Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Development of subtype-selective oestrogen receptor-based therapeutics

Key Points

  • The biological effects of natural and synthetic oestrogen-like ligands are mediated by two oestrogen receptor (ER) subtypes, ERα and ERβ.

  • ERα and ERβ have different physiological roles and thus offer distinct therapeutic opportunities.

  • Treatment with ERβ subtype-selective modulators may retain the benefits of menopausal hormone therapy without its severe adverse side effects, such as breast and endometrial cancer, thromboembolism, stroke and cardiovascular disease.

  • Selective ERβ agonists have shown promising anti-tumorigenic effects in animal models of breast, prostate and colon cancers, and lymphoma.

  • Combination with an ERβ-selective agonist and an ERα-selective antagonist might be an optimal approach for the treatment of hormone-responsive breast cancer.

  • ERβ agonists have shown antihypertensive efficacy and inhibit atherosclerotic lesion development and cardiac hypertrophy in various animal models of heart disease.

  • Selective targeting of ERβ has the potential to be a safe and disease-modifying therapy for multiple sclerosis and Alzheimer's disease, and possibly for other neurodegenerative diseases.

Abstract

The two oestrogen receptor subtypes α and β are hormone-regulated modulators of intracellular signalling and gene expression. Regulation of oestrogen receptor activity is crucial not only for development and homeostasis but also for the treatment of various diseases and symptoms. Classical selective oestrogen receptor modulators are well established in the treatment of breast cancer and osteoporosis, but emerging data suggest that the development of subtype-selective ligands that specifically target either oestrogen receptor-α or oestrogen receptor-β could be a more optimal approach for the treatment of cancer, cardiovascular disease, multiple sclerosis and Alzheimer's disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Architecture of oestrogen receptors and their mode of nuclear and cytoplasmic activity.
Figure 2: Oestrogen receptor binding cavity and ligand subtype selectivity.
Figure 3: Oestrogen receptor ligands.
Figure 4: Alzheimer's disease.

Similar content being viewed by others

References

  1. Boon, W. C., Chow, J. D. & Simpson, E. R. The multiple roles of estrogens and the enzyme aromatase. Prog. Brain Res. 181, 209–232 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Drummond, A. E. & Fuller, P. J. The importance of ERβ signalling in the ovary. J. Endocrinol. 205, 15–23 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Taylor, A. H. & Al-Azzawi, F. Immunolocalisation of oestrogen receptor β in human tissues. J. Mol. Endocrinol. 24, 145–155 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Saji, S. et al. Estrogen receptors α and β in the rodent mammary gland. Proc. Natl Acad. Sci. USA 97, 337–342 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rody, A. et al. Methylation of estrogen receptor β promoter correlates with loss of ER-β expression in mammary carcinoma and is an early indication marker in premalignant lesions. Endocr. Relat. Cancer 12, 903–916 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Yang, X., Li, Y. Z., Mao, Z., Gu, P. & Shang, M. Effects of estrogen and tibolone on bladder histology and estrogen receptors in rats. Chin. Med. J. 122, 381–385 (2009).

    PubMed  Google Scholar 

  7. Gorres, B. K., Bomhoff, G. L., Gupte, A. A. & Geiger, P. C. Altered estrogen receptor expression in skeletal muscle and adipose tissue of female rats fed a high-fat diet. J. Appl. Physiol. 110, 1046–1053 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mitterling, K. L. et al. Cellular and subcellular localization of estrogen and progestin receptor immunoreactivities in the mouse hippocampus. J. Comp. Neurol. 518, 2729–2743 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Waters, E. M. et al. Estrogen and aging affect the synaptic distribution of estrogen receptor β-immunoreactivity in the CA1 region of female rat hippocampus. Brain Res. 1379, 86–97 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Rossouw, J. E. et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women's Health Initiative randomized controlled trial. JAMA 288, 321–333 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Clarkson, T. B. & Appt, S. E. Controversies about HRT—lessons from monkey models. Maturitas 51, 64–74 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Harman, S. M. et al. Timing and duration of menopausal hormone treatment may affect cardiovascular outcomes. Am. J. Med. 124, 199–205 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mendelsohn, M. E. Estrogen actions in the cardiovascular system. Climacteric 12 (Suppl. 1), 18–21 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Tsai, S. A., Stefanick, M. L. & Stafford, R. S. Trends in menopausal hormone therapy use of US office-based physicians, 2000–2009. Menopause 18, 385–392 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Santen, R. J. et al. Postmenopausal hormone therapy: an Endocrine Society scientific statement. J. Clin. Endocrinol. Metab. 95, S1–S66 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Leitman, D. C. et al. Regulation of specific target genes and biological responses by estrogen receptor subtype agonists. Curr. Opin. Pharmacol. 10, 629–636 (2010). This study describes the classification of ERβ-selective agonists based on their potency and efficacy. It discusses the differences between the two ER subtypes with respect to gene regulation and the therapeutic opportunities offered by selective targeting of the two ER subtypes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Frasor, J. et al. Response-specific and ligand dose-dependent modulation of estrogen receptor (ER) α activity by ERβ in the uterus. Endocrinology 144, 3159–3166 (2003). This report presents data on the different biological responses in the uterus to an ERα-selective agonist and an ERβ-selective agonist.

    Article  CAS  PubMed  Google Scholar 

  18. Helguero, L. A., Faulds, M. H., Gustafsson, J.-Å. & Haldosen, L. A. Estrogen receptors alfa (ERα) and β (ERβ) differentially regulate proliferation and apoptosis of the normal murine mammary epithelial cell line HC11. Oncogene 24, 6605–6616 (2005). This study presents data on the opposing effects of ERα and ERβ on proliferation and apoptosis in the murine mammary cell line HC11.

    Article  CAS  PubMed  Google Scholar 

  19. Gronemeyer, H., Gustafsson, J.-Å. & Laudet, V. Principles for modulation of the nuclear receptor superfamily. Nature Rev. Drug Discov. 3, 950–964 (2004).

    Article  CAS  Google Scholar 

  20. Nilsson, S. & Gustafsson, J.-Å. in Nuclear Receptors: Current Concepts and Future Challenges (Proteins and Cell Regulation) (eds Bunce, C. M. & Campbell, M. J.) 91–141 (Springer, 2010).

    Book  Google Scholar 

  21. Powell, E., Wang, Y., Shapiro, D. J. & Xu, W. Differential requirements of Hsp90 and DNA for the formation of estrogen receptor homodimers and heterodimers. J. Biol. Chem. 285, 16125–16134 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Safe, S. & Kim, K. Non-classical genomic estrogen receptor (ER)/specificity protein and ER/activating protein-1 signaling pathways. J. Mol. Endocrinol. 41, 263–275 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hall, J. M. & McDonnell, D. P. Coregulators in nuclear estrogen receptor action: from concept to therapeutic targeting. Mol. Interv. 5, 343–357 (2005). A review of co-activator and co-repressor interactions with ER and their importance for the biological responses to agonists, antagonists and SERMs.

    Article  PubMed  Google Scholar 

  24. Shang, Y., Hu, X., DiRenzo, J., Lazar, M. A. & Brown, M. Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 103, 843–852 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Powell, E. & Xu, W. Intermolecular interactions identify ligand-selective activity of estrogen receptor α/β dimers. Proc. Natl Acad. Sci. USA 105, 19012–19017 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Monroe, D. G. et al. Estrogen receptor α and β heterodimers exert unique effects on estrogen- and tamoxifen-dependent gene expression in human U2OS osteosarcoma cells. Mol. Endocrinol. 19, 1555–1568 (2005). This study demonstrates that ERα and ERβ heterodimers regulate a unique set of genes, which are distinct from the genes regulated by ERα and ERβ homodimers, in a ligand-dependent fashion.

    Article  CAS  PubMed  Google Scholar 

  27. Charn, T. H. et al. Genome-wide dynamics of chromatin binding of estrogen receptors α and β: mutual restriction and competitive site selection. Mol. Endocrinol. 24, 47–59 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Perissi, V. & Rosenfeld, M. G. Controlling nuclear receptors: the circular logic of cofactor cycles. Nature Rev. Mol. Cell Biol. 6, 542–554 (2005).

    Article  CAS  Google Scholar 

  29. Bramlett, K. S., Wu, Y. & Burris, T. P. Ligands specify coactivator nuclear receptor (NR) box affinity for estrogen receptor subtypes. Mol. Endocrinol. 15, 909–922 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Gee, A. C., Carlson, K. E., Martini, P. G., Katzenellenbogen, B. S. & Katzenellenbogen, J. A. Coactivator peptides have a differential stabilizing effect on the binding of estrogens and antiestrogens with the estrogen receptor. Mol. Endocrinol. 13, 1912–1923 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Saijo, K., Collier, J. G., Li, A. C., Katzenellenbogen, J. A. & Glass, C. K. An ADIOL-ERβ-CtBP transrepression pathway negatively regulates microglia-mediated inflammation. Cell 145, 584–595 (2011). Elucidation of an ERβ-mediated transrepressive anti-inflammatory pathway. Evidence is provided that 5-androstene-3β,17β-diol is a physiologically relevant ERβ ligand that triggers ERβ-mediated anti-inflammatory activity by transrepression, whereas the endogenous ER hormone E2 is inactive through this pathway.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Arpino, G., Wiechmann, L., Osborne, C. K. & Schiff, R. Crosstalk between the estrogen receptor and the HER tyrosine kinase receptor family: molecular mechanism and clinical implications for endocrine therapy resistance. Endocr. Rev. 29, 217–233 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hammes, S. R. & Levin, E. R. Extranuclear steroid receptors: nature and actions. Endocr. Rev. 28, 726–741 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Acconcia, F., Ascenzi, P., Fabozzi, G., Visca, P. & Marino, M. S-palmitoylation modulates human estrogen receptor-α functions. Biochem. Biophys. Res. Commun. 316, 878–883 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Lu, Q. et al. Striatin assembles a membrane signaling complex necessary for rapid, nongenomic activation of endothelial NO synthase by estrogen receptor α. Proc. Natl Acad. Sci. USA 101, 17126–17131 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chambliss, K. L. et al. Non-nuclear estrogen receptor α signaling promotes cardiovascular protection but not uterine or breast cancer growth in mice. J. Clin. Invest. 120, 2319–2330 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu, Q., Chambliss, K., Umetani, M., Mineo, C. & Shaul, P. W. Non-nuclear estrogen receptor signaling in endothelium. J. Biol. Chem. 286, 14737–14743 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Le Romancer, M., Treilleux, I., Bouchekioua-Bouzaghou, K., Sentis, S. & Corbo, L. Methylation, a key step for nongenomic estrogen signaling in breast tumors. Steroids 75, 560–564 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Madak-Erdogan, Z. et al. Nuclear and extranuclear pathway inputs in the regulation of global gene expression by estrogen receptors. Mol. Endocrinol. 22, 2116–2127 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Harrington, W. R. et al. Estrogen dendrimer conjugates that preferentially activate extranuclear, nongenomic versus genomic pathways of estrogen action. Mol. Endocrinol. 20, 491–502 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Amazit, L. et al. Regulation of SRC-3 intercompartmental dynamics by estrogen receptor and phosphorylation. Mol. Cell. Biol. 27, 6913–6932 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Turjanski, A. G., Vaque, J. P. & Gutkind, J. S. MAP kinases and the control of nuclear events. Oncogene 26, 3240–3253 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, L. et al. Estrogen receptor β-selective agonists stimulate calcium oscillations in human and mouse embryonic stem cell-derived neurons. PLoS ONE 5, e11791 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhao, L. & Brinton, R. D. Estrogen receptor α and β differentially regulate intracellular Ca2+ dynamics leading to ERK phosphorylation and estrogen neuroprotection in hippocampal neurons. Brain Res. 1172, 48–59 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Anstead, G. M., Carlson, K. E. & Katzenellenbogen, J. A. The estradiol pharmacophore: ligand structure-estrogen receptor binding affinity relationships and a model for the receptor binding site. Steroids 62, 268–303 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Brzozowski, A. M. et al. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389, 753–758 (1997). A landmark paper that provided the foundation for the subsequent structure-based design of ER ligands.

    Article  CAS  PubMed  Google Scholar 

  47. Minutolo, F., Macchia, M., Katzenellenbogen, B. S. & Katzenellenbogen, J. A. Estrogen receptor β ligands: recent advances and biomedical applications. Med. Res. Rev. 31, 364–442 (2011). A thorough review of the known chemical classes of ERβ-selective ligands, their pharmacophores and their potential therapeutic applications.

    Article  CAS  PubMed  Google Scholar 

  48. Mohler, M. L. et al. Estrogen receptor β selective nonsteroidal estrogens: seeking clinical indications. Expert Opin. Ther. Pat. 20, 507–534 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Kuiper, G. G. et al. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors α and β. Endocrinology 138, 863–870 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Meyers, M. J. et al. Estrogen receptor-β potency-selective ligands: structure-activity relationship studies of diarylpropionitriles and their acetylene and polar analogues. J. Med. Chem. 44, 4230–4251 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Bruning, J. B. et al. Coupling of receptor conformation and ligand orientation determine graded activity. Nature Chem. Biol. 6, 837–843 (2010).

    Article  CAS  Google Scholar 

  52. Paruthiyil, S. et al. Drug and cell type-specific regulation of genes with different classes of estrogen receptor β-selective agonists. PLoS ONE 4, e6271 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gellman, S. H. On the role of methionine residues in the sequence-independent recognition of nonpolar protein surfaces. Biochemistry 30, 6633–6636 (1991).

    Article  CAS  PubMed  Google Scholar 

  54. Manas, E. S., Xu, Z. B., Unwalla, R. J. & Somers, W. S. Understanding the selectivity of genistein for human estrogen receptor-β using X-ray crystallography and computational methods. Structure 12, 2197–2207 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Pike, A. C. et al. Structure of the ligand-binding domain of oestrogen receptor β in the presence of a partial agonist and a full antagonist. EMBO J. 18, 4608–4618 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yu, H., Noskov, S. Y. & Roux, B. Two mechanisms of ion selectivity in protein binding sites. Proc. Natl Acad. Sci. USA 107, 20329–20334 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hegele-Hartung, C. et al. Impact of isotype-selective estrogen receptor agonists on ovarian function. Proc. Natl Acad. Sci. USA 101, 5129–5134 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Blizzard, T. A. Selective estrogen receptor modulator medicinal chemistry at Merck. A review. Curr. Top. Med. Chem. 8, 792–812 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Richardson, T. I. et al. Benzopyrans as selective estrogen receptor β agonists (SERBAs). Part 5: combined A- and C-ring structure-activity relationship studies. Bioorg. Med. Chem. Lett. 17, 5563–5566 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Veeneman, G. H. & Teerhuis, N. M. Chroman derivatives as estrogenic compounds. US patent 0069303 (2003).

  61. Ferriz, J. M. & Vinsova, J. Prodrug design of phenolic drugs. Curr. Pharm. Des. 16, 2033–2052 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Wilkening, R. R. et al. Estrogen receptor β-subtype selective tetrahydrofluorenones: use of a fused pyrazole as a phenol bioisostere. Bioorg. Med. Chem. Lett. 16, 3896–3901 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Gruvberger-Saal, S. K. et al. Estrogen receptor β expression is associated with tamoxifen response in ERα-negative breast carcinoma. Clin. Cancer Res. 13, 1987–1994 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Hartman, J., Strom, A. & Gustafsson, J. -Å. Estrogen receptor β in breast cancer—diagnostic and therapeutic implications. Steroids 74, 635–641 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Honma, N. et al. Clinical importance of estrogen receptor-β evaluation in breast cancer patients treated with adjuvant tamoxifen therapy. J. Clin. Oncol. 26, 3727–3734 (2008).

    Article  PubMed  Google Scholar 

  66. Wu, X. et al. Estrogen receptor-β sensitizes breast cancer cells to the anti-estrogenic actions of endoxifen. Breast Cancer Res. 13, R27 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chang, E. C. et al. Estrogen receptors α and β as determinants of gene expression: influence of ligand, dose, and chromatin binding. Mol. Endocrinol. 22, 1032–1043 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Williams, C., Edvardsson, K., Lewandowski, S. A., Strom, A. & Gustafsson, J.-Å. A genome-wide study of the repressive effects of estrogen receptor β on estrogen receptor α signaling in breast cancer cells. Oncogene 27, 1019–1032 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Lindberg, K., Helguero, L. A., Omoto, Y., Gustafsson, J.-Å. & Haldosen, L. A. Estrogen receptor β represses Akt signaling in breast cancer cells via downregulation of HER2/HER3 and upregulation of PTEN — implications for tamoxifen sensitivity. Breast Cancer Res. 13, R43 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Paruthiyil, S. et al. Estrogen receptor β causes a G2 cell cycle arrest by inhibiting CDK1 activity through the regulation of cyclin B1, GADD45A, and BTG2. Breast Cancer Res. Treat. 1 Dec 2010 (doi: 10.1007/s10549-010-1273-5).

  71. Cvoro, A. et al. Selective activation of estrogen receptor-β transcriptional pathways by an herbal extract. Endocrinology 148, 538–547 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Hartman, J. et al. Estrogen receptor β inhibits angiogenesis and growth of T47D breast cancer xenografts. Cancer Res. 66, 11207–11213 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Mersereau, J. E. et al. Liquiritigenin is a plant-derived highly selective estrogen receptor β agonist. Mol. Cell. Endocrinol. 283, 49–57 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Ellem, S. J. & Risbridger, G. P. Aromatase and regulating the estrogen:androgen ratio in the prostate gland. J. Steroid Biochem. Mol. Biol. 118, 246–251 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. McPherson, S. J. et al. Essential role for estrogen receptor β in stromal-epithelial regulation of prostatic hyperplasia. Endocrinology 148, 566–574 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. McPherson, S. J. et al. Estrogen receptor-β activated apoptosis in benign hyperplasia and cancer of the prostate is androgen independent and TNFα mediated. Proc. Natl Acad. Sci. USA 107, 3123–3128 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kennelly, R., Kavanagh, D. O., Hogan, A. M. & Winter, D. C. Oestrogen and the colon: potential mechanisms for cancer prevention. Lancet Oncol. 9, 385–391 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Long, M. D., Martin, C. F., Galanko, J. A. & Sandler, R. S. Hormone replacement therapy, oral contraceptive use, and distal large bowel cancer: a population-based case-control study. Am. J. Gastroenterol. 105, 1843–1850 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wada-Hiraike, O. et al. Role of estrogen receptor β in colonic epithelium. Proc. Natl Acad. Sci. USA 103, 2959–2964 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hartman, J. et al. Tumor repressive functions of estrogen receptor β in SW480 colon cancer cells. Cancer Res. 69, 6100–6106 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Weige, C. C., Allred, K. F. & Allred, C. D. Estradiol alters cell growth in nonmalignant colonocytes and reduces the formation of preneoplastic lesions in the colon. Cancer Res. 69, 9118–9124 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Pinton, G. et al. Estrogen receptor-β affects the prognosis of human malignant mesothelioma. Cancer Res. 69, 4598–4604 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Pinton, G. et al. Estrogen receptor β exerts tumor repressive functions in human malignant pleural mesothelioma via EGFR inactivation and affects response to gefitinib. PLoS ONE 5, e14110 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yakimchuk, K. et al. Effect of ligand-activated estrogen receptor β on lymphoma growth in vitro and in vivo. Leukemia 25, 1103–1110 (2011). This study reports that activation of ERβ with two structurally distinct ERβ-selective agonists suppresses murine T-cell lymphoma tumour growth in vivo by inhibition of proliferation and stimulation of programmed cell death.

    Article  CAS  PubMed  Google Scholar 

  85. Yamasaki, M. et al. Genistein induced apoptotic cell death in adult T-cell leukemia cells through estrogen receptors. Biosci. Biotechnol. Biochem. 74, 2113–2115 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Arias-Loza, P. A., Jazbutyte, V. & Pelzer, T. Genetic and pharmacologic strategies to determine the function of estrogen receptor α and estrogen receptor β in cardiovascular system. Gend. Med. 5 (Suppl. A), 34–45 (2008).

    Article  Google Scholar 

  87. Vitale, C., Mendelsohn, M. E. & Rosano, G. M. Gender differences in the cardiovascular effect of sex hormones. Nature Rev. Cardiol. 6, 532–542 (2009).

    Article  CAS  Google Scholar 

  88. Guo, X., Razandi, M., Pedram, A., Kassab, G. & Levin, E. R. Estrogen induces vascular wall dilation: mediation through kinase signaling to nitric oxide and estrogen receptors α and β. J. Biol. Chem. 280, 19704–19710 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Zhu, Y. et al. Abnormal vascular function and hypertension in mice deficient in estrogen receptor β. Science 295, 505–508 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Arias-Loza, P. A. et al. Both estrogen receptor subtypes, α and β, attenuate cardiovascular remodeling in aldosterone salt-treated rats. Hypertension 50, 432–438 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Jazbutyte, V. et al. Ligand-dependent activation of ERβ lowers blood pressure and attenuates cardiac hypertrophy in ovariectomized spontaneously hypertensive rats. Cardiovasc. Res. 77, 774–781 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Fliegner, D. et al. Female sex and estrogen receptor-β attenuate cardiac remodeling and apoptosis in pressure overload. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R1597–R1606 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Kararigas, G., Fliegner, D., Gustafsson, J.-Å. & Regitz-Zagrosek, V. The role of the estrogen/estrogen-receptor-β axis in the genomic response to pressure overload-induced hypertrophy. Physiol. Genomics 43, 438–446 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Pedram, A., Razandi, M., O'Mahony, F., Lubahn, D. & Levin, E. R. Estrogen receptor-β prevents cardiac fibrosis. Mol. Endocrinol. 24, 2152–2165 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pelzer, T. et al. Increased mortality and aggravation of heart failure in estrogen receptor-β knockout mice after myocardial infarction. Circulation 111, 1492–1498 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Skavdahl, M. et al. Estrogen receptor-β mediates male-female differences in the development of pressure overload hypertrophy. Am. J. Physiol. Heart Circ. Physiol. 288, H469–H476 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Nikolic, I. et al. Treatment with an estrogen receptor-β-selective agonist is cardioprotective. J. Mol. Cell. Cardiol. 42, 769–780 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Hodgin, J. B. et al. Estrogen receptor α is a major mediator of 17β-estradiol's atheroprotective effects on lesion size in Apoe−/− mice. J. Clin. Invest. 107, 333–340 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Villablanca, A. C. et al. 17β-estradiol prevents early-stage atherosclerosis in estrogen receptor-α deficient female mice. J. Cardiovasc. Transl. Res. 2, 289–299 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Pockley, A. G., Georgiades, A., Thulin, T., de Faire, U. & Frostegard, J. Serum heat shock protein 70 levels predict the development of atherosclerosis in subjects with established hypertension. Hypertension 42, 235–238 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Zhu, J. et al. Increased serum levels of heat shock protein 70 are associated with low risk of coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 23, 1055–1059 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Martin-Ventura, J. L. et al. Identification by a differential proteomic approach of heat shock protein 27 as a potential marker of atherosclerosis. Circulation 110, 2216–2219 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Rayner, K. et al. Heat shock protein 27 protects against atherogenesis via an estrogen-dependent mechanism: role of selective estrogen receptor β modulation. Arterioscler. Thromb. Vasc. Biol. 29, 1751–1756 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Rayner, K. et al. Extracellular release of the atheroprotective heat shock protein 27 is mediated by estrogen and competitively inhibits acLDL binding to scavenger receptor-A. Circ. Res. 103, 133–141 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Sun, J. et al. Attenuation of atherogenesis via the anti-inflammatory effects of the selective estrogen receptor β modulator 8β-VE2. J. Cardiovasc. Pharmacol. 18 Jun 2011 (doi:10.1097/FJC.0b013e318226bd16).

  106. Gold, S. M. & Voskuhl, R. R. Estrogen and testosterone therapies in multiple sclerosis. Prog. Brain Res. 175, 239–251 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Soldan, S. S., Alvarez Retuerto, A. I., Sicotte, N. L. & Voskuhl, R. R. Immune modulation in multiple sclerosis patients treated with the pregnancy hormone estriol. J. Immunol. 171, 6267–6274 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Compston, A. & Coles, A. Multiple sclerosis. Lancet 359, 1221–1231 (2002).

    Article  PubMed  Google Scholar 

  109. Bodhankar, S., Wang, C., Vandenbark, A. A. & Offner, H. Estrogen-induced protection against experimental autoimmune encephalomyelitis is abrogated in the absence of B cells. Eur. J. Immunol. 41, 1165–1175 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Crawford, D. K. et al. Oestrogen receptor β ligand: a novel treatment to enhance endogenous functional remyelination. Brain 133, 2999–3016 (2010). This study shows that treatment of EAE mice with the ERβ-selective agonist DPN results in an increased number of differentiated oligodendrocytes and a remarkable remyelination and restoration of axon conduction velocity and axon refractoriness.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Palaszynski, K. M., Liu, H., Loo, K. K. & Voskuhl, R. R. Estriol treatment ameliorates disease in males with experimental autoimmune encephalomyelitis: implications for multiple sclerosis. J. Neuroimmunol. 149, 84–89 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Sicotte, N. L. et al. Treatment of multiple sclerosis with the pregnancy hormone estriol. Ann. Neurol. 52, 421–428 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Elloso, M. M., Phiel, K., Henderson, R. A., Harris, H. A. & Adelman, S. J. Suppression of experimental autoimmune encephalomyelitis using estrogen receptor-selective ligands. J. Endocrinol. 185, 243–252 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Polanczyk, M. et al. Estrogen receptor-1 (Esr1) and -2 (Esr2) regulate the severity of clinical experimental allergic encephalomyelitis in male mice. Am. J. Pathol. 164, 1915–1924 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Polanczyk, M. et al. The protective effect of 17β-estradiol on experimental autoimmune encephalomyelitis is mediated through estrogen receptor-α. Am. J. Pathol. 163, 1599–1605 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Tiwari-Woodruff, S., Morales, L. B., Lee, R. & Voskuhl, R. R. Differential neuroprotective and antiinflammatory effects of estrogen receptor (ER)α and ERβ ligand treatment. Proc. Natl Acad. Sci. USA 104, 14813–14818 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Du, S., Sandoval, F., Trinh, P. & Voskuhl, R. R. Additive effects of combination treatment with anti-inflammatory and neuroprotective agents in experimental autoimmune encephalomyelitis. J. Neuroimmunol. 219, 64–74 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. De Angelis, M., Stossi, F., Carlson, K. A., Katzenellenbogen, B. S. & Katzenellenbogen, J. A. Indazole estrogens: highly selective ligands for the estrogen receptor β. J. Med. Chem. 48, 1132–1144 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Selkoe, D. J. & Schenk, D. Alzheimer's disease: molecular understanding predicts amyloid-based therapeutics. Annu. Rev. Pharmacol. Toxicol. 43, 545–584 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Vegeto, E., Benedusi, V. & Maggi, A. Estrogen anti-inflammatory activity in brain: a therapeutic opportunity for menopause and neurodegenerative diseases. Front. Neuroendocrinol. 29, 507–519 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Pike, C. J., Carroll, J. C., Rosario, E. R. & Barron, A. M. Protective actions of sex steroid hormones in Alzheimer's disease. Front. Neuroendocrinol. 30, 239–258 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Yue, X. et al. Brain estrogen deficiency accelerates Aβ plaque formation in an Alzheimer's disease animal model. Proc. Natl Acad. Sci. USA 102, 19198–19203 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Shumaker, S. A. et al. Conjugated equine estrogens and incidence of probable dementia and mild cognitive impairment in postmenopausal women: Women's Health Initiative Memory Study. JAMA 291, 2947–2958 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Brinton, R. D. Investigative models for determining hormone therapy-induced outcomes in brain: evidence in support of a healthy cell bias of estrogen action. Ann. N. Y. Acad. Sci. 1052, 57–74 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Leissring, M. A. et al. Enhanced proteolysis of β-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron 40, 1087–1093 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Liang, K. et al. Estrogen stimulates degradation of β-amyloid peptide by up-regulating neprilysin. J. Biol. Chem. 285, 935–942 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Zhao, L. et al. 17β-Estradiol regulates insulin-degrading enzyme expression via an ERβ/PI3-K pathway in hippocampus: relevance to Alzheimer's prevention. Neurobiol. Aging 6 Jan 2010 (doi: 10.1016/j.neurobiolaging.2009.12.010).

  128. Grady, D. et al. MF101, a selective estrogen receptor β modulator for the treatment of menopausal hot flushes: a phase II clinical trial. Menopause 16, 458–465 (2009).

    Article  PubMed  Google Scholar 

  129. Zhao, L., Mao, Z. & Brinton, R. D. A select combination of clinically relevant phytoestrogens enhances estrogen receptor β-binding selectivity and neuroprotective activities in vitro and in vivo. Endocrinology 150, 770–783 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Jordan, V. C. Selective estrogen receptor modulation: a personal perspective. Cancer Res. 61, 5683–5687 (2001). An excellent review of the SERM concept and the clinical applications of SERMs.

    CAS  PubMed  Google Scholar 

  131. Grigsby, J. G. et al. Effects of tamoxifen versus raloxifene on retinal capillary endothelial cell proliferation. J. Ocul. Pharmacol. Ther. 27, 225–233 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Albertazzi, P. & Sharma, S. Urogenital effects of selective estrogen receptor modulators: a systematic review. Climacteric 8, 214–220 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Hendrix, S. L. & McNeeley, S. G. Effect of selective estrogen receptor modulators on reproductive tissues other than endometrium. Ann. N. Y. Acad. Sci. 949, 243–250 (2001).

    Article  CAS  PubMed  Google Scholar 

  134. McDonnell, D. P., Clemm, D. L., Hermann, T., Goldman, M. E. & Pike, J. W. Analysis of estrogen receptor function in vitro reveals three distinct classes of antiestrogens. Mol. Endocrinol. 9, 659–669 (1995).

    CAS  PubMed  Google Scholar 

  135. Shang, Y. & Brown, M. Molecular determinants for the tissue specificity of SERMs. Science 295, 2465–2468 (2002).

    Article  CAS  PubMed  Google Scholar 

  136. Tzukerman, M. T. et al. Human estrogen receptor transactivational capacity is determined by both cellular and promoter context and mediated by two functionally distinct intramolecular regions. Mol. Endocrinol. 8, 21–30 (1994).

    CAS  PubMed  Google Scholar 

  137. Shelly, W., Draper, M. W., Krishnan, V., Wong, M. & Jaffe, R. B. Selective estrogen receptor modulators: an update on recent clinical findings. Obstet. Gynecol. Surv. 63, 163–181 (2008).

    PubMed  Google Scholar 

  138. Barkhem, T. et al. Differential response of estrogen receptor α and estrogen receptor β to partial estrogen agonists/antagonists. Mol. Pharmacol. 54, 105–112 (1998).

    Article  CAS  PubMed  Google Scholar 

  139. Schechter, I. & Berger, A. On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Commun. 27, 157–162 (1967).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in J.-Å.G's laboratory is supported by The Swedish Cancer Fund, the Welch Foundation (Houston, Texas, USA) and the Texas Emerging Technology Fund (Austin, Texas, USA) under agreement number 300-9-1958.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Åke Gustafsson.

Ethics declarations

Competing interests

Stefan Nilsson is a Karo Bio employee. Jan-Åke Gustafsson is a consultant with Karo Bio and BioNovo. Konrad F. Koehler is a Karo Bio employee.

Supplementary information

Supplementary information S1 (table)

Phenotypes of ERα- and ERβ-knockout mice (PDF 326 kb)

Supplementary information S2 (table)

Comparison of the physicochemical properties of the pair of amino acid residues that differ between ERα and ERβ in the ligand binding pocket (PDF 231 kb)

Supplementary information S3 (figure)

Interaction energy between ligand and receptor. (PDF 281 kb)

Related links

Related links

FURTHER INFORMATION

Stefan Nilsson and Konrad Koehler's homepage

Jan-Åke Gustafsson's homepage

Glossary

Detrusor muscle

Bladder muscle that relaxes to fill the bladder with urine or contracts to squeeze urine out from the bladder.

Progestagen

Collective name for a ligand of the progesterone receptor, such as progestogen, gestagen or progesterone.

Palmitoylation

The covalent attachment of fatty acids, such as palmitic acid, to cysteine residues on proteins, which facilitates the interaction of the protein with cell membranes.

Vascular wall hyperplasia

Excessive proliferation and growth of cells in the vascular wall.

Dendrimer

A highly branched and roughly spherical polymeric compound that is formed by attachment of monomers to a central core.

Phyto-oestrogens

Plant-derived heterocycles, primarily isoflavones, that mimic the activity of endogenous oestrogens by binding to oestrogen receptors.

Transrepression

The process whereby a regulatory protein — for example, an oestrogen receptor — inhibits or represses the activity of another regulatory protein through protein–protein interaction.

Oligodendrocytes

Branched glia that are involved in neuronal maintenance and support. They produce myelin, which insulates neuronal processes.

Axon refractoriness

A measure of axon responsiveness to stimuli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nilsson, S., Koehler, K. & Gustafsson, JÅ. Development of subtype-selective oestrogen receptor-based therapeutics. Nat Rev Drug Discov 10, 778–792 (2011). https://doi.org/10.1038/nrd3551

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3551

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer