Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

Multicomponent therapeutics for networked systems

Key Points

  • The empirical, de novo discovery of multicomponent syncretic drugs requires an integrated informatics and experimental pipeline approach that is dedicated to such a process. Such a method can be used to screen millions of combinations of already approved drugs (or new chemicl entities) for activities in new disease indications55. Scientists at CombinatoRx, Inc. have used this approach to discover numerous syncretic drug candidates that are being tested in early clinical trials (Fig. 5). Such efforts necessarily encompass cross-disciplinary expertise, including mathematics, statistics, physics, chemistry, biology and computer science. With such groups, it is possible to find novel and effective syncretic drugs for a variety of human diseases. Indeed, the systems-based discovery of therapeutics probably represents the next frontier in drug discovery research.

    a | CRx-026 was discovered in a high-throughput combination screen of tens of thousands of combinations of existing drugs for those that synergize in killing human tumour cell lines. CRx-026 is a combination of chlorpromazine, a phenothiazine sedative, and pentamidine, an anti-infective agent. Neither compound is approved for use as an anticancer drug. The colour scale indicates the percentage level of inhibition of viability of A549 lung carcinoma cells by chlorpromazine and pentamidine at a range of concentrations. b | CRx-026 effectively inhibits tumour formation in a nude mouse xenograft model, whereas the individual compounds are by themselves less effective55. The x-axis shows time (in days) post-injection of tumour cells (treatment with compounds begins at 35 days to create a more realistic model of treating existing human tumours). The y-axis shows mean tumour volume (in mm3). Tumour sizes in mice treated with saline vehicle alone (blue line), with 20 mg per kg pentamidine alone (orange line), with 5 mg per kg chlorpromazine (green line) or with both 20 mg per kg pentamidine and 5 mg per kg chlorpromazine (black line) are shown. Only the combination of these two compounds effectively halted tumour growth. Figure reproduced with permission from Ref. 55 © (2003) National Academy of Sciences, USA.

Abstract

Therapeutic regimens that comprise more than one active ingredient are commonly used in clinical medicine. Despite this, most drug discovery efforts search for drugs that are composed of a single chemical entity. A focus in the early drug discovery process on identifying and optimizing the activity of combinations of molecules can result in the identification of more effective drug regimens. A systems perspective facilitates an understanding of the mechanism of action of such drug combinations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Networked systems might require multicomponent interventions to modulate signalling outputs.
Figure 2: Response surfaces for combination effect reference models.
Figure 3: The antibiotic Augmentin is a mechanism-based combination drug.
Figure 4: A phenotypic assay for combination screening.

Similar content being viewed by others

References

  1. Reich, D. E. & Lander, E. S. On the allelic spectrum of human disease. Trends Genet. 17, 502–510 (2001).

    Article  CAS  Google Scholar 

  2. Loktionov, A. Common gene polymorphisms and nutrition: emerging links with pathogenesis of multifactorial chronic diseases. J. Nutr. Biochem. 14, 426–451 (2003).

    Article  CAS  Google Scholar 

  3. Kaplan, J. C. & Junien, C. Genomics and medicine: an anticipation. From Boolean Mendelian genetics to multifactorial molecular medicine. CR Acad. Sci. III 323, 1167–1174 (2000).

    Article  CAS  Google Scholar 

  4. Kitano, H. Systems biology: a brief overview. Science 295, 1662–1664 (2002).

    Article  CAS  Google Scholar 

  5. Ideker, T., Galitski, T. & Hood, L. A new approach to decoding life: systems biology. Annu. Rev. Genomics Hum. Genet. 2, 343–372 (2001).

    Article  CAS  Google Scholar 

  6. Lee, T. I. et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799–804 (2002).

    Article  CAS  Google Scholar 

  7. Brent, R. Genomic biology. Cell 100, 169–183 (2000).

    Article  CAS  Google Scholar 

  8. Blume-Jensen, P. & Hunter, T. Oncogenic kinase signalling. Nature 411, 355–365 (2001).

    Article  CAS  Google Scholar 

  9. Humbert, S. et al. The IGF-1/Akt pathway is neuroprotective in Huntington's disease and involves Huntingtin phosphorylation by Akt. Dev. Cell 2, 831–837 (2002).

    Article  CAS  Google Scholar 

  10. Banerjee, N. & Zhang, M. Q. Functional genomics as applied to mapping transcription regulatory networks. Curr. Opin. Microbiol. 5, 313–317 (2002).

    Article  CAS  Google Scholar 

  11. Pilpel, Y., Sudarsanam, P. & Church, G. M. Identifying regulatory networks by combinatorial analysis of promoter elements. Nature Genet. 29, 153–159 (2001).

    Article  CAS  Google Scholar 

  12. Arteaga, C. L. Molecular therapeutics: is one promiscuous drug against multiple targets better than combinations of molecule-specific drugs? Clin. Cancer Res. 9, 1231–1232 (2003).

    CAS  PubMed  Google Scholar 

  13. Chabner, B. A. Promising new drugs and combinations. Fulfilling our pledge. Oncologist 4, VIII (1999).

    CAS  PubMed  Google Scholar 

  14. Stupp, R. & R. egg, C. New drugs and combinations for malignant glioma. Forum (Genova) 13, 61–75 (2003).

    CAS  Google Scholar 

  15. Mondimore, F. M., Fuller, G. A. & DePaulo, J. R. Drug combinations for mania. J. Clin. Psychiatry 64 (Suppl. 5), 25–31 (2003).

    CAS  PubMed  Google Scholar 

  16. Danis, M. & Bricaire, F. The new drug combinations: their place in the treatment of uncomplicated Plasmodium falciparum malaria. Fundam. Clin. Pharmacol. 17, 155–160 (2003).

    Article  CAS  Google Scholar 

  17. Curatolo, M. & Sveticic, G. Drug combinations in pain treatment: a review of the published evidence and a method for finding the optimal combination. Best Pract. Res. Clin. Anaesthesiol. 16, 507–519 (2002).

    Article  CAS  Google Scholar 

  18. Pirker, R. Two- versus three-drug combinations in the chemotherapy of advanced non-small-cell lung cancer. Lung Cancer 38 (Suppl. 3), S53–S55 (2002).

    Article  Google Scholar 

  19. Maga, G. & Spadari, S. Combinations against combinations: associations of anti-HIV 1 reverse transcriptase drugs challenged by constellations of drug resistance mutations. Curr. Drug Metab. 3, 73–95 (2002).

    Article  CAS  Google Scholar 

  20. Hainsworth, J. D., Burris, H. A. & Greco, F. A. Paclitaxel-based three-drug combinations for the treatment of small cell lung cancer: a review of the Sarah Cannon Cancer Center experience. Semin. Oncol. 28, 43–47 (2001).

    Article  CAS  Google Scholar 

  21. Yuan, R. & Lin, Y. Traditional Chinese medicine: an approach to scientific proof and clinical validation. Pharmacol. Ther. 86, 191–8 (2000).

    Article  CAS  Google Scholar 

  22. Foungbe, S., Kouassi, G., Kablan, J. B. & Marcy, R. Study of Costus lucanusianus: plant juice, fraction combinations and pharmacologic estimation of natural product total activity. J. Ethnopharmacol. 33, 221–226 (1991).

    Article  CAS  Google Scholar 

  23. Turner, D. M. Natural product source material use in the pharmaceutical industry: the Glaxo experience. J. Ethnopharmacol. 51, 39–43; (1996).

    Article  CAS  Google Scholar 

  24. Schuster, B. G. A new integrated program for natural product development and the value of an ethnomedical approach. J. Altern. Complement. Med. 7 (Suppl. 1), S61–S72 (2001).

    Article  Google Scholar 

  25. Fraser, T. R. An experimental research on the antagonism between the actions of physostigma and atropia. Proc. R. Soc. Edinburgh 7, 506 (1871).

    Article  Google Scholar 

  26. Loewe, S. Die quantitation probleme der pharmakologie. Ergebn. Physiol. 27, 47–187 (1928).

    Article  Google Scholar 

  27. Loewe, S. The problem of synergism and antagonism of combined drugs. Arzneimitteforsch 3, 285 (1953).

    CAS  Google Scholar 

  28. Ehrlich, P. Chemotherapeutics: scientific principles, methods and results. Lancet 2, 445–451 (1913).

    Google Scholar 

  29. Albert, A. Selective Toxicity (Methuen & Co., London, 1968).

    Google Scholar 

  30. Kinzler, K. W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159–170 (1996).

    Article  CAS  Google Scholar 

  31. DeVita, V. T. in Cancer: Principles and Practice of Oncology (eds DeVita, V. T., Hellman, S. & Rosenberg, S. A.) 333–347 (Lippincott–Raven, Philadelphia, 1997).

    Google Scholar 

  32. Nelson, H. S. Advair: combination treatment with fluticasone propionate/salmeterol in the treatment of asthma. J. Allergy Clin. Immunol. 107, 398–416 (2001).

    Article  CAS  Google Scholar 

  33. Kavuru, M. et al. Salmeterol and fluticasone propionate combined in a new powder inhalation device for the treatment of asthma: a randomized, double-blind, placebo-controlled trial. J. Allergy Clin. Immunol. 105, 1108–1116 (2000).

    Article  CAS  Google Scholar 

  34. Gupta, E. K. & Ito, M. K. Lovastatin and extended-release niacin combination product: the first drug combination for the management of hyperlipidemia. Heart Dis. 4, 124–137 (2002).

    Article  CAS  Google Scholar 

  35. Black, D. M. The development of combination drugs for atherosclerosis. Curr. Atheroscler. Rep. 5, 29–32 (2003).

    Article  Google Scholar 

  36. Bays, H. E. et al. Comparison of once-daily, niacin extended-release/lovastatin with standard doses of atorvastatin and simvastatin (the ADvicor Versus Other Cholesterol-Modulating Agents Trial Evaluation [ADVOCATE]). Am. J. Cardiol. 91, 667–672 (2003).

    Article  CAS  Google Scholar 

  37. Larder, B. A., Kemp, S. D. & Harrigan, P. R. Potential mechanism for sustained antiretroviral efficacy of AZT-3TC combination therapy. Science 269, 696–699 (1995).

    Article  CAS  Google Scholar 

  38. Grodeck, B. AZT plus 3TC produces best results to date. Posit Aware, 6 (1995).

  39. Knoben, J. E., Scott, G. R. & Tonelli, R. J. An overview of the FDA publication Approved Drug Products with Therapeutic Equivalence Evaluations. Am. J. Hosp. Pharm. 47, 2696–2700 (1990).

    CAS  PubMed  Google Scholar 

  40. Greco, W. R., Bravo, G. & Parsons, J. C. The search for synergy: a critical review from a response surface perspective. Pharmacol. Rev. 47, 331–385 (1995).

    CAS  PubMed  Google Scholar 

  41. Chou, T. -C. & Talalay, P. Analysis of combined drug effects: a new look at a very old problem. Trends Pharmacol. Sci. 4, 450–454 (1983).

    Article  CAS  Google Scholar 

  42. Chou, T. -C. & Talalay, P. Quantitative analysis of dose–effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv. Enzyme Regul. 22, 27–55 (1984).

    Article  CAS  Google Scholar 

  43. Bliss, C. I. The toxicity of poisons applied jointly. Ann. Appl. Biol. 26, 585–615 (1939).

    Article  CAS  Google Scholar 

  44. Groten, J. P. Toxicology of simple and complex mixtures. Trends Pharmacol. Sci. 22, 316–322 (2001).

    Article  CAS  Google Scholar 

  45. Stein, G. E. & Gurwith, M. J. Amoxicillin-potassium clavulanate, a β-lactamase-resistant antibiotic combination. Clin. Pharmacy 3, 591–599 (1984).

    CAS  Google Scholar 

  46. Hartman, J. L. T., Garvik, B. & Hartwell, L. Principles for the buffering of genetic variation. Science 291, 1001–1004 (2001).

    Article  CAS  Google Scholar 

  47. Guarente, L. Synthetic enhancement in gene interaction: a genetic tool come of age. Trends Genet. 9, 362–366 (1993).

    Article  CAS  Google Scholar 

  48. Tong, A. H. et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364–2368 (2001).

    Article  CAS  Google Scholar 

  49. Schoeberl, B., Eichler-Jonsson, C., Gilles, E. D. & Muller, G. Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nature Biotechnol. 20, 370–375 (2002).

    Article  Google Scholar 

  50. Hopkins, A. L. & Groom, C. R. Target analysis: a priori assessment of druggability. Ernst Schering Res. Found Workshop, 11–17 (2003).

  51. Stockwell, B. R. Chemical genetics: ligand-based discovery of gene function. Nature Rev. Genet. 1, 116–125 (2000).

    Article  CAS  Google Scholar 

  52. Stockwell, B. R. Frontiers in chemical genetics. Trends Biotechnol. 18, 449–455 (2000).

    Article  CAS  Google Scholar 

  53. Stockwell, B. R. Chemical genetic screening approaches to neurobiology. Neuron 36, 559–562 (2002).

    Article  CAS  Google Scholar 

  54. Markham, P. N., Westhaus, E., Klyachko, K., Johnson, M. E. & Neyfakh, A. A. Multiple novel inhibitors of the NorA multidrug transporter of Staphylococcus aureus. Antimicrob. Agents Chemother. 43, 2404–2408. (1999).

    Article  CAS  Google Scholar 

  55. Borisy, A. A. et al. Systematic discovery of multicomponent therapeutics. Proc. Natl Acad. Sci. USA 100, 7977–7982 (2003).

    Article  CAS  Google Scholar 

  56. Marschall, M., Freitag, M., Weiler, S., Sorg, G. & Stamminger, T. Recombinant green fluorescent protein-expressing human cytomegalovirus as a tool for screening antiviral agents. Antimicrob. Agents Chemother. 44, 1588–1597 (2000).

    Article  CAS  Google Scholar 

  57. Dolma, S., Lessnick, S. L., Hahn, W. C. & Stockwell, B. R. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 3, 285–296 (2003).

    Article  CAS  Google Scholar 

  58. Root, D. E., Flaherty, S. P., Kelley, B. P. & Stockwell, B. R. Biological mechanism profiling using an annotated compound library. Chem. Biol. 10, 881–892 (2003).

    Article  CAS  Google Scholar 

  59. Blanchard, B. J., Stockwell, B. R. & Ingram, V. M. Eliminating membrane depolarization caused by the Alzheimer peptide Aβ(1–42, aggr.). Biochem. Biophys. Res. Commun. 293, 1204–1208 (2002).

    Article  CAS  Google Scholar 

  60. Nakayama, T., Honda, K., Omura, H. & Hayashi, N. Oviposition stimulants for the tropical swallowtail butterfly, Papilio polytes, feeding on a rutaceous plant, Toddalia asiatica. J. Chem. Ecol. 29, 1621–1634 (2003).

    Article  CAS  Google Scholar 

  61. Stermitz, F. R., Lorenz, P., Tawara, J. N., Zenewicz, L. A. & Lewis, K. Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5'-methoxyhydnocarpin, a multidrug pump inhibitor. Proc. Natl Acad. Sci. USA 97, 1433–1437 (2000).

    Article  CAS  Google Scholar 

  62. Keeling, C. I., Slessor, K. N., Higo, H. A. & Winston, M. L. New components of the honey bee (Apis mellifera L.) queen retinue pheromone. Proc. Natl Acad. Sci. USA 100, 4486–4491 (2003).

    Article  CAS  Google Scholar 

  63. Belardelli, F. Role of interferons and other cytokines in the regulation of the immune response. Apmis 103, 161–179 (1995).

    Article  CAS  Google Scholar 

  64. Wan, Y. & Bramson, J. Role of dendritic cell-derived cytokines in immune regulation. Curr. Pharm. Des. 7, 977–992 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Foley for assistance in developing the concepts described here, and J. Lehár, T. Ideker and D. Grau for critical suggestions on this manuscript. B.R.S. is supported in part by a Career Award at the Scientific Interface from the Burroughs Wellcome Fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Curtis T. Keith, Alexis A. Borisy or Brent R. Stockwell.

Ethics declarations

Competing interests

The authors are employed by, and have equity interests in, CombinatoRx, Inc., a business whose goal is to identify and commercialize novel drug combinations using a systems-based approach.

Related links

Related links

DATABASE

Entrez Gene

AKT

SMAD2

SMAD3

TGF-β

Noble Prize in Physiology or Medicine 1901

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keith, C., Borisy, A. & Stockwell, B. Multicomponent therapeutics for networked systems. Nat Rev Drug Discov 4, 71–78 (2005). https://doi.org/10.1038/nrd1609

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1609

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing