Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cell-division inhibitors: new insights for future antibiotics

Key Points

  • Bacterial cell division is an essential process that is not yet targeted by clinically approved antibacterials. However, it is an area of untapped potential, with antibacterial discovery efforts now well underway.

  • The septation process is driven by at least 12 proteins that are recruited to the division site at midcell to form the division machinery known as the divisome.

  • Several features of the bacterial cell-division proteins would make them good candidate antibacterial targets, including their essentiality, their conservation in a wide range of bacterial pathogens, and, for the membrane-bound proteins, the absence of homologues in eukaryotes, and their accessibility to inhibitory compounds by virtue of their external location.

  • The earliest event in bacterial cell division is the recruitment of a tubulin-like protein, FtsZ, to the division site to form a Z ring.

  • Many inhibitors of FtsZ have been identified using various approaches. Although all have been shown to inhibit FtsZ in vitro, and most have antibacterial activity, there is usually little or no evidence for their antibacterial activity being due to FtsZ inhibition. In this respect PC58538/PC170942 and viriditoxin are the most promising candidates.

  • For many divisome proteins catalytic activity has not been identified, and it is the protein–protein interactions that play a key role in the assembly of the divisome and the division process. These interactions may prove attractive for targeting. The ZipA–FtsZ interaction has been the subject of antibacterial discovery with no promising leads as yet.

  • Significant progress in the discovery and development of small-molecule inhibitors of protein–protein interactions has been made through a number of different strategies. A general strategy for targeting protein interfaces, which is likely to emerge in the future, could be used to inhibit the plethora of protein–protein interactions that occur in bacterial cell division, such as the well-conserved DivIB–DivIC–FtsL interaction.

Abstract

The growing problem of antibiotic resistance has been exacerbated by the use of new drugs that are merely variants of older overused antibiotics. While it is naive to expect to restrain the spread of resistance without controlling antibacterial usage, the desperate need for drugs with novel targets has been recognized by health organizations, industry and academia alike. The wealth of knowledge available about the bacterial cell-division pathway has aided target-driven approaches to identify novel inhibitors. Here, we discuss the therapeutic potential of inhibiting bacterial cell division, and review the progress made in this exciting new area of antibacterial discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bacterial cell division: the proteins and potential targets.
Figure 2: Recruitment of key components to the cell division ring in Escherichia coli and Bacillus subtilis.
Figure 3: FtsZ and the formation of the Z ring.

Similar content being viewed by others

References

  1. Leeb, M. Antibiotics: a shot in the arm. Nature 431, 892–893 (2004).

    CAS  PubMed  Google Scholar 

  2. Jacobs, M. R. Retapamulin: a semisynthetic pleuromutilin compound for topical treatment of skin infections in adults and children. Future Microbiol. 2, 591–600 (2007).

    CAS  PubMed  Google Scholar 

  3. DiMasi, J. A., Hansen, R. W. & Grabowski, H. G. The price of innovation: new estimates of drug development costs. J. Health Econ. 22, 151–185 (2003).

    PubMed  Google Scholar 

  4. Payne, D. J., Gwynn, M. N., Holmes, D. J. & Pompliano, D. L. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nature Rev. Drug Discov. 6, 29–40 (2007).

    CAS  Google Scholar 

  5. Projan, S. J. & Youngman, P. J. Antimicrobials: new solutions badly needed. Curr. Opin. Microbiol. 5, 463–465 (2002).

    PubMed  Google Scholar 

  6. Walsh, C. Where will new antibiotics come from? Nature Rev. Microbiol. 1, 65–70 (2003).

    CAS  Google Scholar 

  7. Rosamond, J. & Allsop, A. Harnessing the power of the genome in the search for new antibiotics. Science 287, 1973–1976 (2000).

    CAS  PubMed  Google Scholar 

  8. Errington, J. Dynamic proteins and a cytoskeleton in bacteria. Nature Cell Biol. 5, 175–178 (2003).

    CAS  PubMed  Google Scholar 

  9. Freiberg, C. & Brotz-Oesterhelt, H. Functional genomics in antibacterial drug discovery. Drug Discov. Today 10, 927–935 (2005).

    CAS  PubMed  Google Scholar 

  10. Errington, J., Daniel, R. A. & Scheffers, D. J. Cytokinesis in bacteria. Microbiol. Mol. Biol. Rev. 67, 52–65 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Goehring, N. W. & Beckwith, J. Diverse paths to midcell: assembly of the bacterial cell division machinery. Curr. Biol. 15, R514–R526 (2005). A seminal review by key leaders in the bacterial cell division field. It presents an excellent and rigorous overview of cell division including a comparison of different species.

    CAS  PubMed  Google Scholar 

  12. Harry, E., Monahan, L. & Thompson, L. Bacterial cell division: the mechanism and its precison. Int. Rev. Cytol. 253, 27–94 (2006). With reference 10, a recent comprehensive review of cell-division proteins in bacteria.

    CAS  PubMed  Google Scholar 

  13. Vicente, M., Rico, A. I., Martinez-Arteaga, R. & Mingorance, J. Septum enlightenment: assembly of bacterial division proteins. J. Bacteriol. 188, 19–27 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Jensen, S. O., Thompson, L. S. & Harry, E. J. Cell division in Bacillus subtilis: FtsZ and FtsA association is Z-ring independent, and FtsA is required for efficient midcell Z-ring assembly. J. Bacteriol. 187, 6536–6544 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Pinho, M. G. & Errington, J. Dispersed mode of Staphylococcus aureus cell wall synthesis in the absence of the division machinery. Mol. Microbiol. 50, 871–881 (2003).

    CAS  PubMed  Google Scholar 

  16. Buddelmeijer, N. & Beckwith, J. Assembly of cell division proteins at the E. coli cell center. Curr. Opin. Microbiol. 5, 553–557 (2002).

    CAS  PubMed  Google Scholar 

  17. Chen, J. C. & Beckwith, J. FtsQ, FtsL and FtsI require FtsK, but not FtsN, for co-localization with FtsZ during Escherichia coli cell division. Mol. Microbiol. 42, 395–413 (2001).

    PubMed  Google Scholar 

  18. Goehring, N. W., Gonzalez, M. D. & Beckwith, J. Premature targeting of cell division proteins to midcell reveals hierarchies of protein interactions involved in divisome assembly. Mol. Microbiol. 61, 33–45 (2006).

    CAS  PubMed  Google Scholar 

  19. Lowe, J. & Amos, L. A. Crystal structure of the bacterial cell-division protein FtsZ. Nature 391, 203–206 (1998).

    CAS  PubMed  Google Scholar 

  20. Nogales, E., Wolf, S. G. & Downing, K. H. Structure of the α β tubulin dimer by electron crystallography. Nature 391, 199–203 (1998). The above two papers provided the long sought after three-dimensional structures of tubulin and FtsZ, and left little doubt that these two proteins are evolutionarily related.

    CAS  PubMed  Google Scholar 

  21. Bork, P., Sander, C. & Valencia, A. An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc. Natl Acad. Sci. USA 89, 7290–7294 (1992).

    CAS  PubMed  Google Scholar 

  22. van den Ent, F. & Lowe, J. Crystal structure of the cell division protein FtsA from Thermotoga maritima. EMBO J. 19, 5300–5307 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hale, C. A. & de Boer, P. A. Direct binding of FtsZ to ZipA, an essential component of the septal ring structure that mediates cell division in E. coli. Cell 88, 175–185 (1997). This paper presents a clever approach to the identification of the first FtsZ-associating protein in bacteria.

    CAS  PubMed  Google Scholar 

  24. Mosyak, L. et al. The bacterial cell-division protein ZipA and its interaction with an FtsZ fragment revealed by X-ray crystallography. EMBO J. 19, 3179–3191 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Jennings, L. D. et al. Combinatorial synthesis of substituted 3-(2-indolyl)piperidines and 2-phenyl indoles as inhibitors of ZipA–FtsZ interaction. Bioorg. Med. Chem. 12, 5115–5131 (2004).

    CAS  PubMed  Google Scholar 

  26. Jennings, L. D. et al. Design and synthesis of indolo[2,3-a]quinolizin-7-one inhibitors of the ZipA–FtsZ interaction. Bioorg. Med. Chem. Lett. 14, 1427–1431 (2004).

    CAS  PubMed  Google Scholar 

  27. Sutherland, A. G. et al. Structure-based design of carboxybiphenylindole inhibitors of the ZipA–FtsZ interaction. Org. Biomol. Chem. 1, 4138–4140 (2003).

    CAS  PubMed  Google Scholar 

  28. Tsao, D. H. et al. Discovery of novel inhibitors of the ZipA/FtsZ complex by NMR fragment screening coupled with structure-based design. Bioorg. Med. Chem. 14, 7953–7961 (2006).

    CAS  PubMed  Google Scholar 

  29. Arkin, M. R. & Wells, J. A. Small-molecule inhibitors of protein–protein interactions: progressing towards the dream. Nature Rev. Drug Discov. 3, 301–317 (2004). This is an excellent review on the emerging and challenging approaches to drug discovery.

    CAS  Google Scholar 

  30. Haney, S. A. et al. Genetic analysis of the Escherichia coli FtsZ–ZipA interaction in the yeast two-hybrid system. Characterization of FtsZ residues essential for the interactions with ZipA and with FtsA. J. Biol. Chem. 276, 11980–11987 (2001).

    CAS  PubMed  Google Scholar 

  31. Hopkins, A. L. & Groom, C. R. The druggable genome. Nature Rev. Drug Discov. 1, 727–730 (2002).

    CAS  Google Scholar 

  32. RayChaudhuri, D. & Park, J. T. Escherichia coli cell-division gene ftsZ encodes a novel GTP-binding protein. Nature 359, 251–254 (1992).

    CAS  PubMed  Google Scholar 

  33. de Boer, P., Crossley, R. & Rothfield, L. The essential bacterial cell-division protein FtsZ is a GTPase. Nature 359, 254–256 (1992).

    CAS  PubMed  Google Scholar 

  34. Mukherjee, A., Dai, K. & Lutkenhaus, J. Escherichia coli cell division protein FtsZ is a guanine nucleotide binding protein. Proc. Natl Acad. Sci. USA 90, 1053–1057 (1993). The above three papers report the GTPase activity of FtsZ, several years after identification of the ftsZ gene.

    CAS  PubMed  Google Scholar 

  35. Sanchez, M., Valencia, A., Ferrandiz, M. J., Sander, C. & Vicente, M. Correlation between the structure and biochemical activities of FtsA, an essential cell division protein of the actin family. EMBO J. 13, 4919–4925 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lara, B. et al. Cell division in cocci: localization and properties of the Streptococcus pneumoniae FtsA protein. Mol. Microbiol. 55, 699–711 (2005).

    CAS  PubMed  Google Scholar 

  37. Yim, L. et al. Role of the carboxy terminus of Escherichia coli FtsA in self-interaction and cell division. J. Bacteriol. 182, 6366–6373 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Shuker, S. B., Hajduk, P. J., Meadows, R. P. & Fesik, S. W. Discovering high-affinity ligands for proteins: SAR by NMR. Science 274, 1531–1534 (1996).

    CAS  PubMed  Google Scholar 

  39. Boehm, H. J. et al. Novel inhibitors of DNA gyrase: 3D structure based biased needle screening, hit validation by biophysical methods, and 3D guided optimization. A promising alternative to random screening. J. Med. Chem. 43, 2664–2674 (2000).

    CAS  PubMed  Google Scholar 

  40. Sidhu, S. S., Fairbrother, W. J. & Deshayes, K. Exploring protein–protein interactions with phage display. ChemBioChem 4, 14–25 (2003).

    CAS  PubMed  Google Scholar 

  41. Toogood, P. L. Inhibition of protein–protein association by small molecules: approaches and progress. J. Med. Chem. 45, 1543–1558 (2002).

    CAS  PubMed  Google Scholar 

  42. DeLano, W. L., Ultsch, M. H., de Vos, A. M. & Wells, J. A. Convergent solutions to binding at a protein–protein interface. Science 287, 1279–1283 (2000).

    CAS  PubMed  Google Scholar 

  43. McMillan, K. et al. Allosteric inhibitors of inducible nitric oxide synthase dimerization discovered via combinatorial chemistry. Proc. Natl Acad. Sci. USA 97, 1506–1511 (2000).

    CAS  PubMed  Google Scholar 

  44. Niederhauser, O. et al. NGF ligand alters NGF signaling via p75(NTR) and trkA. J. Neurosci. Res. 61, 263–272 (2000).

    CAS  Google Scholar 

  45. Cheng, Y. et al. Rational drug design via intrinsically disordered protein. Trends Biotechnol. 24, 435–442 (2006).

    CAS  PubMed  Google Scholar 

  46. Oldfield, C. J. et al. Coupled folding and binding with α-helix-forming molecular recognition elements. Biochemistry 44, 12454–12470 (2005).

    CAS  PubMed  Google Scholar 

  47. Wang, J. et al. Platensimycin is a selective FabF inhibitor with potent antibiotic properties. Nature 441, 358–361 (2006). This describes the extraordinary discovery of a natural broad-spectrum antibiotic with a novel mode of action.

    CAS  Google Scholar 

  48. Bi, E., Dai, K., Subbarao, S., Beall, B. & Lutkenhaus, J. FtsZ and cell division. Res. Microbiol. 142, 249–252 (1991).

    CAS  PubMed  Google Scholar 

  49. Romberg, L. & Levin, P. A. Assembly dynamics of the bacterial cell division protein FTSZ: poised at the edge of stability. Annu. Rev. Microbiol. 57, 125–154 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. White, E. L., Suling, W. J., Ross, L. J., Seitz, L. E. & Reynolds, R. C. 2-Alkoxycarbonylaminopyridines: inhibitors of Mycobacterium tuberculosis FtsZ. J. Antimicrob. Chemother. 50, 111–114 (2002).

    CAS  PubMed  Google Scholar 

  51. Reynolds, R. C., Srivastava, S., Ross, L. J., Suling, W. J. & White, E. L. A new 2-carbamoyl pteridine that inhibits mycobacterial FtsZ. Bioorg. Med. Chem. Lett. 14, 3161–3164 (2004).

    CAS  PubMed  Google Scholar 

  52. Wang, J. et al. Discovery of a small molecule that inhibits cell division by blocking FtsZ, a novel therapeutic target of antibiotics. J. Biol. Chem. 278, 44424–44428 (2003).

    CAS  PubMed  Google Scholar 

  53. Margalit, D. N. et al. Targeting cell division: small-molecule inhibitors of FtsZ GTPase perturb cytokinetic ring assembly and induce bacterial lethality. Proc. Natl Acad. Sci. USA 101, 11821–11826 (2004).

    CAS  PubMed  Google Scholar 

  54. Lappchen, T., Hartog, A. F., Pinas, V. A., Koomen, G. J. & den Blaauwen, T. GTP analogue inhibits polymerization and GTPase activity of the bacterial protein FtsZ without affecting its eukaryotic homologue tubulin. Biochemistry 44, 7879–7884 (2005).

    PubMed  Google Scholar 

  55. Stokes, N. R. et al. Novel inhibitors of bacterial cytokinesis identified by a cell-based antibiotic screening assay. J. Biol. Chem. 280, 39709–39715 (2005). An example of a screen for inhibitors of bacterial cell division. A clever approach that successfully provided a strong lead that meets several antibacterial criteria.

    CAS  PubMed  Google Scholar 

  56. Paradis-Bleau, C., Sanschagrin, F. & Levesque, R. C. Identification of Pseudomonas aeruginosa FtsZ peptide inhibitors as a tool for development of novel antimicrobials. J. Antimicrob. Chemother. 54, 278–280 (2004).

    CAS  PubMed  Google Scholar 

  57. Beuria, T. K., Santra, M. K. & Panda, D. Sanguinarine blocks cytokinesis in bacteria by inhibiting FtsZ assembly and bundling. Biochemistry 44, 16584–16593 (2005).

    CAS  PubMed  Google Scholar 

  58. Paradis-Bleau, C., Beaumont, M., Sanschagrin, F., Voyer, N. & Levesque, R. C. Parallel solid synthesis of inhibitors of the essential cell division FtsZ enzyme as a new potential class of antibacterials. Bioorg. Med. Chem. 15, 1330–1340 (2007).

    CAS  PubMed  Google Scholar 

  59. Vollmer, W. The prokaryotic cytoskeleton: a putative target for inhibitors and antibiotics? Appl. Microbiol. Biotechnol. 73, 37–47 (2006).

    CAS  PubMed  Google Scholar 

  60. Huang, Q., Tonge, P. J., Slayden, R. A., Kirikae, T. & Ojima, I. FtsZ: a novel target for tuberculosis drug discovery. Curr. Top. Med. Chem. 7, 527–543 (2007).

    CAS  PubMed  Google Scholar 

  61. Dajkovic, A. & Lutkenhaus, J. Z ring as executor of bacterial cell division. J. Mol. Microbiol. Biotechnol. 11, 140–151 (2006).

    CAS  Google Scholar 

  62. Margolin, W. FtsZ and the division of prokaryotic cells and organelles. Nature Rev. Mol. Cell Biol. 6, 862–871 (2005).

    CAS  Google Scholar 

  63. Michie, K. A. & Lowe, J. Dynamic filaments of the bacterial cytoskeleton. Annu. Rev. Biochem. 75, 467–492 (2006).

    CAS  PubMed  Google Scholar 

  64. Erickson, H. P., Taylor, D. W., Taylor, K. A. & Bramhill, D. Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologs of tubulin polymers. Proc. Natl Acad. Sci. USA 93, 519–523 (1996).

    CAS  PubMed  Google Scholar 

  65. Yu, X. C. & Margolin, W. Ca2+-mediated GTP-dependent dynamic assembly of bacterial cell division protein FtsZ into asters and polymer networks in vitro. EMBO J. 16, 5455–5463 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Mukherjee, A. & Lutkenhaus, J. Dynamic assembly of FtsZ regulated by GTP hydrolysis. EMBO J. 17, 462–469 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Lowe, J. & Amos, L. A. Tubulin-like protofilaments in Ca2+-induced FtsZ sheets. EMBO J. 18, 2364–2371 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. White, E. L. et al. Slow polymerization of Mycobacterium tuberculosis FtsZ. J. Bacteriol. 182, 4028–4034 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Romberg, L., Simon, M. & Erickson, H. P. Polymerization of Ftsz, a bacterial homolog of tubulin. Is assembly cooperative? J. Biol. Chem. 276, 11743–11753 (2001).

    CAS  PubMed  Google Scholar 

  70. Oliva, M. A. et al. Assembly of archaeal cell division protein FtsZ and a GTPase-inactive mutant into double-stranded filaments. J. Biol. Chem. 278, 33562–33570 (2003).

    CAS  PubMed  Google Scholar 

  71. Huang, Q. et al. Targeting FtsZ for antituberculosis drug discovery: noncytotoxic taxanes as novel antituberculosis agents. J. Med. Chem. 49, 463–466 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Weisleder, D. & Lillehoj, E. B. Structure of viriditoxin, a toxic metabolite of Aspergillus viridinutans. Tetrahedron Lett. 48, 4705–4706 (1971).

    Google Scholar 

  73. Urgaonkar, S. et al. Synthesis of antimicrobial natural products targeting FtsZ: (±)-dichamanetin and (±)-2' “-hydroxy-5” '-benzylisouvarinol-B. Org. Lett. 7, 5609–5612 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Hiraga, S. et al. Chromosome partitioning in Escherichia coli: novel mutants producing anucleate cells. J. Bacteriol. 171, 1496–1505 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Ito, H. et al. A 4-aminofurazan derivative-A189-inhibits assembly of bacterial cell division protein FtsZ in vitro and in vivo. Microbiol. Immunol. 50, 759–764 (2006).

    CAS  PubMed  Google Scholar 

  76. Jordan, A., Hadfield, J. A., Lawrence, N. J. & McGown, A. T. Tubulin as a target for anticancer drugs: agents which interact with the mitotic spindle. Med. Res. Rev. 18, 259–296 (1998).

    CAS  PubMed  Google Scholar 

  77. Verrills, N. M. & Kavallaris, M. Improving the targeting of tubulin-binding agents: lessons from drug resistance studies. Curr. Pharm. Des. 11, 1719–1733 (2005).

    CAS  PubMed  Google Scholar 

  78. Lu, C., Stricker, J. & Erickson, H. P. FtsZ from Escherichia coli, Azotobacter vinelandii, and Thermotoga maritima — quantitation, GTP hydrolysis, and assembly. Cell. Motil. Cytoskeleton 40, 71–86 (1998).

    CAS  PubMed  Google Scholar 

  79. Stricker, J., Maddox, P., Salmon, E. D. & Erickson, H. P. Rapid assembly dynamics of the Escherichia coli FtsZ-ring demonstrated by fluorescence recovery after photobleaching. Proc. Natl Acad. Sci. USA 99, 3171–3175 (2002).

    CAS  PubMed  Google Scholar 

  80. Levin, P. A., Kurtser, I. G. & Grossman, A. D. Identification and characterization of a negative regulator of FtsZ ring formation in Bacillus subtilis. Proc. Natl Acad. Sci. USA 96, 9642–9647 (1999).

    CAS  PubMed  Google Scholar 

  81. Gueiros-Filho, F. J. & Losick, R. A widely conserved bacterial cell division protein that promotes assembly of the tubulin-like protein FtsZ. Genes Dev. 16, 2544–2556 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Ishikawa, S., Kawai, Y., Hiramatsu, K., Kuwano, M. & Ogasawara, N. A new FtsZ-interacting protein, YlmF, complements the activity of FtsA during progression of cell division in Bacillus subtilis. Mol. Microbiol. 60, 1364–1380 (2006).

    CAS  PubMed  Google Scholar 

  83. Lutkenhaus, J. F. & Donachie, W. D. Identification of the FTSA gene product. J. Bacteriol. 137, 1088–1094 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Beall, B. & Lutkenhaus, J. Impaired cell division and sporulation of a Bacillus subtilis strain with the ftsA gene deleted. J. Bacteriol. 174, 2398–2403 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Paradis-Bleau, C., Sanschagrin, F. & Levesque, R. C. Peptide inhibitors of the essential cell division protein FtsA. Protein Eng. Des. Sel. 18, 85–91 (2005).

    CAS  PubMed  Google Scholar 

  86. Pichoff, S. & Lutkenhaus, J. Identification of a region of FtsA required for interaction with FtsZ. Mol. Microbiol. 64, 1129–1138 (2007).

    CAS  PubMed  Google Scholar 

  87. Pichoff, S. & Lutkenhaus, J. Tethering the Z ring to the membrane through a conserved membrane targeting sequence in FtsA. Mol. Microbiol. 55, 1722–1734 (2005). A significant discovery regarding the role of FtsA in cell division that will significantly aid in the determination of the function of this elusive protein.

    CAS  PubMed  Google Scholar 

  88. Dai, K. & Lutkenhaus, J. The proper ratio of FtsZ to FtsA is required for cell division to occur in Escherichia coli. J. Bacteriol. 174, 6145–6151 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Yan, K., Pearce, K. H. & Payne, D. J. A conserved residue at the extreme C-terminus of FtsZ is critical for the FtsA–FtsZ interaction in Staphylococcus aureus. Biochem. Biophys. Res. Commun. 270, 387–392 (2000).

    CAS  PubMed  Google Scholar 

  90. Tamura, M. et al. RNase E maintenance of proper FtsZ/FtsA ratio required for nonfilamentous growth of Escherichia coli cells but not for colony-forming ability. J. Bacteriol. 188, 5145–5152 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang, X., Huang, J., Mukherjee, A., Cao, C. & Lutkenhaus, J. Analysis of the interaction of FtsZ with itself, GTP, and FtsA. J. Bacteriol. 179, 5551–5559 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Din, N., Quardokus, E. M., Sackett, M. J. & Brun, Y. V. Dominant C-terminal deletions of FtsZ that affect its ability to localize in Caulobacter and its interaction with FtsA. Mol. Microbiol 27, 1051–1063 (1998).

    CAS  PubMed  Google Scholar 

  93. Ma, X. & Margolin, W. Genetic and functional analyses of the conserved C-terminal core domain of Escherichia coli FtsZ. J. Bacteriol. 181, 7531–7544 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Hale, C. A. & de Boer, P. A. J. ZipA is required for recruitment of FtsK, FtsQ, FtsL, and FtsN to the septal ring in Escherichia coli. J. Bacteriol. 184, 2552–2556 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Corbin, B. D., Geissler, B., Sadasivam, M. & Margolin, W. Z-Ring-independent interaction between a subdomain of FtsA and late septation proteins as revealed by a polar recruitment assay. J. Bacteriol. 186, 7736–7744 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Rico, A. I., Garcia-Ovalle, M., Mingorance, J. & Vicente, M. Role of two essential domains of Escherichia coli FtsA in localization and progression of the division ring. Mol. Microbiol. 53, 1359–1371 (2004).

    CAS  PubMed  Google Scholar 

  97. Goehring, N. W., Petrovska, I., Boyd, D. & Beckwith, J. Mutants, suppressors, and wrinkled colonies: mutant alleles of the cell division gene ftsQ point to functional domains in FtsQ and a role for domain 1C of FtsA in divisome assembly. J. Bacteriol. 189, 633–645 (2007).

    CAS  PubMed  Google Scholar 

  98. Goehring, N. W., Gueiros-Filho, F. & Beckwith, J. Premature targeting of a cell division protein to midcell allows dissection of divisome assembly in Escherichia coli. Genes Dev. 19, 127–137 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Hale, C. A. & de Boer, P. A. Recruitment of ZipA to the septal ring of Escherichia coli is dependent on FtsZ and independent of FtsA. J. Bacteriol. 181, 167–176 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Pichoff, S. & Lutkenhaus, J. Unique and overlapping roles for ZipA and FtsA in septal ring assembly in Escherichia coli. EMBO J. 21, 685–693 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Hale, C., Rhee, A. & de Boer, P. ZipA-induced bundling of FtsZ polymers mediated by an interaction between C-terminal domains. J. Bacteriol. 182, 5153–5166 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. RayChaudhuri, D. ZipA is a MAP-Tau homolog and is essential for structural integrity of the cytokinetic FtsZ ring during bacterial cell division. EMBO J. 18, 2372–2383 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Ohashi, T., Hale, C. A., de Boer, P. A. & Erickson, H. P. Structural evidence that the P/Q domain of ZipA is an unstructured, flexible tether between the membrane and the C-terminal FtsZ-binding domain. J. Bacteriol. 184, 4313–4315 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Liu, Z., Mukherjee, A. & Lutkenhaus, J. Recruitment of ZipA to the division site by interaction with FtsZ. Mol. Microbiol. 31, 1853–1861 (1999).

    CAS  PubMed  Google Scholar 

  105. Moy, F. J., Glasfeld, E., Mosyak, L. & Powers, R. Solution structure of ZipA, a crucial component of Escherichia coli cell division. Biochemistry 39, 9146–9156 (2000).

    CAS  PubMed  Google Scholar 

  106. Rush, T. S. 3rd, Grant, J. A., Mosyak, L. & Nicholls, A. A shape-based 3-D scaffold hopping method and its application to a bacterial protein–protein interaction. J. Med. Chem. 48, 1489–1495 (2005).

    CAS  Google Scholar 

  107. Moreira, I. S., Fernandes, P. A. & Ramos, M. J. Detailed microscopic study of the full zipA:FtsZ interface. Proteins 63, 811–821 (2006).

    CAS  PubMed  Google Scholar 

  108. Low, H. H., Moncrieffe, M. C. & Lowe, J. The crystal structure of ZapA and its modulation of FtsZ polymerisation. J. Mol. Biol. 341, 839–852 (2004).

    CAS  PubMed  Google Scholar 

  109. Schmidt, K. L. et al. A predicted ABC transporter, FtsEX, is needed for cell division in Escherichia coli. J. Bacteriol. 186, 785–793 (2004).

    CAS  Google Scholar 

  110. Corbin, B. D., Wang, Y., Beuria, T. K. & Margolin, W. Interaction between cell division proteins FtsE and FtsZ. J. Bacteriol. 189, 3026–3035 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Reddy, M. Role of FtsEX in cell division of Escherichia coli: viability of ftsEX mutants is dependent on functional SufI or high osmotic strength. J. Bacteriol. 189, 98–108 (2007).

    CAS  PubMed  Google Scholar 

  112. Miyagishima, S.-Y. et al. Two types of FtsZ proteins in mitochondria and red-linage chloroplasts: the duplication of FtsZ is implicated in endosymbiosis. J. Mol. Evol. 58, 291–303 (2004).

    CAS  PubMed  Google Scholar 

  113. Hamoen, L. W., Meile, J. C., de Jong, W., Noirot, P. & Errington, J. SepF, a novel FtsZ-interacting protein required for a late step in cell division. Mol. Microbiol 59, 989–999 (2006).

    CAS  PubMed  Google Scholar 

  114. Miyagishima, S. -Y., Wolk, C. P. & Osteryoung, K. W. Identification of cyanobacterial cell division genes by comparative and mutational analyses. Mol. Microbiol. 56, 126–143 (2005).

    CAS  PubMed  Google Scholar 

  115. Aarsman, M. E. G. et al. Maturation of the Escherichia coli divisome occurs in two steps. Mol. Microbiol. 55, 1631–1645 (2005).

    CAS  PubMed  Google Scholar 

  116. Den Blaauwen, T., Buddelmeijer, N., Aarsman, M. E. G., Hameete, C. M. & Nanninga, N. Timing of FtsZ assembly in Escherichia coli. J. Bacteriol. 181, 5167–5175 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Schmid, M. B. Crystallizing new approaches for antimicrobial drug discovery. Biochem. Pharmacol. 71, 1048–1056 (2006). An excellent review demonstrating challenging state-of-the-art approaches to antibacterials.

    CAS  PubMed  Google Scholar 

  118. Barre, F. X. et al. The replication-recombination-chromosome segregation connection. Proc. Natl Acad. Sci. USA 98, 8189–8195 (2001).

    CAS  PubMed  Google Scholar 

  119. Wu, L. J. & Errington, J. Bacillus subtilis spoIIIE protein required for DNA segregation during asymmetric cell division. Science 264, 572–575 (1994).

    CAS  PubMed  Google Scholar 

  120. Goffin, C. & Ghuysen, J. M. Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol. Mol. Biol. Rev. 62, 1079–1093 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Holtje, J. V. Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol. Mol. Biol. Rev. 62, 181–203 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Scheffers, D. J. & Pinho, M. G. Bacterial cell wall synthesis: new insights from localization studies. Microbiol. Mol. Biol. Rev. 69, 585–607 (2005). A key review on the current understanding of the PBPs and their role in growth and cell division.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Kell, C. M. et al. Deletion analysis of the essentiality of penicillin-binding proteins 1A, 2B and 2X of Streptococcus pneumoniae. FEMS Microbiol. Lett. 106, 171–175 (1993).

    CAS  PubMed  Google Scholar 

  124. Daniel, R. A., Williams, A. M. & Errington, J. A complex four-gene operon containing essential cell division gene pbpB in Bacillus subtilis. J. Bacteriol. 178, 2343–2350 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Pinho, M. G., de Lencastre, H. & Tomasz, A. Cloning, characterization, and inactivation of the gene pbpC, encoding penicillin-binding protein 3 of Staphylococcus aureus. J. Bacteriol. 182, 1074–1079 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Pereira, S. F., Henriques, A. O., Pinho, M. G., de Lencastre, H. & Tomasz, A. Role of PBP1 in cell division of Staphylococcus aureus. J. Bacteriol. 189, 3525–3531 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Morlot, C., Zapun, A., Dideberg, O. & Vernet, T. Growth and division of Streptococcus pneumoniae: localization of the high molecular weight penicillin-binding proteins during the cell cycle. Mol. Microbiol. 50, 845–855 (2003).

    CAS  PubMed  Google Scholar 

  128. Boyle, D. S., Khattar, M. M., Addinall, S. G., Lutkenhaus, J. & Donachie, W. D. ftsW is an essential cell-division gene in Escherichia coli. Mol. Microbiol 24, 1263–1273 (1997).

    CAS  PubMed  Google Scholar 

  129. Henriques, A. O., Glaser, P., Piggot, P. J. & Moran, C. P. Jr. Control of cell shape and elongation by the rodA gene in Bacillus subtilis. Mol. Microbiol. 28, 235–247 (1998).

    CAS  PubMed  Google Scholar 

  130. Mercer, K. L. & Weiss, D. S. The Escherichia coli cell division protein FtsW is required to recruit its cognate transpeptidase, FtsI (PBP3), to the division site. J. Bacteriol. 184, 904–912 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Datta, P. et al. Interaction between FtsW and penicillin-binding protein 3 (PBP3) directs PBP3 to mid-cell, controls cell septation and mediates the formation of a trimeric complex involving FtsZ, FtsW and PBP3 in mycobacteria. Mol. Microbiol. 62, 1655–1673 (2006).

    CAS  PubMed  Google Scholar 

  132. Datta, P., Dasgupta, A., Bhakta, S. & Basu, J. Interaction between FtsZ and FtsW of Mycobacterium tuberculosis. J. Biol. Chem. 277, 24983–24987 (2002).

    CAS  PubMed  Google Scholar 

  133. Storts, D. R., Aparicio, O. M., Schoemaker, J. M. & Markovitz, A. Overproduction and identification of the ftsQ gene product, an essential cell division protein in Escherichia coli K-12. J. Bacteriol. 171, 4290–4297 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Buddelmeijer, N., Judson, N., Boyd, D., Mekalanos, J. J. & Beckwith, J. YgbQ, a cell division protein in Escherichia coli and Vibrio cholerae, localizes in codependent fashion with FtsL to the division site. Proc. Natl Acad. Sci. USA 99, 6316–6321 (2002).

    CAS  PubMed  Google Scholar 

  135. Guzman, L. M., Barondess, J. J. & Beckwith, J. FtsL, an essential cytoplasmic membrane protein involved in cell division in Escherichia coli. J. Bacteriol. 174, 7716–7728 (1992).

    CAS  PubMed  Google Scholar 

  136. Di Lallo, G., Fagioli, M., Barionovi, D., Ghelardini, P. & Paolozzi, L. Use of a two-hybrid assay to study the assembly of a complex multicomponent protein machinery: bacterial septosome differentiation. Microbiology 149, 3353–3359 (2003).

    CAS  PubMed  Google Scholar 

  137. Karimova, G., Dautin, N. & Ladant, D. Interaction network among Escherichia coli membrane proteins involved in cell division as revealed by bacterial two-hybrid analysis. J. Bacteriol. 187, 2233–2243 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Noirclerc-Savoye, M. et al. In vitro reconstitution of a trimeric complex of DivIB, DivIC and FtsL, and their transient co-localization at the division site in Streptococcus pneumoniae. Mol. Microbiol. 55, 413–424 (2005).

    CAS  PubMed  Google Scholar 

  139. Daniel, R. A., Noirot-Gros, M. F., Noirot, P. & Errington, J. Multiple interactions between the transmembrane division proteins of Bacillus subtilis and the role of FtsL instability in divisome assembly. J. Bacteriol. 188, 7396–7404 (2006).

    CAS  Google Scholar 

  140. Levin, P. A. & Losick, R. Characterization of a cell division gene from Bacillus subtilis that is required for vegetative and sporulation septum formation. J. Bacteriol. 176, 1451–1459 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Daniel, R. A., Harry, E. J., Katis, V. L., Wake, R. G. & Errington, J. Characterization of the essential cell division gene ftsL(yIID) of Bacillus subtilis and its role in the assembly of the division apparatus. Mol. Microbiol. 29, 593–604 (1998).

    CAS  Google Scholar 

  142. Beall, B. & Lutkenhaus, J. Nucleotide sequence and insertional inactivation of a Bacillus subtilis gene that affects cell division, sporulation, and temperature sensitivity. J. Bacteriol. 171, 6821–6834 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Katis, V. L., Wake, R. G. & Harry, E. J. Septal localization of the membrane-bound division proteins of Bacillus subtilis DivIB and DivIC is codependent only at high temperatures and requires FtsZ. J. Bacteriol. 182, 3607–3611 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Robson, S. A., Michie, K. A., Mackay, J. P., Harry, E. & King, G. F. The Bacillus subtilis cell division proteins FtsL and DivIC are intrinsically unstable and do not interact with one another in the absence of other septasomal components. Mol. Microbiol. 44, 663–674 (2002).

    CAS  PubMed  Google Scholar 

  145. D'Ulisse, V., Fagioli, M., Ghelardini, P. & Paolozzi, L. Three functional subdomains of the Escherichia coli FtsQ protein are involved in its interaction with the other division proteins. Microbiology 153, 124–138 (2007).

    CAS  PubMed  Google Scholar 

  146. Sanchez-Pulido, L., Devos, D., Genevrois, S., Vicente, M. & Valencia, A. POTRA: a conserved domain in the FtsQ family and a class of β-barrel outer membrane proteins. Trends Biochem. Sci. 28, 523–526 (2003).

    CAS  PubMed  Google Scholar 

  147. Robson, S. A. & King, G. F. Domain architecture and structure of the bacterial cell division protein DivIB. Proc. Natl Acad. Sci. USA 103, 6700–6705 (2006).

    CAS  PubMed  Google Scholar 

  148. Thompson, L. S., Beech, P. L., Real, G., Henriques, A. O. & Harry, E. J. Requirement for the cell division protein DivIB in polar cell division and engulfment during sporulation in Bacillus subtilis. J. Bacteriol. 188, 7677–7685 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Sievers, J. & Errington, J. Analysis of the essential cell division gene ftsL of Bacillus subtilis by mutagenesis and heterologous complementation. J. Bacteriol. 182, 5572–5579 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Daniel, R. A. & Errington, J. Intrinsic instability of the essential cell division protein FtsL of Bacillus subtilis and a role for DivIB protein in FtsL turnover. Mol. Microbiol. 36, 278–289 (2000).

    CAS  PubMed  Google Scholar 

  151. Romero-Tabarez, M. et al. 7-O-malonyl macrolactin A, a new macrolactin antibiotic from Bacillus subtilis active against methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and a small-colony variant of Burkholderia cepacia. Antimicrob. Agents Chemother. 50, 1701–1709 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Si, W. et al. Bioassay-guided purification and identification of antimicrobial components in Chinese green tea extract. J. Chromatogr. A 1125, 204–210 (2006).

    CAS  Google Scholar 

  153. Watt, P. M. Screening for peptide drugs from the natural repertoire of biodiverse protein folds. Nature Biotech. 24, 177–183 (2006).

    CAS  Google Scholar 

  154. Keller, T. H., Pichota, A. & Yin, Z. A practical view of 'druggability'. Curr. Opin. Chem. Biol. 10, 357–361 (2006).

    CAS  PubMed  Google Scholar 

  155. Dai, K. & Lutkenhaus, J. ftsZ is an essential cell division gene in Escherichia coli. J. Bacteriol. 173, 3500–3506 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Wang, L., Khattar, M. K., Donachie, W. D. & Lutkenhaus, J. FtsI and FtsW are localized to the septum in Escherichia coli. J. Bacteriol. 180, 2810–2816 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Espeli, O., Lee, C. & Marians, K. J. A physical and functional interaction between Escherichia coli FtsK and topoisomerase IV. J. Biol. Chem. 278, 44639–44644 (2003).

    CAS  PubMed  Google Scholar 

  158. Massey, T. H., Mercogliano, C. P., Yates, J., Sherratt, D. J. & Lowe, J. Double-stranded DNA translocation: structure and mechanism of hexameric FtsK. Mol. Cell 23, 457–469 (2006).

    CAS  PubMed  Google Scholar 

  159. Spratt, B. G. Properties of the penicillin-binding proteins of Escherichia coli K12. Eur. J. Biochem. 72, 341–352 (1977).

    CAS  PubMed  Google Scholar 

  160. Dessen, A., Mouz, N., Gordon, E., Hopkins, J. & Dideberg, O. Crystal structure of PBP2x from a highly penicillin-resistant Streptococcus pneumoniae clinical isolate: a mosaic framework containing 83 mutations. J. Biol. Chem. 276, 45106–45112 (2001).

    CAS  PubMed  Google Scholar 

  161. Yang, J. C., Van Den Ent, F., Neuhaus, D., Brevier, J. & Lowe, J. Solution structure and domain architecture of the divisome protein FtsN. Mol. Microbiol. 52, 651–660 (2004).

    CAS  PubMed  Google Scholar 

  162. Bernhardt, T. G. & de Boer, P. A. The Escherichia coli amidase AmiC is a periplasmic septal ring component exported via the twin-arginine transport pathway. Mol. Microbiol. 48, 1171–1182 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Heidrich, C. et al. Involvement of N-acetylmuramyl-L-alanine amidases in cell separation and antibiotic-induced autolysis of Escherichia coli. Mol. Microbiol. 41, 167–178 (2001).

    CAS  PubMed  Google Scholar 

  164. Kobayashi, K. et al. Essential Bacillus subtilis genes. Proc. Natl Acad. Sci. USA 100, 4678–4683 (2003).

    CAS  PubMed  Google Scholar 

  165. Bernhardt, T. G. & de Boer, P. A. Screening for synthetic lethal mutants in Escherichia coli and identification of EnvC (YibP) as a periplasmic septal ring factor with murein hydrolase activity. Mol. Microbiol. 52, 1255–1269 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Song, J. H. et al. Identification of essential genes in Streptococcus pneumoniae by allelic replacement mutagenesis. Mol. Cells 19, 365–374 (2005).

    CAS  PubMed  Google Scholar 

  167. Ecker, D. J. et al. The Microbial Rosetta Stone Database: a compilation of global and emerging infectious microorganisms and bioterrorist threat agents. BMC Microbiol. 5, 19 (2005).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank L. Monahan (Institute for the Biotechnology of Infectious Diseases, University of Technology, Sydney) for contributions to table 1 and for figure 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth J. Harry.

Ethics declarations

Competing interests

R.L.L. and E.J.H. are employees of the University of Technology, Sydney, Australia, and are working in collaboration with Proteome Systems Ltd in the discovery and commercialization of therapeutic targets for the treatment of antibacterial infections.

Related links

Related links

DATABASES

Entrez Genome Project

Bacillus subtilis

Escherichia coli

Haemophilus influenza

Mycobacterium tuberculosis

Pseudomonas aeruginosa

Salmonella typhimurium

Staphylococcus aureus

Streptococcus pneumoniae

Yersinia pestis

FURTHER INFORMATION

The Institute for the Biotechnology of Infectious Diseases

Glossary

Peptidoglycan

Also known as murein, is a polymer consisting of sugars and amino acids that is located outside the cytoplasmic membrane of eubacteria. The sugar component consists of alternating residues of β-(1,4) linked N-acetylglucosamine and N-acetylmuramic acid. Attached to the N-acetylmuramic acid is a peptide chain of three to five amino acids. Strands are crosslinked by their peptide chains, providing a rigid three-dimensional matrix. The peptidoglycan layer is substantially thicker in Gram-positive bacteria (20–80 nm) than in Gram-negative bacteria (7–8 nm).

Bactericidal

Kills bacteria.

Divisome

Proteins that make up the septal ring at the division site in bacteria.

Fragment-discovery approach

A method devised recently for probing a large chemical space while synthesizing a minimum number of compounds. Fragments are usually organic compounds of small molecular mass that bind a protein target, which are then optimized for improved function, allowing enrichment for binding to the target.

Phage display

A high-throughput assay for protein–protein or protein–small molecule interactions by cloning genes of interest for display on the surface of a bacteriophage.

Hot spots

Compact, centralized regions of residues at a protein–protein interface that are crucial for the affinity of the interaction. They tend to be found on both sides of the interface and are highly complementary to each other in crystal structures.

Allosteric protein

A protein containing two or more topologically distinct binding sites that interact functionally with each other.

Sporulation

Differentiation of a vegetative bacterial cell to form a spore, a dormant cell type, in response to nutrient depletion. The process involves a regulated programme of differential gene expression and the formation of an asymmetric division septum.

Peptidomimetic

A compound that has been designed to mimic the functionality of a short peptide sequence that interacts with a receptor site in a protein–protein interaction, offering the advantages of increased bioavailability, biostability, bioefficiency and bioselectivity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lock, R., Harry, E. Cell-division inhibitors: new insights for future antibiotics. Nat Rev Drug Discov 7, 324–338 (2008). https://doi.org/10.1038/nrd2510

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2510

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing