Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

Organs-on-chips at the frontiers of drug discovery

Abstract

Improving the effectiveness of preclinical predictions of human drug responses is critical to reducing costly failures in clinical trials. Recent advances in cell biology, microfabrication and microfluidics have enabled the development of microengineered models of the functional units of human organs — known as organs-on-chips — that could provide the basis for preclinical assays with greater predictive power. Here, we examine the new opportunities for the application of organ-on-chip technologies in a range of areas in preclinical drug discovery, such as target identification and validation, target-based screening, and phenotypic screening. We also discuss emerging drug discovery opportunities enabled by organs-on-chips, as well as important challenges in realizing the full potential of this technology.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lung-on-a-chip.
Figure 2: Organ-on-a-chip models for cancer research.
Figure 3: In vivo engineering of bone marrow.
Figure 4: Brain tissue-on-a-chip.
Figure 5: Body-on-chip systems.

Similar content being viewed by others

References

  1. Scannell, J. W., Blanckley, A., Boldon, H. & Warrington, B. Diagnosing the decline in pharmaceutical R&D efficiency. Nature Rev. Drug Discov. 11, 191–200 (2012).

    CAS  Google Scholar 

  2. Paul, S. M. et al. How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nature Rev. Drug Discov. 9, 203–214 (2010).

    Article  CAS  Google Scholar 

  3. Caponigro, G. & Sellers, W. R. Advances in the preclinical testing of cancer therapeutic hypotheses. Nature Rev. Drug Discov. 10, 179–187 (2011).

    CAS  Google Scholar 

  4. Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nature Rev. Drug Discov. 3, 711–715 (2004).

    CAS  Google Scholar 

  5. Bowes, J. et al. Reducing safety-related drug attrition: the use of in vitro pharmacological profiling. Nature Rev. Drug Discov. 11, 909–922 (2012).

    CAS  Google Scholar 

  6. Muller, P. Y. & Milton, M. N. The determination and interpretation of the therapeutic index in drug development. Nature Rev. Drug Discov. 11, 751–761 (2012).

    CAS  Google Scholar 

  7. Folch, A. & Toner, M. Microengineering of cellular interactions. Annu. Rev. Biomed. Eng. 2, 227–256 (2000).

    CAS  PubMed  Google Scholar 

  8. Whitesides, G. M., Ostuni, E., Takayama, S., Jiang, X. Y. & Ingber, D. E. Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 3, 335–373 (2001).

    CAS  PubMed  Google Scholar 

  9. Beebe, D. J., Mensing, G. A. & Walker, G. M. Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 4, 261–286 (2002).

    CAS  PubMed  Google Scholar 

  10. Shamir, E. R. & Ewald, A. J. Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nature Rev. Mol. Cell Biol. 15, 647–664 (2014).

    CAS  Google Scholar 

  11. Huh, D., Hamilton, G. A. & Ingber, D. E. From 3D cell culture to organs-on-chips. Trends Cell Biol. 21, 745–754 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Yum, K., Hong, S. G., Healy, K. E. & Lee, L. P. Physiologically relevant organs on chips. Biotechnol. J. 9, 16–27 (2014).

    CAS  PubMed  Google Scholar 

  13. Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Inamdar, N. K. & Borenstein, J. T. Microfluidic cell culture models for tissue engineering. Curr. Opin. Biotechnol. 22, 681–689 (2011).

    CAS  PubMed  Google Scholar 

  15. Huh, D. et al. A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci. Transl. Med. 4, 159ra147 (2012).

    PubMed  PubMed Central  Google Scholar 

  16. Khetani, S. R. & Bhatia, S. N. Microscale culture of human liver cells for drug development. Nature Biotech. 26, 120–126 (2007).

    Google Scholar 

  17. Bhatia, S. N., Balis, U. J., Yarmush, M. L. & Toner, M. Effect of cell–cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. FASEB J. 13, 1883–1900 (1999).

    CAS  PubMed  Google Scholar 

  18. Huh, D., Torisawa, Y. S., Hamilton, G. A., Kim, H. J. & Ingber, D. E. Microengineered physiological biomimicry: organs-on-chips. Lab Chip 12, 2156–2164 (2012).

    CAS  PubMed  Google Scholar 

  19. Ghaemmaghami, A. M., Hancock, M. J., Harrington, H., Kaji, H. & Khademhosseini, A. Biomimetic tissues on a chip for drug discovery. Drug Discov. Today 17, 173–181 (2012).

    CAS  PubMed  Google Scholar 

  20. van der Meer, A. D. & van den Berg, A. Organs-on-chips: breaking the in vitro impasse. Integr. Biol. (Camb.) 4, 461–470 (2012).

    CAS  Google Scholar 

  21. Griffith, L. G. & Swartz, M. A. Capturing complex 3D tissue physiology in vitro. Nature Rev. Mol. Cell Biol. 7, 211–224 (2006).

    CAS  Google Scholar 

  22. El-Ali, J., Sorger, P. K. & Jensen, K. F. Cells on chips. Nature 442, 403–411 (2006).

    CAS  PubMed  Google Scholar 

  23. Whitesides, G. M. The origins and the future of microfluidics. Nature 442, 368–373 (2006).

    CAS  PubMed  Google Scholar 

  24. Sackmann, E. K., Fulton, A. L. & Beebe, D. J. The present and future role of microfluidics in biomedical research. Nature 507, 181–189 (2014).

    CAS  PubMed  Google Scholar 

  25. Bhatia, S. N. & Ingber, D. E. Microfluidic organs-on-chips. Nature Biotech. 32, 760–772 (2014).

    CAS  Google Scholar 

  26. Olson, H. et al. Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul. Toxicol. Pharm. 32, 56–67 (2000).

    CAS  Google Scholar 

  27. Mak, I. W., Evaniew, N. & Ghert, M. Lost in translation: animal models and clinical trials in cancer treatment. Am. J. Transl. Res. 6, 114–118 (2014).

    PubMed  PubMed Central  Google Scholar 

  28. Seok, J. et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl Acad. Sci. USA 110, 3507–3512 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Henderson, V. C., Kimmelman, J., Fergusson, D., Grimshaw, J. M. & Hackam, D. G. Threats to validity in the design and conduct of preclinical efficacy studies: a systematic review of guidelines for in vivo animal experiments. PLoS Med. 10, e1001489 (2013).

    PubMed  PubMed Central  Google Scholar 

  30. Li, F., Yin, Z., Jin, G., Zhao, H. & Wong, S. T. Chapter 17: bioimage informatics for systems pharmacology. PLoS Comput. Biol. 9, e1003043 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Polini, A. et al. Organs-on-a-chip: a new tool for drug discovery. Expert Opin. Drug Dis. 9, 335–352 (2014).

    CAS  Google Scholar 

  32. Song, J. W. et al. Microfluidic endothelium for studying the intravascular adhesion of metastatic breast cancer cells. PLoS ONE 4, e5756 (2009).

    PubMed  PubMed Central  Google Scholar 

  33. Bersini, S. et al. A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Biomaterials 35, 2454–2461 (2014).

    CAS  PubMed  Google Scholar 

  34. Businaro, L. et al. Cross talk between cancer and immune cells: exploring complex dynamics in a microfluidic environment. Lab Chip 13, 229–239 (2013).

    CAS  PubMed  Google Scholar 

  35. Kunze, A. et al. Astrocyte–neuron co-culture on microchips based on the model of SOD mutation to mimic ALS. Integr. Biol. (Camb.) 5, 964–975 (2013).

    CAS  Google Scholar 

  36. Wang, G. et al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nature Med. 20, 616–623 (2014).

    CAS  PubMed  Google Scholar 

  37. Aref, A. R. et al. Screening therapeutic EMT blocking agents in a three-dimensional microenvironment. Integr. Biol. (Camb.) 5, 381–389 (2013).

    CAS  Google Scholar 

  38. Vidi, P. A. et al. Disease-on-a-chip: mimicry of tumor growth in mammary ducts. Lab Chip 14, 172–177 (2014).

    CAS  PubMed  Google Scholar 

  39. Tatosian, D. A. & Shuler, M. L. A novel system for evaluation of drug mixtures for potential efficacy in treating multidrug resistant cancers. Biotechnol. Bioeng. 103, 187–198 (2009).

    CAS  PubMed  Google Scholar 

  40. Torisawa, Y. S. et al. Bone marrow-on-a-chip replicates hematopoietic niche physiology in vitro. Nature Methods 11, 663–669 (2014).

    CAS  PubMed  Google Scholar 

  41. Berdichevsky, Y., Staley, K. J. & Yarmush, M. L. Building and manipulating neural pathways with microfluidics. Lab Chip 10, 999–1004 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Snouber, L. C. et al. Metabolomics-on-a-chip of hepatotoxicity induced by anticancer drug flutamide and its active metabolite hydroxyflutamide using HepG2/C3a microfluidic biochips. Toxicol. Sci. 132, 8–20 (2013).

    Google Scholar 

  43. Mao, S., Gao, D., Liu, W., Wei, H. & Lin, J.-M. Imitation of drug metabolism in human liver and cytotoxicity assay using a microfluidic device coupled to mass spectrometric detection. Lab Chip 12, 219–226 (2012).

    CAS  PubMed  Google Scholar 

  44. Choucha-Snouber, L. et al. Investigation of ifosfamide nephrotoxicity induced in a liver–kidney co-culture biochip. Biotechnol. Bioeng. 110, 597–608 (2013).

    CAS  PubMed  Google Scholar 

  45. Agarwal, A., Goss, J. A., Cho, A., McCain, M. L. & Parker, K. K. Microfluidic heart on a chip for higher throughput pharmacological studies. Lab Chip 13, 3599–3608 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Grosberg, A., Alford, P. W., McCain, M. L. & Parker, K. K. Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. Lab Chip 11, 4165–4173 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. McCain, M. L., Sheehy, S. P., Grosberg, A., Goss, J. A. & Parker, K. K. Recapitulating maladaptive, multiscale remodeling of failing myocardium on a chip. Proc. Natl Acad. Sci. USA 110, 9770–9775 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Thavandiran, N. et al. Design and formulation of functional pluripotent stem cell-derived cardiac microtissues. Proc. Natl Acad. Sci. USA 110, E4698–E4707 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Capulli, A. K. et al. Approaching the in vitro clinical trial: engineering organs on chips. Lab Chip 14, 3181–3186 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Thorneloe, K. S. et al. An orally active TRPV4 channel blocker prevents and resolves pulmonary edema induced by heart failure. Sci. Transl. Med. 4, 159ra148 (2012).

    PubMed  Google Scholar 

  51. Kramer, J. A., Sagartz, J. E. & Morris, D. L. The application of discovery toxicology and pathology towards the design of safer pharmaceutical lead candidates. Nature Rev. Drug Discov. 6, 636–649 (2007).

    CAS  Google Scholar 

  52. LeCluyse, E. L., Witek, R. P., Andersen, M. E. & Powers, M. J. Organotypic liver culture models: meeting current challenges in toxicity testing. Crit. Rev. Toxicol. 42, 501–548 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Baudoin, R. et al. Evaluation of seven drug metabolisms and clearances by cryopreserved human primary hepatocytes cultivated in microfluidic biochips. Xenobiotica 43, 140–152 (2013).

    CAS  PubMed  Google Scholar 

  54. Chao, P., Maguire, T., Novik, E., Cheng, K.-C. & Yarmush, M. Evaluation of a microfluidic based cell culture platform with primary human hepatocytes for the prediction of hepatic clearance in human. Biochem. Pharmacol. 78, 625–632 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kim, H. J., Huh, D., Hamilton, G. & Ingber, D. E. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12, 2165–2174 (2012).

    CAS  PubMed  Google Scholar 

  56. Kim, H. J. & Ingber, D. E. Gut-on-a-chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr. Biol. (Camb.) 5, 1130–1140 (2013).

    CAS  Google Scholar 

  57. Gao, D., Liu, H., Lin, J.-M., Wang, Y. & Jiang, Y. Characterization of drug permeability in Caco-2 monolayers by mass spectrometry on a membrane-based microfluidic device. Lab Chip 13, 978–985 (2013).

    CAS  PubMed  Google Scholar 

  58. Lee, J. B. & Sung, J. H. Organ-on-a-chip technology and microfluidic whole-body models for pharmacokinetic drug toxicity screening. Biotechnol. J. 8, 1258–1266 (2013).

    CAS  PubMed  Google Scholar 

  59. Sung, J. H. et al. Microfabricated mammalian organ systems and their integration into models of whole animals and humans. Lab Chip 13, 1201–1212 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Imura, Y., Sato, K. & Yoshimura, E. Micro total bioassay system for ingested substances: assessment of intestinal absorption, hepatic metabolism, and bioactivity. Anal. Chem. 82, 9983–9988 (2010).

    CAS  PubMed  Google Scholar 

  61. Imura, Y., Yoshimura, E. & Sato, K. Micro total bioassay system for oral drugs: evaluation of gastrointestinal degradation, intestinal absorption, hepatic metabolism, and bioactivity. Anal. Sci. 28, 197–199 (2012).

    CAS  PubMed  Google Scholar 

  62. Imura, Y., Yoshimura, E. & Sato, K. Microcirculation system with a dialysis part for bioassays evaluating anticancer activity and retention. Anal. Chem. 85, 1683–1688 (2013).

    CAS  PubMed  Google Scholar 

  63. Wikswo, J. P. et al. Scaling and systems biology for integrating multiple organs-on-a-chip. Lab Chip 13, 3496–3511 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Sung, J. H. & Shuler, M. L. A micro cell culture analog (μCCA) with 3D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs. Lab Chip 9, 1385–1394 (2009).

    CAS  PubMed  Google Scholar 

  65. Sung, J. H., Kam, C. & Shuler, M. L. A microfluidic device for a pharmacokinetic–pharmacodynamic (PK–PD) model on a chip. Lab Chip 10, 446–455 (2010).

    CAS  PubMed  Google Scholar 

  66. Zheng, W., Thorne, N. & McKew, J. C. Phenotypic screens as a renewed approach for drug discovery. Drug Discov. Today 18, 1067–1073 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Lee, J. A., Uhlik, M. T., Moxham, C. M., Tomandl, D. & Sall, D. J. Modern phenotypic drug discovery is a viable, neoclassic pharma strategy. J. Med. Chem. 55, 4527–4538 (2012).

    CAS  PubMed  Google Scholar 

  68. Trietsch, S. J., Israels, G. D., Joore, J., Hankemeier, T. & Vulto, P. Microfluidic titer plate for stratified 3D cell culture. Lab Chip 13, 3548–3554 (2013).

    CAS  PubMed  Google Scholar 

  69. Demonaco, H. J., Ali, A. & Hippel, E. The major role of clinicians in the discovery of off-label drug therapies. Pharmacotherapy 26, 323–332 (2006).

    PubMed  Google Scholar 

  70. Swinney, D. C. & Anthony, J. How were new medicines discovered? Nature Rev. Drug Discov. 10, 507–519 (2011).

    CAS  Google Scholar 

  71. Kalchman, J. et al. A three-dimensional microfluidic tumor cell migration assay to screen the effect of anti-migratory drugs and interstitial flow. Microfluid. Nanofluid. 14, 969–981 (2013).

    CAS  Google Scholar 

  72. Melnikova, I. Rare diseases and orphan drugs. Nature Rev. Drug Discov. 11, 267–268 (2012).

    CAS  Google Scholar 

  73. van der Meer, A. D., Orlova, V. V., ten Dijke, P., van den Berg, A. & Mummery, C. L. Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device. Lab Chip 13, 3562–3568 (2013).

    CAS  PubMed  Google Scholar 

  74. Phan, V. H. et al. An update on ethnic differences in drug metabolism and toxicity from anti-cancer drugs. Expert Opin. Drug Metab. Toxicol. 7, 1395–1410 (2011).

    CAS  PubMed  Google Scholar 

  75. US Food and Drug Administration, Center for Drug Evaluation and Research, Center for Biologics Evaluation and Research & Center for Devices and Radiological Health. Guidance for Industry: Enrichment Strategies for Clinical Trials to Support Approval of Human Drugs and Biological Products (US FDA, 2012).

  76. Ma, L. et al. Towards personalized medicine with a three-dimensional micro-scale perfusion-based two-chamber tissue model system. Biomaterials 33, 4353–4361 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Polimanti, R., Piacentini, S., Manfellotto, D. & Fuciarelli, M. Human genetic variation of CYP450 superfamily: analysis of functional diversity in worldwide populations. Pharmacogenomics 13, 1951–1960 (2012).

    CAS  PubMed  Google Scholar 

  78. Chen, Z. et al. A murine lung cancer co-clinical trial identifies genetic modifiers of therapeutic response. Nature 483, 613–617 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Torchilin, V. P. Multifunctional nanocarriers. Adv. Drug Deliv. Rev. 58, 1532–1555 (2006).

    CAS  PubMed  Google Scholar 

  80. Boisselier, E. & Astruc, D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 38, 1759–1782 (2009).

    CAS  PubMed  Google Scholar 

  81. Kim, Y. et al. Probing nanoparticle translocation across the permeable endothelium in experimental atherosclerosis. Proc. Natl Acad. Sci. USA 111, 1078–1083 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Prabhakarpandian, B. et al. SyM-BBB: a microfluidic blood brain barrier model. Lab Chip 13, 1093–1101 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Griep, L. M. et al. BBB on chip: microfluidic platform to mechanically and biochemically modulate blood–brain barrier function. Biomed. Microdevices 15, 145–150 (2013).

    CAS  PubMed  Google Scholar 

  84. Achyuta, A. K. H. et al. A modular approach to create a neurovascular unit-on-a-chip. Lab Chip 13, 542–553 (2013).

    CAS  PubMed  Google Scholar 

  85. Booth, R. & Kim, H. Characterization of a microfluidic in vitro model of the blood–brain barrier (mu BBB). Lab Chip 12, 1784–1792 (2012).

    CAS  PubMed  Google Scholar 

  86. Nelson, C. E. et al. Balancing cationic and hydrophobic content of PEGylated siRNA polyplexes enhances endosome escape, stability, blood circulation time, and bioactivity in vivo. ACS Nano 7, 8870–8880 (2013).

    CAS  PubMed  Google Scholar 

  87. Flaim, C. J., Chien, S. & Bhatia, S. N. An extracellular matrix microarray for probing cellular differentiation. Nature Methods 2, 119–125 (2005).

    CAS  PubMed  Google Scholar 

  88. Berthier, E., Young, E. W. & Beebe, D. Engineers are from PDMS-land, biologists are from polystyrenia. Lab Chip 12, 1224–1237 (2012).

    CAS  PubMed  Google Scholar 

  89. Wong, I. & Ho, C.-M. Surface molecular property modifications for poly (dimethylsiloxane) (PDMS) based microfluidic devices. Microfluid. Nanofluid. 7, 291–306 (2009).

    CAS  PubMed  Google Scholar 

  90. Domansky, K. et al. Clear castable polyurethane elastomer for fabrication of microfluidic devices. Lab Chip 13, 3956–3964 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. van Midwoud, P. M., Janse, A., Merema, M. T., Groothuis, G. M. & Verpoorte, E. Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models. Anal. Chem. 84, 3938–3944 (2012).

    CAS  PubMed  Google Scholar 

  92. Ghafar-Zadeh, E., Waldeisen, J. R. & Lee, L. P. Engineered approaches to the stem cell microenvironment for cardiac tissue regeneration. Lab Chip 11, 3031–3048 (2011).

    CAS  PubMed  Google Scholar 

  93. Mathur, A. et al. Human induced pluripotent stem cell-based microphysiological tissue models of myocardium and liver for drug development. Stem Cell Res. Ther. 4 (Suppl. 1), S14 (2013).

    PubMed  PubMed Central  Google Scholar 

  94. Neuzil, P., Giselbrecht, S., Lange, K., Huang, T. J. & Manz, A. Revisiting lab-on-a-chip technology for drug discovery. Nature Rev. Drug Discov. 11, 620–632 (2012).

    Google Scholar 

  95. Messner, S., Agarkova, I., Moritz, W. & Kelm, J. Multi-cell type human liver microtissues for hepatotoxicity testing. Arch. Toxicol. 87, 209–213 (2013).

    CAS  PubMed  Google Scholar 

  96. DesRochers, T. M., Suter, L., Roth, A. & Kaplan, D. L. Bioengineered 3D human kidney tissue, a platform for the determination of nephrotoxicity. PLoS ONE 8, e59219 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Meyvantsson, I., Warrick, J. W., Hayes, S., Skoien, A. & Beebe, D. J. Automated cell culture in high density tubeless microfluidic device arrays. Lab Chip 8, 717–724 (2008).

    CAS  PubMed  Google Scholar 

  98. Bouhifd, M. et al. Mapping the human toxome by systems toxicology. Basic Clin. Pharmacol. Toxicol. 115, 24–31 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. US Food and Drug Administration, Center for Drug Evaluation and Research & Center for Biologics Evaluation and Research. Guidance for Industry: Product Development Under the Animal Rule (US FDA, 2014).

  100. Esch, M., King, T. & Shuler, M. The role of body-on-a-chip devices in drug and toxicity studies. Annu. Rev. Biomed. Eng. 13, 55–72 (2011).

    CAS  PubMed  Google Scholar 

  101. Williamson, A., Singh, S., Fernekorn, U. & Schober, A. The future of the patient-specific body-on-a-chip. Lab Chip 13, 3471–3480 (2013).

    CAS  PubMed  Google Scholar 

  102. Sutherland, M. L., Fabre, K. M. & Tagle, D. A. The National Institutes of Health Microphysiological Systems Program focuses on a critical challenge in the drug discovery pipeline. Stem Cell Res. Ther. 4 (Suppl. 1), I1 (2013).

    PubMed  PubMed Central  Google Scholar 

  103. Dambach, D. M. & Uppal, H. Improving risk assessment. Sci. Transl. Med. 4, 159ps22 (2012).

    PubMed  Google Scholar 

  104. Jeon, J. S. et al. Generation of 3D functional microvascular networks with human mesenchymal stem cells in microfluidic systems. Integr. Biol. (Camb.) 6, 555–563 (2014).

    CAS  Google Scholar 

  105. Lee, H., Kim, S., Chung, M., Kim, J. H. & Jeon, N. L. A bioengineered array of 3D microvessels for vascular permeability assay. Microvasc. Res. 91, 90–98 (2014).

    CAS  PubMed  Google Scholar 

  106. Fischbach, C. et al. Engineering tumors with 3D scaffolds. Nature Methods 4, 855–860 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank M. Farrell, M. Mondrinos, C. Blundell, J. Mealy and M. Chen for helpful discussions. The authors are supported by the US National Institutes of Health (NIH) Director's Innovator Award to D.H. (1DP2HL127720-01), the University of Pennsylvania, USA, and the National Research Foundation of Korea (2012M3A7B4035286 and 2013R1A2A2A04013379). E.W.E. is supported by the US National Science Foundation Graduate Research Fellowship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongeun Huh.

Ethics declarations

Competing interests

A.B. is partly paid by a Defense Advanced Research Projects Agency (DARPA) grant and an FDA Broad Agency Announcement grant, both relating to organ on chip work; A.B. is not the principal investigator for these grants. A.B. is listed on four patents regarding organs on chips: [1] PCT/US12/36920 filed 05/08/12; [2] PCT/US12/37096 filed 05/09/12; [3] PCT/US12/68725 filed 12/10/12; and [4] PCT/US12/68766 filed 12/10/12. The value of each patent is not expected to change with this publication. E.W.E. and D.H. declare no competing financial interests.

PowerPoint slides

Glossary

Biomimetic

Refers to the use of principles, mechanisms and designs derived from those naturally occurring in living organisms.

Epithelial–mesenchymal transition

(EMT). The process by which a polarized epithelial cell undergoes a series of biochemical changes to acquire characteristics of a mesenchymal cell, including increased invasive and migratory capacity, higher resistance to apoptosis and upregulated production of extracellular matrix proteins.

Microfluidics

A science and engineering discipline focusing on the development of fluidic systems with characteristic dimensions of tens to hundreds of micrometres that provide capabilities to control, manipulate and analyse small volumes of fluids (microlitres to attolitres) for a wide range of applications.

Spheroids

Three-dimensional spherical agglomerations of adherent cells generated by intercellular adhesion and aggregation.

Stratified medicine

An approach that aims to develop patient-specific therapies using biological or risk characteristics (for example, biomarkers and genetics) shared by subgroups of patient populations. This approach is also referred to as personalized or precision medicine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esch, E., Bahinski, A. & Huh, D. Organs-on-chips at the frontiers of drug discovery. Nat Rev Drug Discov 14, 248–260 (2015). https://doi.org/10.1038/nrd4539

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd4539

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research