Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Convergent pathogenic pathways in Alzheimer's and Huntington's diseases: shared targets for drug development

Key Points

  • Although their aetiology is different, neurodegenerative diseases such as Alzheimer's disease and Huntington's disease have remarkable similarities at the level of molecular pathogenic processes. These shared pathways contain common therapeutic targets that could be exploited for drug development.

  • These shared pathogenic pathways include: the aberrant phosphorylation, palmitoylation and acetylation of disease-causing proteins; protein misfolding; a failure to clear disease-causing proteins by the ubiquitin–proteasome system or autophagy; changes in NMDA (N-methyl-D-aspartate) receptor activity at the synapse; alterations in the levels of brain-derived neurotrophic factor and nerve growth factor as well as associated receptors and trafficking pathways; and increased activity of caspase enzymes.

  • Not all targets are validated to the same degree in Alzheimer's disease and Huntington's disease; here, we provide a framework for ranking and direct comparison to identify the knowledge gaps that exist. This information should encourage greater interaction between scientists in the HD and AD research communities.

  • The inherited aetiology of Huntington's disease allows for the identification of individuals who carry the mutation but do not manifest symptoms, and early clinical changes in this population are currently being tracked. This knowledge will allow accurate clinical trials to be carried out to assess the disease-modifying properties of therapeutics at early stages of the illness.

  • Novel therapeutics could be assessed in a well-defined population of patients with Huntington's disease to provide early proof of concept for the modulation of pathways that are perturbed in both Alzheimer's disease and Huntington's disease. These results could then serve to prioritize testing in a more heterogeneous population of patients with Alzheimer's disease, for whom clinical end points and longitudinal markers of disease progression are not defined in as much detail.

Abstract

Neurodegenerative diseases, exemplified by Alzheimer's disease and Huntington's disease, are characterized by progressive neuropsychiatric dysfunction and loss of specific neuronal subtypes. Although there are differences in the exact sites of pathology, and the clinical profiles of these two conditions only partially overlap, considerable similarities in disease mechanisms and pathogenic pathways can be observed. These shared mechanisms raise the possibility of exploiting common therapeutic targets for drug development. As Huntington's disease has a monogenic cause, it is possible to accurately identify individuals who carry the Huntington's disease mutation but do not yet manifest symptoms. These individuals could act as a model for Alzheimer's disease to test therapeutic interventions that target shared pathogenic pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Therapeutic targets in the synaptic dysfunction pathway.
Figure 2: Therapeutic targets in the neurotrophin pathway.
Figure 3: Therapeutic targets in the apoptotic pathway.
Figure 4: Therapeutic targets in the protein misfolding pathway.
Figure 5: Therapeutic targets in the autophagy pathway.

Similar content being viewed by others

References

  1. Alzheimer's Association, Thies, W. & Bleiler, L. 2011 Alzheimer's disease facts and figures. Alzheimers Dement. 7, 208–244 (2011).

    Article  Google Scholar 

  2. Novak, M. J. & Tabrizi, S. J. Huntington's disease. BMJ 340, c3109 (2010).

    Article  PubMed  Google Scholar 

  3. Mihaescu, R. et al. Translational research in genomics of Alzheimer's disease: a review of current practice and future perspectives. J. Alzheimers Dis. 20, 967–980 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Zetzsche, T., Rujescu, D., Hardy, J. & Hampel, H. Advances and perspectives from genetic research: development of biological markers in Alzheimer's disease. Expert Rev. Mol. Diagn. 10, 667–690 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Bi, X. Alzheimer disease: update on basic mechanisms. J. Am. Osteopath. Assoc. 110, S3–S9 (2010).

    PubMed  Google Scholar 

  6. Crews, L. & Masliah, E. Molecular mechanisms of neurodegeneration in Alzheimer's disease. Hum. Mol. Genet. 19, R12–R20 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Karran, E., Mercken, M. & De Strooper, B. The amyloid cascade hypothesis for Alzherimer's disease: an appraisal for the development of therapeutics. Nature Rev. Drug Discov. 10, 698–712 (2011).

    Article  CAS  Google Scholar 

  8. Southwell, A. L. & Patterson, P. H. Gene therapy in mouse models of huntington disease. Neuroscientist 17, 153–162 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ehrnhoefer, D. E., Sutton, L. & Hayden, M. R. Small changes, big impact: posttranslational modifications and function of huntingtin in huntington disease. Neuroscientist 10 Feb 2011 (doi:10.1177/1073858410390378).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Albin, R. L. et al. Abnormalities of striatal projection neurons and N-methyl-D-aspartate receptors in presymptomatic Huntington's disease. N. Engl. J. Med. 322, 1293–1298 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Price, J. L. et al. Neuron number in the entorhinal cortex and CA1 in preclinical Alzheimer disease. Arch. Neurol. 58, 1395–1402 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Tagliavini, F. & Pilleri, G. Neuronal counts in basal nucleus of Meynert in Alzheimer disease and in simple senile dementia. Lancet 1, 469–470 (1983).

    Article  CAS  PubMed  Google Scholar 

  13. Mouton, P. R., Martin, L. J., Calhoun, M. E., Dal Forno, G. & Price, D. L. Cognitive decline strongly correlates with cortical atrophy in Alzheimer's dementia. Neurobiol. Aging 19, 371–377 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Zuccato, C., Valenza, M. & Cattaneo, E. Molecular mechanisms and potential therapeutical targets in Huntington's disease. Physiol. Rev. 90, 905–981 (2010). This is a comprehensive review of the molecular mechanisms and therapeutic targets that are involved in HD.

    Article  CAS  PubMed  Google Scholar 

  15. Kwak, S. P., Wang, J. K. T. & Howland, D. S. in Neurobiology of Huntington's Disease: Applications to Drug Discovery (eds Lo, D. C. & Hughes, R. E.) 85–120 (CRC, Boca Raton, Florida, 2011).

    Google Scholar 

  16. Tabrizi, S. J. et al. Biological and clinical changes in premanifest and early stage Huntington's disease in the TRACK-HD study: the 12-month longitudinal analysis. Lancet Neurol. 10, 31–42 (2011). This is a detailed study on the feasibility of clinical trials in patients without (or with very early) manifest symptoms of HD, including clearly defined end points and power calculations used in statistical comparisons.

    Article  PubMed  Google Scholar 

  17. Ehrnhoefer, D. E., Butland, S. L., Pouladi, M. A. & Hayden, M. R. Mouse models of Huntington disease: variations on a theme. Dis. Model. Mech. 2, 123–129 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fernandes, H. B. & Raymond, L. A. in Biology of the NMDA receptor (Frontiers in Neuroscience) Ch.2 (ed. Van Dongen, A. M.) 17–40 (CRC, Boca Raton, 2009).

    Google Scholar 

  19. Hoe, H. S. et al. The effects of amyloid precursor protein on postsynaptic composition and activity. J. Biol. Chem. 284, 8495–8506 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Song, C., Zhang, Y., Parsons, C. G. & Liu, Y. F. Expression of polyglutamine-expanded huntingtin induces tyrosine phosphorylation of N-methyl-D-aspartate receptors. J. Biol. Chem. 278, 33364–33369 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Roberson, E. D. et al. Amyloid-β/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer's disease. J. Neurosci. 31, 700–711 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ittner, L. M. et al. Dendritic function of tau mediates amyloid-β toxicity in Alzheimer's disease mouse models. Cell 142, 387–397 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Hu, J. L., Liu, G., Li, Y. C., Gao, W. J. & Huang, Y. Q. Dopamine D1 receptor-mediated NMDA receptor insertion depends on Fyn but not Src kinase pathway in prefrontal cortical neurons. Mol. Brain 3, 20 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Okamoto, S. et al. Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin. Nature Med. 15, 1407–1413 (2009). This is a detailed analysis of the mechanism of action of memantine, and a demonstration of its beneficial effects in a mouse model of HD.

    Article  CAS  PubMed  Google Scholar 

  25. Sydow, A. et al. Tau-induced defects in synaptic plasticity, learning, and memory are reversible in transgenic mice after switching off the toxic Tau mutant. J. Neurosci. 31, 2511–2525 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kung, V. W., Hassam, R., Morton, A. J. & Jones, S. Dopamine-dependent long term potentiation in the dorsal striatum is reduced in the R6/2 mouse model of Huntington's disease. Neuroscience 146, 1571–1580 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Bordji, K., Becerril-Ortega, J., Nicole, O. & Buisson, A. Activation of extrasynaptic, but not synaptic, NMDA receptors modifies amyloid precursor protein expression pattern and increases amyloid-β production. J. Neurosci. 30, 15927–15942 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, S. et al. Soluble Aβ oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors. J. Neurosci. 31, 6627–6638 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Milnerwood, A. J. et al. Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington's disease mice. Neuron 65, 178–190 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Filali, M., Lalonde, R. & Rivest, S. Subchronic memantine administration on spatial learning, exploratory activity, and nest-building in an APP/PS1 mouse model of Alzheimer's disease. Neuropharmacology 60, 930–936 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Schulz, J. B. et al. Sustained effects of once-daily memantine treatment on cognition and functional communication skills in patients with moderate to severe Alzheimer's disease: results of a 16-week open-label trial. J. Alzheimers Dis. 25, 463–475 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Beister, A. et al. The N-methyl-D-aspartate antagonist memantine retards progression of Huntington's disease. J. Neural Transm. Suppl. 68, 117–122 (2004).

    Article  CAS  Google Scholar 

  33. Hjermind, L. E., Law, I., Jonch, A., Stokholm, J. & Nielsen, J. E. Huntington's disease: effect of memantine on FDG–PET brain metabolism? J. Neuropsychiatry Clin. Neurosci. 23, 206–210 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Ondo, W. G., Mejia, N. I. & Hunter, C. B. A pilot study of the clinical efficacy and safety of memantine for Huntington's disease. Parkinsonism Relat. Disord. 13, 453–454 (2007).

    Article  PubMed  Google Scholar 

  35. Zwilling, D. et al. Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell 145, 863–874 (2011). This study provides proof of concept for the beneficial effects of the therapeutic modulation of the pathway that generates quinolinic acid in mouse models of AD and HD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hennigan, A., O'Callaghan, R. M. & Kelly, A. M. Neurotrophins and their receptors: roles in plasticity, neurodegeneration and neuroprotection. Biochem. Soc. Trans. 35, 424–427 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Ferrer, I., Goutan, E., Marin, C., Rey, M. J. & Ribalta, T. Brain-derived neurotrophic factor in Huntington disease. Brain Res. 866, 257–261 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Connor, B. et al. Brain-derived neurotrophic factor is reduced in Alzheimer's disease. Brain Res. Mol. Brain Res. 49, 71–81 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Voineskos, A. N. et al. The brain-derived neurotrophic factor Val66Met polymorphism and prediction of neural risk for Alzheimer disease. Arch. Gen. Psychiatry 68, 198–206 (2011).

    Article  PubMed  Google Scholar 

  40. Bian, J. T., Zhang, J. W., Zhang, Z. X. & Zhao, H. L. Association analysis of brain-derived neurotrophic factor (BDNF) gene 196 A/G polymorphism with Alzheimer's disease (AD) in mainland Chinese. Neurosci. Lett. 387, 11–16 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Ventriglia, M. et al. Association between the BDNF 196 A/G polymorphism and sporadic Alzheimer's disease. Mol. Psychiatry 7, 136–137 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Desai, P., Nebes, R., DeKosky, S. T. & Kamboh, M. I. Investigation of the effect of brain-derived neurotrophic factor (BDNF) polymorphisms on the risk of late-onset Alzheimer's disease (AD) and quantitative measures of AD progression. Neurosci. Lett. 379, 229–234 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Bagnoli, S. et al. Brain-derived neurotrophic factor genetic variants are not susceptibility factors to Alzheimer's disease in Italy. Ann. Neurol. 55, 447–448 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Combarros, O., Infante, J., Llorca, J. & Berciano, J. Polymorphism at codon 66 of the brain-derived neurotrophic factor gene is not associated with sporadic Alzheimer's disease. Dement. Geriatr. Cogn. Disord. 18, 55–58 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Alberch, J. et al. Association between BDNF Val66Met polymorphism and age at onset in Huntington disease. Neurology 65, 964–965 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Kishikawa, S. et al. Brain-derived neurotrophic factor does not influence age at neurologic onset of Huntington's disease. Neurobiol. Dis. 24, 280–285 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Neeper, S. A., Gomez-Pinilla, F., Choi, J. & Cotman, C. Exercise and brain neurotrophins. Nature 373, 109 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Liu, H. L., Zhao, G., Cai, K., Zhao, H. H. & Shi, L. D. Treadmill exercise prevents decline in spatial learning and memory in APP/PS1 transgenic mice through improvement of hippocampal long-term potentiation. Behav. Brain Res. 218, 308–314 (2011).

    Article  PubMed  Google Scholar 

  49. Arancibia, S. et al. Protective effect of BDNF against β-amyloid induced neurotoxicity in vitro and in vivo in rats. Neurobiol. Dis. 31, 316–326 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Dey, N. D. et al. Genetically engineered mesenchymal stem cells reduce behavioral deficits in the YAC 128 mouse model of Huntington's disease. Behav. Brain Res. 214, 193–200 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Blurton-Jones, M. et al. Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc. Natl Acad. Sci. USA 106, 13594–13599 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nagahara, A. H. et al. Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer's disease. Nature Med. 15, 331–337 (2009). This study demonstrates the therapeutic effects of BDNF in six animal models of AD, including mouse models and non-human primate models.

    Article  CAS  PubMed  Google Scholar 

  53. Simmons, D. A. et al. Up-regulating BDNF with an ampakine rescues synaptic plasticity and memory in Huntington's disease knockin mice. Proc. Natl Acad. Sci. USA 106, 4906–4911 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Leyhe, T. et al. Increase of BDNF serum concentration in lithium treated patients with early Alzheimer's disease. J. Alzheimers Dis. 16, 649–656 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Forlenza, O. V. et al. Disease-modifying properties of long-term lithium treatment for amnestic mild cognitive impairment: randomised controlled trial. Br. J. Psychiatry 198, 351–356 (2011).

    Article  PubMed  Google Scholar 

  56. Toledo, E. M. & Inestrosa, N. C. Activation of Wnt signaling by lithium and rosiglitazone reduced spatial memory impairment and neurodegeneration in brains of an APPswe/PSEN1ΔE9 mouse model of Alzheimer's disease. Mol. Psychiatry 15, 272–285 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Carmichael, J., Sugars, K. L., Bao, Y. P. & Rubinsztein, D. C. Glycogen synthase kinase-3β inhibitors prevent cellular polyglutamine toxicity caused by the Huntington's disease mutation. J. Biol. Chem. 277, 33791–33798 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Rockenstein, E. et al. Neuroprotective effects of regulators of the glycogen synthase kinase-3β signaling pathway in a transgenic model of Alzheimer's disease are associated with reduced amyloid precursor protein phosphorylation. J. Neurosci. 27, 1981–1991 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Quiroz, J. A., Machado-Vieira, R., Zarate, C. A. Jr & Manji, H. K. Novel insights into lithium's mechanism of action: neurotrophic and neuroprotective effects. Neuropsychobiology 62, 50–60 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gauthier, L. R. et al. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 118, 127–138 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Peethumnongsin, E. et al. Convergence of presenilin- and tau-mediated pathways on axonal trafficking and neuronal function. J. Neurosci. 30, 13409–13418 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wu, L. L., Fan, Y., Li, S., Li, X. J. & Zhou, X. F. Huntingtin-associated protein-1 interacts with pro-brain-derived neurotrophic factor and mediates its transport and release. J. Biol. Chem. 285, 5614–5623 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Harjes, P. & Wanker, E. E. The hunt for huntingtin function: interaction partners tell many different stories. Trends Biochem. Sci. 28, 425–433 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Dixit, R., Ross, J. L., Goldman, Y. E. & Holzbaur, E. L. Differential regulation of dynein and kinesin motor proteins by tau. Science 319, 1086–1089 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. McGuire, J. R., Rong, J., Li, S. H. & Li, X. J. Interaction of Huntingtin-associated protein-1 with kinesin light chain: implications in intracellular trafficking in neurons. J. Biol. Chem. 281, 3552–3559 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Lazarov, O. et al. Impairments in fast axonal transport and motor neuron deficits in transgenic mice expressing familial Alzheimer's disease-linked mutant presenilin 1. J. Neurosci. 27, 7011–7020 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sereno, L. et al. A novel GSK-3β inhibitor reduces Alzheimer's pathology and rescues neuronal loss in vivo. Neurobiol. Dis. 35, 359–367 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Marks, P. A. The clinical development of histone deacetylase inhibitors as targeted anticancer drugs. Expert Opin. Investig. Drugs 19, 1049–1066 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dompierre, J. P. et al. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation. J. Neurosci. 27, 3571–3583 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Butler, D., Bendiske, J., Michaelis, M. L., Karanian, D. A. & Bahr, B. A. Microtubule-stabilizing agent prevents protein accumulation-induced loss of synaptic markers. Eur. J. Pharmacol. 562, 20–27 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Brunden, K.R. et al. Epothilone D improves microtubule density, axonal integrity, and cognition in a transgenic mouse model of tauopathy. J. Neurosci. 30, 13861–13866 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Iwase, H. et al. A Phase II multi-center study of triple therapy with paclitaxel, S-1 and cisplatin in patients with advanced gastric cancer. Oncology 80, 76–83 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Schulte-Herbruggen, O., Jockers-Scherubl, M. C. & Hellweg, R. Neurotrophins: from pathophysiology to treatment in Alzheimer's disease. Curr. Alzheimer Res. 5, 38–44 (2008).

    Article  PubMed  Google Scholar 

  74. Gu, H., Long, D., Song, C. & Li, X. Recombinant human NGF-loaded microspheres promote survival of basal forebrain cholinergic neurons and improve memory impairments of spatial learning in the rat model of Alzheimer's disease with fimbria-fornix lesion. Neurosci. Lett. 453, 204–209 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Menei, P. et al. Intracerebral implantation of NGF-releasing biodegradable microspheres protects striatum against excitotoxic damage. Exp. Neurol. 161, 259–272 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Tuszynski, M. H. et al. A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nature Med. 11, 551–555 (2005). This is a report on the first clinical trial of growth factor therapy in a human neurodegenerative disease.

    Article  CAS  PubMed  Google Scholar 

  77. Covaceuszach, S. et al. Development of a non invasive NGF-based therapy for Alzheimer's disease. Curr. Alzheimer Res. 6, 158–170 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Zuccato, C. et al. Systematic assessment of BDNF and its receptor levels in human cortices affected by Huntington's disease. Brain Pathol. 18, 225–238 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Troy, C. M., Friedman, J. E. & Friedman, W. J. Mechanisms of p75-mediated death of hippocampal neurons. Role of caspases. J. Biol. Chem. 277, 34295–34302 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Peineau, S. et al. LTP inhibits LTD in the hippocampus via regulation of GSK3β. Neuron 53, 703–717 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Fombonne, J., Rabizadeh, S., Banwait, S., Mehlen, P. & Bredesen, D. E. Selective vulnerability in Alzheimer's disease: amyloid precursor protein and p75(NTR) interaction. Ann. Neurol. 65, 294–303 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jeanneteau, F., Garabedian, M. J. & Chao, M. V. Activation of Trk neurotrophin receptors by glucocorticoids provides a neuroprotective effect. Proc. Natl Acad. Sci. USA 105, 4862–4867 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Moffitt, K. L., Martin, S. L. & Walker, B. From sentencing to execution — the processes of apoptosis. J. Pharm. Pharmacol. 62, 547–562 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Feinstein-Rotkopf, Y. & Arama, E. Can't live without them, can live with them: roles of caspases during vital cellular processes. Apoptosis 14, 980–995 (2009).

    Article  PubMed  Google Scholar 

  85. Nikolaev, A., McLaughlin, T., O'Leary, D. D. & Tessier-Lavigne, M. APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 457, 981–989 (2009). This study shows that APP-mediated axon pruning and neuronal death result from caspase 6 and caspase 3 activity, respectively.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Park, K. J., Grosso, C. A., Aubert, I., Kaplan, D. R. & Miller, F. D. p75NTR-dependent, myelin-mediated axonal degeneration regulates neural connectivity in the adult brain. Nature Neurosci. 13, 559–566 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Schoenmann, Z. et al. Axonal degeneration is regulated by the apoptotic machinery or a NAD+-sensitive pathway in insects and mammals. J. Neurosci. 30, 6375–6386 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li, Z. et al. Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization. Cell 141, 859–871 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Albrecht, S. et al. Activation of caspase-6 in aging and mild cognitive impairment. Am. J. Pathol. 170, 1200–1209 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Graham, R. K. et al. Cleavage at the 586 amino acid caspase-6 site in mutant huntingtin influences caspase-6 activation in vivo. J. Neurosci. 30, 15019–15029 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Guo, H. et al. Active caspase-6 and caspase-6-cleaved tau in neuropil threads, neuritic plaques, and neurofibrillary tangles of Alzheimer's disease. Am. J. Pathol. 165, 523–531 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Halawani, D. et al. Identification of caspase-6-mediated processing of the valosin containing protein (p97) in Alzheimer's disease: a novel link to dysfunction in ubiquitin proteasome system-mediated protein degradation. J. Neurosci. 30, 6132–6142 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Galvan, V. et al. Reversal of Alzheimer's-like pathology and behavior in human APP transgenic mice by mutation of Asp664. Proc. Natl Acad. Sci. USA 103, 7130–7135 (2006). This study shows that AD-like symptoms in a mouse model can be reversed by preventing the caspase-mediated cleavage of APP.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Graham, R. K. et al. Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin. Cell 125, 1179–1191 (2006). This study shows that similarly to AD, HD-like symptoms in a mouse model are prevented by making mutant HTT resistant to cleavage by caspase 6.

    Article  CAS  PubMed  Google Scholar 

  95. Ghavami, S. et al. Apoptosis and cancer: mutations within caspase genes. J. Med. Genet. 46, 497–510 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Philchenkov, A., Zavelevich, M., Kroczak, T. J. & Los, M. Caspases and cancer: mechanisms of inactivation and new treatment modalities. Exp. Oncol. 26, 82–97 (2004).

    CAS  PubMed  Google Scholar 

  97. Shirendeb, U. et al. Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington's disease: implications for selective neuronal damage. Hum. Mol. Genet. 20, 1438–1455 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Du, H. et al. Early deficits in synaptic mitochondria in an Alzheimer's disease mouse model. Proc. Natl Acad. Sci. USA 107, 18670–18675 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Pagani, L. & Eckert, A. Amyloid-β interaction with mitochondria. Int. J. Alzheimers Dis. 2011, 925050 (2011).

    PubMed  PubMed Central  Google Scholar 

  100. Pratico, D. Evidence of oxidative stress in Alzheimer's disease brain and antioxidant therapy: lights and shadows. Ann. NY Acad. Sci. 1147, 70–78 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Stack, E. C., Matson, W. R. & Ferrante, R. J. Evidence of oxidant damage in Huntington's disease: translational strategies using antioxidants. Ann. NY Acad. Sci. 1147, 79–92 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Jo, J. et al. Aβ1–42 inhibition of LTP is mediated by a signaling pathway involving caspase-3, Akt1 and GSK-3β. Nature Neurosci. 14, 545–547 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Gray, D. C., Mahrus, S. & Wells, J. A. Activation of specific apoptotic caspases with an engineered small-molecule-activated protease. Cell 142, 637–646 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Schettini, G., Govoni, S., Racchi, M. & Rodriguez, G. Phosphorylation of APP-CTF-AICD domains and interaction with adaptor proteins: signal transduction and/or transcriptional role — relevance for Alzheimer pathology. J. Neurochem. 115, 1299–1308 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Taru, H., Yoshikawa, K. & Suzuki, T. Suppression of the caspase cleavage of β-amyloid precursor protein by its cytoplasmic phosphorylation. FEBS Lett. 567, 248–252 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Warby, S. C. et al. Phosphorylation of huntingtin reduces the accumulation of its nuclear fragments. Mol. Cell Neurosci. 40, 121–127 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Humbert, S. et al. The IGF-1/Akt pathway is neuroprotective in Huntington's disease and involves Huntingtin phosphorylation by Akt. Dev. Cell 2, 831–837 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Metzler, M. et al. Phosphorylation of huntingtin at Ser421 in YAC128 neurons is associated with protection of YAC128 neurons from NMDA-mediated excitotoxicity and is modulated by PP1 and PP2A. J. Neurosci. 30, 14318–14329 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Phiel, C. J., Wilson, C. A., Lee, V. M. & Klein, P. S. GSK-3α regulates production of Alzheimer's disease amyloid-β peptides. Nature 423, 435–439 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Chiu, C. T., Liu, G., Leeds, P. & Chuang, D. M. Combined treatment with the mood stabilizers lithium and valproate produces multiple beneficial effects in transgenic mouse models of huntington's disease. Neuropsychopharmacology 27 Jul 2011 (doi:10.1038/npp.2011.128).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Valencia, A. et al. Mutant huntingtin and glycogen synthase kinase 3-β accumulate in neuronal lipid rafts of a presymptomatic knock-in mouse model of Huntington's disease. J. Neurosci. Res. 88, 179–190 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Qing, H. et al. Valproic acid inhibits Aβ production, neuritic plaque formation, and behavioral deficits in Alzheimer's disease mouse models. J. Exp. Med. 205, 2781–2789 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gottlicher, M. Valproic acid: an old drug newly discovered as inhibitor of histone deacetylases. Ann. Hematol. 83 (Suppl. 1), 91–92 (2004).

    Google Scholar 

  114. Herrmann, N., Lanctot, K. L., Rothenburg, L. S. & Eryavec, G. A placebo-controlled trial of valproate for agitation and aggression in Alzheimer's disease. Dement. Geriatr. Cogn. Disord. 23, 116–119 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Fardilha, M., Esteves, S. L., Korrodi-Gregorio, L., da Cruz e Silva, O. A. & da Cruz e Silva, F. F. The physiological relevance of protein phosphatase 1 and its interacting proteins to health and disease. Curr. Med. Chem. 17, 3996–4017 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Cheng, H. et al. S-palmitoylation of γ-secretase subunits nicastrin and APH-1. J. Biol. Chem. 284, 1373–1384 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Huang, K. et al. Neuronal palmitoyl acyl transferases exhibit distinct substrate specificity. FASEB J. 23, 2605–2615 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yanai, A. et al. Palmitoylation of huntingtin by HIP14 is essential for its trafficking and function. Nature Neurosci. 9, 824–831 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Benjannet, S. et al. Post-translational processing of β-secretase (β-amyloid-converting enzyme) and its ectodomain shedding. The pro- and transmembrane/cytosolic domains affect its cellular activity and amyloid-β production. J. Biol. Chem. 276, 10879–10887 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Fukata, Y. & Fukata, M. Protein palmitoylation in neuronal development and synaptic plasticity. Nature Rev. Neurosci. 11, 161–175 (2010).

    Article  CAS  Google Scholar 

  121. Huang, K. et al. Wild-type HTT modulates the enzymatic activity of the neuronal palmitoyl transferase HIP14. Hum. Mol. Genet. 20, 3356–3365 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Singaraja, R. R. et al. Altered palmitoylation and neuropathological deficits in mice lacking HIP14. Hum. Mol. Genet. 20, 3899–3909 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Robakis, N. K. An Alzheimer's disease hypothesis based on transcriptional dysregulation. Amyloid 10, 80–85 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Hathorn, T., Snyder-Keller, A. & Messer, A. Nicotinamide improves motor deficits and upregulates PGC-1α and BDNF gene expression in a mouse model of Huntington's disease. Neurobiol. Dis. 41, 43–50 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Hockly, E. et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease. Proc. Natl Acad. Sci. USA 100, 2041–2046 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ricobaraza, A. et al. Phenylbutyrate ameliorates cognitive deficit and reduces tau pathology in an Alzheimer's disease mouse model. Neuropsychopharmacology 34, 1721–1732 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Ross, C. A. & Poirier, M. A. Protein aggregation and neurodegenerative disease. Nature Med. 10, S10–S17 (2004).

    Article  PubMed  CAS  Google Scholar 

  128. Greenwald, J. & Riek, R. Biology of amyloid: structure, function, and regulation. Structure 18, 1244–1260 (2010).

    Article  CAS  PubMed  Google Scholar 

  129. Perrin, V. et al. Neuroprotection by Hsp104 and Hsp27 in lentiviral-based rat models of Huntington's disease. Mol. Ther. 15, 903–911 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Dedeoglu, A., Ferrante, R. J., Andreassen, O. A., Dillmann, W. H. & Beal, M. F. Mice overexpressing 70-kDa heat shock protein show increased resistance to malonate and 3-nitropropionic acid. Exp. Neurol. 176, 262–265 (2002).

    Article  CAS  PubMed  Google Scholar 

  131. Heiser, V. et al. Inhibition of huntingtin fibrillogenesis by specific antibodies and small molecules: implications for Huntington's disease therapy. Proc. Natl Acad. Sci. USA 97, 6739–6744 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhang, X. et al. A potent small molecule inhibits polyglutamine aggregation in Huntington's disease neurons and suppresses neurodegeneration in vivo. Proc. Natl Acad. Sci. USA 102, 892–897 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ehrnhoefer, D. E. et al. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nature Struct. Mol. Biol. 15, 558–566 (2008).

    Article  CAS  Google Scholar 

  134. Ehrnhoefer, D. E. et al. Green tea (–)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington's disease models. Hum. Mol. Genet. 15, 2743–2751 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Scherzer-Attali, R. et al. Complete phenotypic recovery of an Alzheimer's disease model by a quinone-tryptophan hybrid aggregation inhibitor. PLoS ONE 5, e11101 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Hamaguchi, T., Ono, K. & Yamada, M. Anti-amyloidogenic therapies: strategies for prevention and treatment of Alzheimer's disease. Cell. Mol. Life Sci. 63, 1538–1552 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Pickhardt, M. et al. N-phenylamine derivatives as aggregation inhibitors in cell models of tauopathy. Curr. Alzheimer Res. 4, 397–402 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Mereles, D., Buss, S. J., Hardt, S. E., Hunstein, W. & Katus, H. A. Effects of the main green tea polyphenol epigallocatechin-3-gallate on cardiac involvement in patients with AL amyloidosis. Clin. Res. Cardiol. 99, 483–490 (2010).

    Article  CAS  PubMed  Google Scholar 

  139. Rezai-Zadeh, K. et al. Green tea epigallocatechin-3-gallate (EGCG) reduces β-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice. Brain Res. 1214, 177–187 (2008).

    Article  CAS  PubMed  Google Scholar 

  140. Smith, A. et al. Nanolipidic particles improve the bioavailability and α-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer's disease. Int. J. Pharm. 389, 207–212 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Arrasate, M., Mitra, S., Schweitzer, E. S., Segal, M. R. & Finkbeiner, S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431, 805–810 (2004).

    Article  CAS  PubMed  Google Scholar 

  142. Umeda, T. et al. Intraneuronal amyloid β oligomers cause cell death via endoplasmic reticulum stress, endosomal/lysosomal leakage, and mitochondrial dysfunction in vivo. J. Neurosci. Res. 89, 1031–1042 (2011).

    Article  CAS  PubMed  Google Scholar 

  143. Davies, J. E., Sarkar, S. & Rubinsztein, D. C. The ubiquitin proteasome system in Huntington's disease and the spinocerebellar ataxias. BMC Biochem. 8 (Suppl. 1), 2 (2007).

    Article  CAS  Google Scholar 

  144. Oddo, S. The ubiquitin-proteasome system in Alzheimer's disease. J. Cell. Mol. Med. 12, 363–373 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Mitra, S., Tsvetkov, A. S. & Finkbeiner, S. Single neuron ubiquitin-proteasome dynamics accompanying inclusion body formation in huntington disease. J. Biol. Chem. 284, 4398–4403 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Bingol, B. & Sheng, M. Deconstruction for reconstruction: the role of proteolysis in neural plasticity and disease. Neuron 69, 22–32 (2011).

    Article  CAS  PubMed  Google Scholar 

  147. Wang, J. et al. Impaired ubiquitin–proteasome system activity in the synapses of Huntington's disease mice. J. Cell Biol. 180, 1177–1189 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Bedford, L., Lowe, J., Dick, L. R., Mayer, R. J. & Brownell, J. E. Ubiquitin-like protein conjugation and the ubiquitin–proteasome system as drug targets. Nature Rev. Drug Discov. 10, 29–46 (2011).

    Article  CAS  Google Scholar 

  149. Lee, B. H. et al. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 467, 179–184 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Yu, W. H. et al. Macroautophagy — a novel β-amyloid peptide-generating pathway activated in Alzheimer's disease. J. Cell Biol. 171, 87–98 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lee, J. H. et al. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141, 1146–1158 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Yang, D. S. et al. Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer's disease ameliorates amyloid pathologies and memory deficits. Brain 134, 258–277 (2011).

    Article  PubMed  Google Scholar 

  153. del Toro, D. et al. Mutant huntingtin impairs post-Golgi trafficking to lysosomes by delocalizing optineurin/Rab8 complex from the Golgi apparatus. Mol. Biol. Cell 20, 1478–1492 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Jaeger, P. A. & Wyss-Coray, T. Beclin 1 complex in autophagy and Alzheimer disease. Arch. Neurol. 67, 1181–1184 (2010).

    Article  PubMed  Google Scholar 

  155. Shibata, M. et al. Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1. J. Biol. Chem. 281, 14474–14485 (2006).

    Article  CAS  PubMed  Google Scholar 

  156. Lipinski, M. M. et al. Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer's disease. Proc. Natl Acad. Sci. USA 107, 14164–14169 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Yamamoto, A., Cremona, M. L. & Rothman, J. E. Autophagy-mediated clearance of huntingtin aggregates triggered by the insulin-signaling pathway. J. Cell Biol. 172, 719–731 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Qin, Z. H. et al. Autophagy regulates the processing of amino terminal huntingtin fragments. Hum. Mol. Genet. 12, 3231–3244 (2003).

    Article  CAS  PubMed  Google Scholar 

  159. Spencer, B. et al. Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in α-synuclein models of Parkinson's and Lewy body diseases. J. Neurosci. 29, 13578–13588 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wong, E. & Cuervo, A. M. Autophagy gone awry in neurodegenerative diseases. Nature Neurosci. 13, 805–811 (2010). This is a detailed review on the dysfunction of autophagic pathways in neurodegeneration.

    Article  CAS  PubMed  Google Scholar 

  161. Ravikumar, B. et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nature Genet. 36, 585–595 (2004).

    Article  CAS  PubMed  Google Scholar 

  162. Spilman, P. et al. Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-β levels in a mouse model of Alzheimer's disease. PLoS ONE 5, e9979 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Sofroniadou, S. & Goldsmith, D. Mammalian target of rapamycin (mTOR) inhibitors: potential uses and a review of haematological adverse effects. Drug Saf. 34, 97–115 (2011).

    Article  CAS  PubMed  Google Scholar 

  164. Williams, A. et al. Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. Nature Chem. Biol. 4, 295–305 (2008).

    Article  CAS  Google Scholar 

  165. Hampel, H. et al. Lithium trial in Alzheimer's disease: a randomized, single-blind, placebo-controlled, multicenter 10-week study. J. Clin. Psychiatry 70, 922–931 (2009).

    Article  CAS  PubMed  Google Scholar 

  166. Tsvetkov, A. S. et al. A small-molecule scaffold induces autophagy in primary neurons and protects against toxicity in a Huntington disease model. Proc. Natl Acad. Sci. USA 107, 16982–16987 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Floto, R. A. et al. Small molecule enhancers of rapamycin-induced TOR inhibition promote autophagy, reduce toxicity in Huntington's disease models and enhance killing of mycobacteria by macrophages. Autophagy 3, 620–622 (2007).

    Article  CAS  PubMed  Google Scholar 

  168. Petersen, R. C. Early diagnosis of Alzheimer's disease: is MCI too late? Curr. Alzheimer Res. 6, 324–330 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Hansson, O. et al. Association between CSF biomarkers and incipient Alzheimer's disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol. 5, 228–234 (2006).

    Article  CAS  PubMed  Google Scholar 

  170. Ballard, C. et al. Alzheimer's disease. Lancet 377, 1019–1031 (2011).

    Article  PubMed  Google Scholar 

  171. Calissano, P., Matrone, C. & Amadoro, G. Nerve growth factor as a paradigm of neurotrophins related to Alzheimer's disease. Dev. Neurobiol. 70, 372–383 (2010).

    CAS  PubMed  Google Scholar 

  172. Murer, M. G. et al. An immunohistochemical study of the distribution of brain-derived neurotrophic factor in the adult human brain, with particular reference to Alzheimer's disease. Neuroscience 88, 1015–1032 (1999).

    Article  CAS  PubMed  Google Scholar 

  173. Colucci-D'Amato, L., Perrone-Capano, C. & di Porzio, U. Chronic activation of ERK and neurodegenerative diseases. Bioessays 25, 1085–1095 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank W. Song and B. Leavitt for their comments on this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Hayden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Synaptic targets and targets in neurotrophin signalling (PDF 182 kb)

Supplementary information S2 (table)

Targets in the apoptotic pathway (PDF 178 kb)

Supplementary information S3 (table)

Targets in posttranslational modifications (PDF 175 kb)

Supplementary information S4 (table)

Targets in aggregation and clearance pathways (PDF 180 kb)

Related links

Related links

FURTHER INFORMATION

Michael Hayden's homepage

ClinicalTrials.gov

Enroll-HD website

FDA approval review, Center for Drug Evaluation and Research (Application number 22-525)

HD Research Crossroads website

Glossary

Chorea

An abnormal involuntary movement such as an irregular, rapid, involuntary or excessive movement, which seems to randomly affect different parts of the body. A characteristic feature of Huntington's disease.

Dementia

A gradual decline in mental ability that affects intellectual skills such as memory, concentration and judgement. It is sometimes accompanied by emotional disturbances and changes in personality.

Microtubule

One of the principal components of the cytoskeleton. Microtubules are hollow, dynamic rod structures that participate in determining cell shape, cell locomotion and intracellular transport processes.

CAG repeat

A trinucleotide repeat of cytosine, adenine and guanine (CAG) that results in the expression of a chain of glutamines in the protein sequence.

Polyglutamine tract

The part of a protein that is entirely composed of the amino acid glutamine, resulting from a cytosine, adenine and guanine (CAG) repeat in the corresponding gene.

Medium spiny neurons

A type of GABA (γ-aminobutyric acid)-ergic inhibitory neurons that have a key role in movement initiation and control. They represent 90% of the neurons in the striatum of the brain.

CA1 zone

Cornu ammonis area 1. An area of the hippocampus that is composed of densely packed pyramidal cells.

Entorhinal cortex

An area located in the medial temporal lobe of the brain. Neurons from this area project to the hippocampus. The entorhinal cortex is involved in memory formation, in particular spatial memory.

Ubiquitin–proteasome system

A major pathway for the intracellular degradation of proteins. Substrates are conjugated to the peptide ubiquitin and transported to the proteasome, an organelle that has proteolytic activity and breaks the polypeptide chain into single amino acids.

Neurotrophic factor

A peptide secreted by brain tissues to guide axonal growth that is responsible for neuronal growth, differentiation and survival.

Synaptic plasticity

A process involved in learning and memory, whereby synapses gauge the intensity of their response to an incoming signal. It occurs as a result of the modulation of the number or sensitivity of receptors at the synapse or changes in the quantity of neurotransmitters released.

Morris water maze

An experiment that is used to assess spatial learning and memory in rodents. Rodents are placed in a circular pool of water, and by learning spatial markers they can identify the location of a hidden platform and escape from the water.

Microglia

Resident macrophages of the central nervous system that initiate immune responses and inflammation in the brain.

Excitotoxicity

A pathological process that is mediated through excessive stimulation of NMDA (N-methyl-D-aspartate) receptors by glutamate or other agonists. Increased activation of these receptors leads to a massive influx of calcium, which activates pro-death signalling pathways.

Caspase 6

A member of the cysteine-aspartic protease (caspase) family that has essential roles in programmed cell death (apoptosis).

Apoptotic cell death

Also known as programmed cell death. A mechanism of removing superfluous or damaged cells without eliciting an inflammatory response. It occurs during development and following chronic or acute cell and tissue damage.

Developmental pruning

A change in neuronal structure during development that removes unnecessary neurons or neuronal connections.

Post-translational modification

A biochemical change made to a protein after the synthesis of the polypeptide chain is complete. This can include the attachment of lipids, carbohydrates, other small chemical entities (such as phosphate or acetate groups) or peptides (such as ubiquitin or small ubiquitin-related modifier), as well as the proteolytic cleavage of precursor proteins into functional fragments.

Macroautophagy

The second major degradation pathway that can be used to degrade proteins, protein aggregates and entire organelles. Substrates are engulfed by vesicles (autophagosomes) that later fuse with lysosomal vesicles that have proteolytic activity. Degradation occurs in the final autophagolysosome.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehrnhoefer, D., Wong, B. & Hayden, M. Convergent pathogenic pathways in Alzheimer's and Huntington's diseases: shared targets for drug development. Nat Rev Drug Discov 10, 853–867 (2011). https://doi.org/10.1038/nrd3556

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3556

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research