral ischemia. Mol. Brain Res. 59, 50–57 (1998).

    CAS  PubMed  Google Scholar 

  82. Blight, A. R., Leroy, E. C. & Heyes, M. P. Quinolinic acid accumulation in injured spinal cord: time course, distribution and species differences between rat and guinea-pig. J. Neurotrauma 14, 89–98 (1997).

    CAS  PubMed  Google Scholar 

  83. Sinz, E. H. et al. Quinolinic acid is increased in CSF and associated with mortality after traumatic brain injury in humans. J. Cereb. Blood Flow Metab. 18, 610–615 (1998).

    CAS  PubMed  Google Scholar 

  84. Baran, H. et al. Increased kynurenic acid in the brain after neonatal asphyxia. Life Sci. 69, 1249–1256 (2001).

    CAS  PubMed  Google Scholar 

  85. Ceresoli-Borroni, G. & Schwarcz, R. Neonatal asphyxia in rats: acute effects on cerebral kynurenine metabolism. Pediatr. Res. 50, 231–235 (2001).

    CAS  PubMed  Google Scholar 

  86. Dang, Y., Dale, W. E & Brown, O. R. Comparative effects of oxygen on IDO and TDO of the kynurenine pathway. Free Radical Biol. Med. 28, 615–624 (2000).

    CAS  Google Scholar 

  87. Issa, F. et al. A multidimensional approach to analysis of CSF biogenic amines in schizophrenia. II. Correlations with psychopathology. Psychiatr. Res. 52, 251–258 (1994).

    CAS  Google Scholar 

  88. Erhardt, S. et al. Kynurenic acid levels are elevated in the cerebrospinal fluid of patients with schizophrenia. Neurosci. Lett. 313, 96–98 (2001).

    CAS  PubMed  Google Scholar 

  89. Chiarugi, A., Cozzi, A., Ballerini, C., Massacesi, L. & Moroni, F. Kynurenine 3-mono-oxygenase activity and neurotoxic kynurenine metabolites increase in the spinal cord of rats with experimental allergic encephalomyelitis. Neuroscience 102, 687–695 (2001).One of the more recent papers to address the potential role of kynurenines in a major neurological disorder — in this case, multiple sclerosis.

    CAS  PubMed  Google Scholar 

  90. Maloney, A. M., St Claire Morgan, O., Widner, B., Werner, E. R. & Fuchs, D. CNS activation of the IDO pathway in human T cell lymphotropic virus type I-associated myelopathy/tropical spastic paraparesis. J. Infect. Dis. 181, 2037–2040 (2000).

    CAS  PubMed  Google Scholar 

  91. Baron, B. M. et al. Potent indole- and quinoline-containing NMDA antagonists acting at the strychnine-insensitive glycine binding site. J. Pharmacol. Exp. Ther. 262, 947–956 (1992).

    CAS  PubMed  Google Scholar 

  92. Leeson, P. D. et al. Kynurenic acid derivatives — structure–activity relationships for excitatory amino acid antagonism and identification of potent and selective antagonists at the glycine site on the NMDA receptor. J. Med. Chem. 34, 1243–1252 (1991).

    CAS  PubMed  Google Scholar 

  93. Harrison B. L., Baron, B. M., Cousino, D. M. & McDonald, I. A. 4-[(Carboxymethyl)oxy]- and 4-[(carboxymethyl)amino]-5,7-dichloroquinoline-2-carboxylic acid: new antagonists of the strychnine-insensitive glycine binding site on the NMDA receptor complex. J. Med. Chem. 33, 3130–3132 (1990).

    CAS  PubMed  Google Scholar 

  94. Farr, R. A., Nyce, P. L. & Harrison, B. L. Heterocycle substituted propenoic acid derivatives as NMDA antagonists. Patent WO9613501 (1996).

  95. Cugola, A. & Gavaraghi, G. Indole antagonists of excitatory amino acids. British patent GB2266091 (1993).

  96. Jackson, P. F. et al. Synthesis and biological activity of a series of 4-aryl substituted benz[b]azepines: antagonists at the strychnine-insensitive glycine site. Bioorg. Med. Chem. Lett. 5, 3097–3100 (1995).

    CAS  Google Scholar 

  97. Boireau, A. et al. Neuroprotective effects of RPR104632, a novel antagonist at the glycine site of the NMDA receptor. Eur. J. Pharmacol. 300, 237–246 (1996).

    CAS  PubMed  Google Scholar 

  98. Gottschlich, R., Leibrock, J., Noe, C., Berger, M. & Buchstaller, H.-P. Thienopyridone derivatives, their preparation and their use as NMDA-receptor antagonists. European patent EP717044 (1996).

  99. Aloup, J. C. et al. 4-hydroxy-3-phenyl-indeno(1,2-B)pyridine-2(1H)-one derivatives as NMDA antagonists. Patent WO9602536 (1996).

  100. Chapman, A. G. et al. Anticonvulsant activity of a novel NMDA glycine site antagonist, MDL 104,653, against kindled and sound-induced seizures. Eur. J. Pharmacol. 274, 1–3 (1995).

    Google Scholar 

  101. Kulagowski, J. J. Glycine-site NMDA antagonists: an update. Exp. Opin. Ther. Pat. 6, 1069–1079 (1996).

    CAS  Google Scholar 

  102. Takano, K. et al. Glycine site antagonists attenuate infarct size in experimental focal ischaemia: postmortem and diffusion mapping studies. Stroke 28, 1255–1263 (1997).

    CAS  PubMed  Google Scholar 

  103. Harris, C. A. et al. Modulation of striatal quinolinate neurotoxicity by elevation of endogenous brain kynurenic acid. Br. J. Pharmacol. 124, 391–399 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Wu, H.-Q. et al. Kynurenergic manipulations influence excitatory synaptic function and excitotoxic vulnerability in the rat hippocampus in vivo. Neuroscience 97, 243–251 (2000).

    CAS  PubMed  Google Scholar 

  105. Guidetti, F., Wu, H.-Q. & Schwarcz, R. In situ produced 7-chlorokynurenate provides protection against quinolinate and malonate-induced neurotoxicity in the rat striatum. Exp. Neurol. 163, 123–130 (2000).

    CAS  PubMed  Google Scholar 

  106. Wu, H.-Q., Lee, S.-C. & Schwarcz, R. Systemic administration of 4-chlorokynurenine prevents quinolinic acid neurotoxicity in the rat hippocampus. Eur. J. Pharmacol. 390, 267–274 (2000).

    CAS  PubMed  Google Scholar 

  107. Connick, J. H. et al. Nicotinylalanine increases cerebral kynurenic acid content and has anticonvulsant activity. Gen. Pharmacol. 23, 235–239 (1992).One of the first studies to show the principle that inhibition of the kynurenine pathway could increase kynurenic acid levels sufficiently to suppress neuronal overactivity and potential toxicity.

    CAS  PubMed  Google Scholar 

  108. Russi, P. et al. Nicotinylalanine increases the formation of kynurenic acid in the brain and antagonizes convulsions. J. Neurochem. 59, 2076–2080 (1992).

    CAS  PubMed  Google Scholar 

  109. Chiarugi, A., Carpenedo, R. & Moroni, F. Kynurenine disposition in blood and brain of mice: effects of selective inhibitors of kynurenine hydroxylase and kynurenase. J. Neurochem. 67, 692–698 (1996).

    CAS  PubMed  Google Scholar 

  110. Cozzi, R., Carpenedo, R. & Moroni, F. Kynurenine hydroxylase inhibitors reduce ischaemic brain damage: studies with (m-nitrobenzoyl)alanine and 3,4-dimethoxy-[N-4-(nitrophenyl)thiazol-2-yl]-benzenesulfonamide (Ro 61-8048) in models of focal or global ischaemia. J. Cereb. Blood Flow Metab. 19, 771–777 (1999).An excellent example of the use of kynurenine-pathway inhibitors to prevent brain damage that is caused by ischaemia, implicating the pathway in the development of that damage.

    CAS  PubMed  Google Scholar 

  111. Speciale, C. et al. (r,s)-3,4-dichlorobenzoylalanine (FCE 28833A) causes a large and persistent increase in brain kynurenic acid levels in rats. Eur. J. Pharmacol. 315, 263–267 (1996).

    CAS  PubMed  Google Scholar 

  112. Rover, S., Cesura, A. M., Hugenin, P., Kettler, R. & Szente, A. Synthesis and biochemical evaluation of N-(4-phenylthiazol-2-yl)benzenesulfonamides as high-affinity inhibitors of kynurenine 3-hydroxylase. J. Med. Chem. 40, 4378–4385 (1997).

    CAS  PubMed  Google Scholar 

  113. Heidempergher, F. et al. Pyrrolo[3,2c]quinoline derivatives: a new class of kynurenine-3-hydroxylase inhibitors. Il Farmaco 54, 152–160 (1999).

    CAS  PubMed  Google Scholar 

  114. Giordani, A. et al. 4-Phenyl-4-oxo-butanoic acid derivatives as inhibitors of kynurenine-3-hydroxylase. Bioorg. Med. Chem. Lett. 8, 2907–2912 (1998).

    CAS  PubMed  Google Scholar 

  115. Chiarugi, A. & Moroni, F. Quinolinic acid formation in immuno-activated mice: studies with (m-nitrobenzoyl)-alanine (mNBA) and 3,4-dimethoxy-[N-4-(3-nitrophenyl)thiazol-2-yl]benzenesulphonamide (Ro61-8048), two potent and selective inhibitors of kynurenine hydroxylase. Neuropharmacology 38, 1225–1233 (1999).

    CAS  PubMed  Google Scholar 

  116. Ross, F. C., Botting, N. P. & Leeson, P. D. Synthesis of phosphinic acid transition state analogues for the reaction catalysed by kynureninase. Bioorg. Med. Chem. Lett. 6, 2643–2646 (1996).

    CAS  Google Scholar 

  117. Fitzgerald, D. H., Muirhead, K. M. & Botting, N. G. A comparative study of the inhibition of human and bacterial kynureninase by novel bicyclic kynurenine analogues. Bioorg. Med. Chem. 9, 983–999 (2001).

    CAS  PubMed  Google Scholar 

  118. Walsh, J. L., Todd, W. P., Carpenter, B. K. & Schwarcz, R. 4-Halo-3-hydroxyanthranilic acids: potent competitive inhibitors of 3-hydroxyanthranilic acid oxygenase in vitro. Biochem. Pharmacol. 42, 985–990 (1991).

    CAS  PubMed  Google Scholar 

  119. Luthman, J., Radesater A.-C. & Oberg, C. Effects of the 3-hydroxyanthranilic acid analogue NCR-631 on anoxia-, IL-1β- and LPS-induced hippocampal pyramidal cell loss in vitro. Amino Acids 14, 263–269 (1998).

    CAS  PubMed  Google Scholar 

  120. Forrest, C. M., Kennedy, A., Stone, T. W. & Darlington, L. G. in Proceedings of the 10th Meeting of ISTRY (ed. Costa, C. V. L.) (Plenum, New York) (in the press).

  121. Skerry, T. M. & Genever, P. G. Glutamate signalling in non-neuronal tissues. Trends Pharmacol. Sci. 22, 174–181 (2001).

    CAS  PubMed  Google Scholar 

  122. Weaver, C. D. et al. Differential expression of glutamate receptor subtypes in rat pancreatic islets. J. Biol. Chem. 271, 12977–12984 (1996).

    CAS  PubMed  Google Scholar 

  123. Okamoto, H. Effect of quinaldic acid and its relatives on insulin release from isolated Langerhans islets. Acta Vitaminol. Enzymol. 29, 227–230 (1975).

    CAS  PubMed  Google Scholar 

  124. Kotake, Y., Ueda, T., Mori, T., Igaki, S. & Hattori, M. Abnormal tryptophan metabolism and experimental diabetes by xanthurenic acid. Acta Vitaminol. Enzymol. 29, 236–240 (1975).

    CAS  PubMed  Google Scholar 

  125. Hattori, M., Kotake, Y. & Kotake, Y. Studies on the urinary excretion of xanthurenic acid in diabetics. Acta Vitaminol. Enzymol. 6, 221–228 (1984).

    CAS  PubMed  Google Scholar 

  126. Takeuchi, E. & Shibata, X. Kynurenine metabolism in vitamin B6 deficient rat liver after tryptophan injection. Biochem. J. 220, 693–699 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Goldstein, L. E. et al. 3-Hydroxykynurenine and 3-hydroxyanthranilic acid generate hydrogen peroxide and promote α-crystallin cross-linking by metal ion reduction. Biochemistry 39, 7266–7275 (2000).

    CAS  PubMed  Google Scholar 

  128. Varga, J., Yufit, T., Hitraya, T. & Brown, R. R. Control of extracellular matrix degradation by interferon-γ. The tryptophan connection. Adv. Exp. Med. Biol. 398, 143–148 (1996).

    CAS  PubMed  Google Scholar 

  129. Moroni, F., Luzzi, S., Franchi-Micheli, S. & Ziletti, L. The presence of NMDA receptors for glutamic acid in the guinea-pig myenteric plexus. Neurosci. Lett. 68, 57–62 (1986).

    CAS  PubMed  Google Scholar 

  130. Forrest, C. M. et al. Purine, kynurenine, and lipid peroxidation levels in inflammatory bowel disease. J. Biomed. Sci. (in the press).

  131. Patton, A. J. et al. Expression of an NMDA type receptor by human and rat osteoblasts. Bone 22, 645–649 (1998).

    CAS  PubMed  Google Scholar 

  132. Itzstein, C. et al. Specific antagonists of NMDA receptors prevent osteoclast sealing zone formation required for bone resorption. Biochem. Biophys. Res. Commun. 268, 201–209 (2000).

    CAS  PubMed  Google Scholar 

  133. Gill, S. K., Mueller, R. W., McGuire, P. F. & Pulido, O. M. Potential target sites in peripheral tissues for excitatory neurotransmission and excitotoxicity. Toxicol. Pathol. 28, 277–284 (2000).

    CAS  PubMed  Google Scholar 

  134. Goldstein, L. E. et al. 3-Hydroxykynurenine and 3-hydroxyanthranilic acid generate hydrogen perioxide and promote α-crystallin cross-linking by metal ion reduction. Biochemistry 39, 7266–7275 (2000).

    CAS  PubMed  Google Scholar 

  135. Aquilina, J. A., Carver, J. A. & Truscott, R. J. W. Elucidation of a novel polypeptide cross-link involving 3-hydroxykynurenine. Biochemistry 38, 11455–11464 (1999).

    CAS  PubMed  Google Scholar 

  136. Moroni, F., Lombardi, G., Moneti, G. & Aldinio, C. The excitotoxin quinolinic acid is present in the brain of several animal species and its cortical content increases during the ageing process. Neurosci. Lett. 47, 51–55 (1984).

    CAS  PubMed  Google Scholar 

  137. Johnson, T. D. & Clarke, D. E. in Quinolinic acid and the Kynurenines (ed. Stone, T. W.) 213–228 (CRC Press, Boca Raton, 1989).

    Google Scholar 

  138. Charlton, K. G., Johnson, T. D., Hamed, A. T. & Clarke, D. E. Cardiovascular actions of kynuramine and 5-hydroxykynuramine in pithed rats. J. Neural Transm. 57, 199–209 (1983).

    CAS  PubMed  Google Scholar 

  139. Watts, S. W., Gilbert, L. & Webb, R. C. 5HT-2(B) receptor mediates contraction in the mesenteric artery of mineralocorticoid hypertensive rats. Hypertension 26, 1056–1059 (1995).

    CAS  PubMed  Google Scholar 

  140. McCormack, J. K., Beitz, A. J. & Larson, A. A. Autoradiographic localization of tryptamine sites in the rat and dog CNS. J. Neurosci. 6, 94–101 (1986).

    CAS  PubMed  Google Scholar 

  141. Kelly, R. W., Amato, F. & Seamark, R. F. N-Acetyl-5-methoxykynurenamine, a brain metabolite of melatonin, is a potent inhibitor of prostaglandin biosynthesis. Biochem. Biophys. Res. Commun. 121, 372–379 (1984).

    CAS  PubMed  Google Scholar 

  142. Ramsay, R. R., Tan, A. K. & Weyler, W. Kinetic properties of cloned human liver monoamine oxidase A. J. Neural Transm. 41 (Suppl.), 17–26 (1994).

    CAS  Google Scholar 

  143. Franchi, A. M., Gimeno, M. F., Cardinali, D. P. & Vacas, M. I. Melatonin, 5-methoxytryptamine and some of their analogues as cyclo-oxygenase inhibitors in rat medial basal hypothalamus. Brain Res. 405, 384–388 (1987).

    CAS  PubMed  Google Scholar 

  144. Worthen, D. R., et al. Endogenous indoles as novel polyamine site ligands at the NMDA receptor complex. Brain Res. 890, 343–346 (2001).

    CAS  PubMed  Google Scholar 

  145. Leon, J. et al. Modification of nitric oxide synthase activity and neuronal response in rat striatum by melatonin and kynurenine derivatives. J. Neuroendocrinol. 10, 297–302 (1998).

    CAS  PubMed  Google Scholar 

  146. Politi, V., De Luca, G., Gallai, V. & Comin, M. Clinical experiences with the use of indole-3-pyruvic acid. Adv. Exp. Med. Biol. 467, 227–232 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' current research on kynurenines that is included in this review is supported by the NHS R&D Levy, the Peacock Trust and the Denbies Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor W. Stone.

Related links

Related links

DATABASES

FlyBase

cardinal

LocusLink

α1-adrenoceptor

α2-adrenoceptor

COX

crystallins

5-HT2A receptor

5-HT2B receptor

huntingtin

3-hydroxyanthranilic acid 3,4-dioxygenase

IDO

IFN-γ

IL-1β

IL-4

insulin

KATII

kynurenine 3-hydroxylase

MAO

α7-nACh receptor

nerve growth factor

NF-γB

NMDA receptors

NOS

phosphoenolpyruvate carboxykinase

phospholipase C

QPRT

superoxide dismutase

TDO

TGF-β

TNF-α

TP53

tryptophan hydroxylase

Medscape DrugInfo

aspirin

OMIM

Alzheimer's disease

Down syndrome

Huntington's disease

multiple sclerosis

olivopontocerebellar atrophy

Parkinson's disease

psoriasis

rheumatoid arthritis

Tourette's syndrome

type 2 diabetes

FURTHER INFORMATION

Encyclopedia of Life Sciences

nervous and immune system interactions

Glossary

SUPEROXIDE

A highly reactive oxygen free radical, of the formula O2−·.

GLYB SITE

The allosteric receptor site for glycine on the NMDA receptor. At this site, glycine acts as an essential co-agonist for the activation of the receptor by glutamate. The site is also known as the strychnine-resistant glycine site, to distinguish it from the inhibitory glycineA receptor, which is blocked by strychnine.

GLUCONEOGENESIS

The generation of glucose from non-carbohydrate sources, mainly amino acids.

MYENTERIC PLEXUS

One of the two main networks of neurons that are present in the walls of the intestine; responsible for regulating the rhythm and force of its contractions and cellular secretions.

DYSRHYTHMIAS

Abnormal rhythms, usually of the heart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stone, T., Darlington, L. Endogenous kynurenines as targets for drug discovery and development. Nat Rev Drug Discov 1, 609–620 (2002). https://doi.org/10.1038/nrd870

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd870

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing