Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ophthalmic drug discovery

Key Points

  • The success of a number of drugs to treat ocular diseases has resulted in an increased interest in ocular drug discovery.

  • The eye represents a unique and challenging complex organ for applying therapeutics, particularly with respect to drug delivery and access to selective ocular sites.

  • Disease entities covered in the review include diabetes retinopathy, age-related macular degeneration, glaucoma, dry eye, cataract, ocular inflammation and ocular infections.

  • Emphasis is placed on pathophysiology and the identity of target sites for retinal diseases and glaucoma, with present and potential drug therapies and screening models highlighted.

  • Target mechanisms discussed included angiogenesis, apoptosis and the extracellular matrix.

  • Sites for potential therapeutic intervention are identified.

Abstract

Millions of people suffer from a wide variety of ocular diseases, many of which lead to irreversible blindness. The leading causes of irreversible blindness in the elderly — age-related macular degeneration and glaucoma — will continue to effect more individuals as the worldwide population continues to age. Although there are therapies for treating glaucoma, as well as ongoing clinical trials of treatments for age-related macular degeneration, there still is a great need for more efficacious treatments that halt or even reverse ocular diseases. The eye has special attributes that allow local drug delivery and non-invasive clinical assessment of disease, but it is also a highly complex and unique organ, which makes understanding disease pathogenesis and ocular drug discovery challenging. As we learn more about the cellular mechanisms involved in age-related macular degeneration and glaucoma, potentially, new drug targets will emerge. This review provides insight into some of the new approaches to therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ocular tissues and common ocular diseases.
Figure 2: Drug targets for neuroprotection.
Figure 3: Mechanism of action for ocular angiostatic agents in clinical development.

Similar content being viewed by others

References

  1. Alward, W. L. Biomedicine. A new angle on ocular development. Science 299, 1527–1528 (2003).

    CAS  PubMed  Google Scholar 

  2. Vision problems in the U. S. (2002) Prevent Blindness America; National Eye Institute. www.nei.nih.gov/eyedata/.A great source of data on age-related vision problems in the United States.

  3. Clark, A. F. Current trends in antiglaucoma therapy. Emerging Drugs 4, 333–353 (1999). A general overview of glaucoma pathogenesis and therapeutic targets.

    CAS  Google Scholar 

  4. Alward, W. L. M. Glaucoma: The Requisites in Ophthalmology. 1–260 (Mosby, St Louis, 2000). A useful overview of clinical glaucoma.

    Google Scholar 

  5. Fraser, S. & Wormald, R. in Ophthalmology (eds Yanoff, M. & Duker, J. S.) 12:1.1–12:1.6 (Mosby, London, 1999).

    Google Scholar 

  6. Wirtz, M. K. & Samples, J. R. in Glaucoma: Science and Practice (eds Morrison, J. C. & Pollack, I. P.) 12–21 (Thieme Medical, New York, 2003). A great current review on the molecular genetics of glaucoma.

    Google Scholar 

  7. Wudunn, D. Genetic basis of glaucoma. Curr. Opin. Ophthalmol. 13, 55–60 (2002). A general review of the research that identified various genes associated with glaucoma and glaucoma-related disorders.

    PubMed  Google Scholar 

  8. Stone, E. M. et al. Identification of a gene that causes primary open angle glaucoma. Science 275, 668–670 (1997).

    CAS  PubMed  Google Scholar 

  9. Vittitow, J. & Borras, T. Expression of optineurin, a glaucoma-linked gene, is influenced by elevated intraocular pressure. Biochem. Biophys. Res. Commun. 298, 67–74 (2002).

    CAS  PubMed  Google Scholar 

  10. Rezaie, T. et al. Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science 295, 1077–1079 (2002).

    CAS  PubMed  Google Scholar 

  11. Kass, M. A. et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch. Ophthalmol. 120, 701–713; discussion 829–730 (2002). This paper provides sound evidence supporting the role of intraocular pressure-lowering therapy in the prevention of glaucoma.

    PubMed  Google Scholar 

  12. The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. The AGIS Investigators. Am. J. Ophthalmol. 130, 429–440 (2000). This reference provides sound evidence supporting the role of intraocular pressure-lowering therapy in the treatment of glaucoma

  13. Clark, A. F. & Pang, I. -H. Advances in glaucoma therapeutics. Expert Opin. Emerging Drugs 7, 141–163 (2002). A recent summary of anti-glaucoma therapy.

    CAS  Google Scholar 

  14. Medeiros, F. A. & Weinreb, R. N. Medical backgrounders: glaucoma. Drugs Today (Barc.) 38, 563–570 (2002).

    Google Scholar 

  15. Bradley, J. M. et al. Effect of matrix metalloproteinases activity on outflow in perfused human organ culture. Invest. Ophthalmol. Vis. Sci. 39, 2649–2658 (1998). This paper presents evidence that matrix metalloproteinases regulate outflow resistance and thereby control intraocular pressure.

    CAS  PubMed  Google Scholar 

  16. Wong, T. T. et al. Matrix metalloproteinases in disease and repair processes in the anterior segment. Surv. Ophthalmol. 47, 239–256 (2002). An excellent review that focuses on the role of matrix metalloproteinases in the development of various anterior segment disorders.

    PubMed  Google Scholar 

  17. Parshley, D. E., Bradley, J. M., Samples, J. R., Van Buskirk, E. M. & Acott, T. S. Early changes in matrix metalloproteinases and inhibitors after in vitro laser treatment to the trabecular meshwork. Curr. Eye Res. 14, 537–544 (1995).

    CAS  PubMed  Google Scholar 

  18. Parshley, D. E. et al. Laser trabeculoplasty induces stromelysin expression by trabecular juxtacanalicular cells. Invest. Ophthalmol. Vis. Sci. 37, 795–804 (1996).

    CAS  PubMed  Google Scholar 

  19. Pang, I. -H., Fleenor, D. L., Hellberg, P. E., Stropki, K., McCartney, M. D. & Clark, A. F. Aqueous outflow-enhancing effect of tert-butylhydroquinone: involvement of AP-1 activation and MMP-3 expression. Invest. Ophthalmol. Vis. Sci. (in the press).

  20. Lindsey, J. D. et al. Prostaglandins increase proMMP-1 and proMMP-3 secretion by human ciliary smooth muscle cells. Curr. Eye Res. 15, 869–875 (1996).

    CAS  PubMed  Google Scholar 

  21. Weinreb, R. N., Kashiwagi, K., Kashiwagi, F., Tsukahara, S. & Lindsey, J. D. Prostaglandins increase matrix metalloproteinase release from human ciliary smooth muscle cells. Invest. Ophthalmol. Vis. Sci. 38, 2772–2780 (1997). The important observation that prostaglandins might enhance uveoscleral outflow by stimulating synthesis and release of certain matrix metalloproteinases from ciliary muscle cells.

    CAS  PubMed  Google Scholar 

  22. Quigley, H. A. Experimental glaucoma damage mechanism. Arch. Ophthalmol. 101, 1301–1302 (1983).

    CAS  PubMed  Google Scholar 

  23. Halpern, D. L. & Grosskreutz, C. L. Glaucomatous optic neuropathy: mechanisms of disease. Ophthalmol. Clin. North Am. 15, 61–68 (2002).

    PubMed  Google Scholar 

  24. Fechtner, R. D. & Weinreb, R. N. Mechanisms of optic nerve damage in primary open angle glaucoma. Surv. Ophthalmol. 39, 23–42 (1994).

    CAS  PubMed  Google Scholar 

  25. Wordinger, R. J. & Clark, A. F. Effects of glucocorticoids on the trabecular meshwork: towards a better understanding of glaucoma. Prog. Retin. Eye Res. 18, 629–667 (1999). A comprehensive review of the actions of glucocorticoids in the eye and their potential for providing insight into the pathophysiology of glaucoma.

    CAS  PubMed  Google Scholar 

  26. Neufeld, A. H. Nitric oxide: a potential mediator of retinal ganglion cell damage in glaucoma. Surv. Ophthalmol. 43 Suppl 1, S129–135 (1999).

    PubMed  Google Scholar 

  27. Vorwerk, C. K., Gorla, M. S. & Dreyer, E. B. An experimental basis for implicating excitotoxicity in glaucomatous optic neuropathy. Surv. Ophthalmol. 43, S142–150 (1999).

    PubMed  Google Scholar 

  28. Tezel, G. & Wax, M. B. Increased production of tumor necrosis factor-α by glial cells exposed to simulated ischemia or elevated hydrostatic pressure induces apoptosis in cocultured retinal ganglion cells. J. Neurosci. 20, 8693–8700 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Yorio, T., Krishnamoorthy, R. & Prasanna, G. Endothelin: is it a contributor to glaucoma pathophysiology? J. Glaucoma 11, 259–270 (2002). A review of the ocular actions of endothelin and its potential as a contributor to the development of glaucoma.

    PubMed  Google Scholar 

  30. Pang, I. -H. & Yorio, T. Ocular actions of endothelins. Proc. Soc. Exp. Biol. Med. 215, 21–34 (1997).

    CAS  PubMed  Google Scholar 

  31. Wax, M. B., Yang, J. & Tezel, G. Serum autoantibodies in patients with glaucoma. J. Glaucoma 10, S22–24 (2001). A proposed mechanism for glaucoma involving auto-antibodies that are detrimental to optic nerve head function and retinal ganglion cell survival.

    CAS  PubMed  Google Scholar 

  32. Schwartz, M. Physiological approaches to neuroprotection. Boosting of protective autoimmunity. Surv. Ophthalmol. 45, S256–260; discussion S273–276 (2001).

    PubMed  Google Scholar 

  33. Aihara, M., Lindsey, J. D. & Weinreb, R. N. Reduction of intraocular pressure in mouse eyes treated with latanoprost. Invest. Ophthalmol. Vis. Sci. 43, 146–150 (2002).

    PubMed  Google Scholar 

  34. Avila, M. Y., Carre, D. A., Stone, R. A. & Civan, M. M. Reliable measurement of mouse intraocular pressure by a servo-null micropipette system. Invest. Ophthalmol. Vis. Sci. 42, 1841–1846 (2001).

    CAS  PubMed  Google Scholar 

  35. Fanous, M. M., Challa, P. & Maren, T. H. Comparison of intraocular pressure lowering by topical and systemic carbonic anhydrase inhibitors in the rabbit. J. Ocul. Pharmacol. Ther. 15, 51–57 (1999).

    CAS  PubMed  Google Scholar 

  36. Wang, R. F., Serle, J. B., Gagliuso, D. J. & Podos, S. M. Comparison of the ocular hypotensive effect of brimonidine, dorzolamide, latanoprost, or artificial tears added to timolol in glaucomatous monkey eyes. J. Glaucoma 9, 458–462 (2000).

    CAS  PubMed  Google Scholar 

  37. Morrison, J. C., Nylander, K. B., Lauer, A. K., Cepurna, W. O. & Johnson, E. Glaucoma drops control intraocular pressure and protect optic nerves in a rat model of glaucoma. Invest. Ophthalmol. Vis. Sci. 39, 526–531 (1998).

    CAS  PubMed  Google Scholar 

  38. Pederson, J. E. & Gaasterland, D. E. Laser-induced primate glaucoma. I. Progression of cupping. Arch. Ophthalmol. 102, 1689–1692 (1984).

    CAS  PubMed  Google Scholar 

  39. Zhu, M. D. & Cai, F. Y. Development of experimental chronic intraocular hypertension in the rabbit. Aust. N. Z. J. Ophthalmol. 20, 225–234 (1992).

    CAS  PubMed  Google Scholar 

  40. Morrison, J. C. et al. A rat model of chronic pressure-induced optic nerve damage. Exp. Eye Res. 64, 85–96 (1997). A description of an elevated intraocular pressure model in the rat, demonstrating similar optic nerve damage to that in glaucoma.

    CAS  PubMed  Google Scholar 

  41. Anderson, M. G. et al. Mutations in genes encoding melanosomal proteins cause pigmentary glaucoma in DBA/2J mice. Nature Genet. 30, 81–85 (2002). This paper describes a mouse model of glaucoma and identification of the genes involved.

    CAS  PubMed  Google Scholar 

  42. Shareef, S. R., Garcia-Valenzuela, E., Salierno, A., Walsh, J. & Sharma, S. C. Chronic ocular hypertension following episcleral venous occlusion in rats. Exp. Eye Res. 61, 379–382 (1995).

    CAS  PubMed  Google Scholar 

  43. Mittag, T. W. et al. Retinal damage after 3 to 4 months of elevated intraocular pressure in a rat glaucoma model. Invest. Ophthalmol. Vis. Sci. 41, 3451–3459 (2000).

    CAS  PubMed  Google Scholar 

  44. Ueda, J. et al. Experimental glaucoma model in the rat induced by laser trabecular photocoagulation after an intracameral injection of India ink. Jpn. J. Ophthalmol. 42, 337–344 (1998).

    CAS  PubMed  Google Scholar 

  45. Wheeler, L. A. & Woldemussie, E. α-2 adrenergic receptor agonists are neuroprotective in experimental models of glaucoma. Eur. J. Ophthalmol. 11, S30–35 (2001). This study demonstrated that the α2-agonist brimonidine prevented the loss of retinal ganglion cells in an ocular hypertensive rat model of glaucoma.

    PubMed  Google Scholar 

  46. Levkovitch-Verbin, H. et al. Translimbal laser photocoagulation to the trabecular meshwork as a model of glaucoma in rats. Invest. Ophthalmol. Vis. Sci. 43, 402–410 (2002).

    PubMed  Google Scholar 

  47. Garcia-Valenzuela, E., Shareef, S., Walsh, J. & Sharma, S. C. Programmed cell death of retinal ganglion cells during experimental glaucoma. Exp. Eye Res. 61, 33–44 (1995).

    CAS  PubMed  Google Scholar 

  48. Johnson, E. C., Deppmeier, L. M., Wentzien, S. K., Hsu, I. & Morrison, J. C. Chronology of optic nerve head and retinal responses to elevated intraocular pressure. Invest. Ophthalmol. Vis. Sci. 41, 431–442 (2000).

    CAS  PubMed  Google Scholar 

  49. Cioffi, G. A., Orgul, S., Onda, E., Bacon, D. R. & van Buskirk, E. M. An in vivo model of chronic optic nerve ischemia: the dose-dependent effects of endothelin-1 on the optic nerve microvasculature. Curr. Eye Res. 14, 1147–1153 (1995). One of the first studies demonstrating that endothelin can mimic chronic optic nerve ischaemia and produce optic nerve damage.

    CAS  PubMed  Google Scholar 

  50. Flammer, J., Pache, M. & Resink, T. Vasospasm, its role in the pathogenesis of diseases with particular reference to the eye. Prog. Retin. Eye Res. 20, 319–349 (2001).

    CAS  PubMed  Google Scholar 

  51. Stokely, M. E., Brady, S. T. & Yorio, T. Effects of endothelin-1 on components of anterograde axonal transport in optic nerve. Invest. Ophthalmol. Vis. Sci. 43, 3223–3230 (2002).

    PubMed  Google Scholar 

  52. Krishnamoorthy, R. R. et al. Characterization of a transformed rat retinal ganglion cell line. Brain Res. Mol. Brain Res. 86, 1–12 (2001).

    CAS  PubMed  Google Scholar 

  53. Pang, I. -H., McCartney, M. D., Steely, H. T. & Clark, A. F. Human ocular perfusion organ culture: a versatile ex vivo model for glaucoma research. J. Glaucoma 9, 468–479 (2000).

    CAS  PubMed  Google Scholar 

  54. Clark, A. F., Wilson, K., De Kater, A. W., Allingham, R. R. & McCartney, M. D. Dexamethasone-induced ocular hypertension in perfusion-cultured human eyes. Invest. Ophthalmol. Vis. Sci. 36, 478–489 (1995).

    CAS  PubMed  Google Scholar 

  55. Borras, T., Brandt, C. R., Nickells, R. & Ritch, R. Gene therapy for glaucoma: treating a multifaceted, chronic disease. Invest. Ophthalmol. Vis. Sci. 43, 2513–2518 (2002). A good overview of gene considerations, target tissues and delivery systems for instituting gene therapy for glaucoma.

    PubMed  Google Scholar 

  56. Clark, A. F., Lane, D., Wilson, K., Miggans, S. T. & McCartney, M. D. Inhibition of dexamethasone-induced cytoskeletal changes in cultured human trabecular meshwork cells by tetrahydrocortisol. Invest. Ophthalmol. Vis. Sci. 37, 805–813 (1996).

    CAS  PubMed  Google Scholar 

  57. Fleenor, D. L., Pang, I. -H. & Clark, A. F. Involvement of AP-1 in interleukin-1α-stimulated MMP-3 expression in human trabecular meshwork cells. Invest. Ophthalmol. Vis. Sci. (in the press).

  58. Benson, W. E. in Ophthalmology (eds Yanoff, M. & Duker, J. S.) 8:20.1–28:20.10 (Mosby, London, 1999). An excellent overview of the epidemiology and clinical aspects of diabetic retinopathy.

    Google Scholar 

  59. Aiello, L. P. Vascular endothelial growth factor and the eye: biochemical mechanisms of action and implications for novel therapies. Ophthalmic Res. 29, 354–362 (1997). An excellent review on the role of vascular endothelial growth factor in ocular neovascularization.

    CAS  PubMed  Google Scholar 

  60. Gardner, T. W., Antonetti, D. A., Barber, A. J., Lanoue, K. F. & Levison, S. W. Diabetic retinopathy: more than meets the eye. Surv. Ophthalmol. 47, S253–262 (2002). An excellent overview on the pathogenesis of diabetic retinopathy and diabetic macular oedema.

    PubMed  Google Scholar 

  61. Barber, A. J. A new view of diabetic retinopathy: a neurodegenerative disease of the eye. Prog. Neuropsychopharmacol. Biol. Psychiatry. 27, 283–290 (2003).

    CAS  PubMed  Google Scholar 

  62. Engerman, R. L. & Kern, T. S. Retinopathy in galactosemic dogs continues to progress after cessation of galactosemia. Arch. Ophthalmol. 113, 355–358 (1995).

    CAS  PubMed  Google Scholar 

  63. Kowluru, R. A. Retinal metabolic abnormalities in diabetic mouse: comparison with diabetic rat. Curr. Eye Res. 24, 123–128 (2002).

    PubMed  Google Scholar 

  64. Robison, W. G. Jr, Nagata, M., Laver, N., Hohman, T. C. & Kinoshita, J. H. Diabetic-like retinopathy in rats prevented with an aldose reductase inhibitor. Invest. Ophthalmol. Vis. Sci. 30, 2285–2292 (1989).

    PubMed  Google Scholar 

  65. Fong, D. S. Changing times for the management of diabetic retinopathy. Surv. Ophthalmol. 47, S238–245 (2002).

    PubMed  Google Scholar 

  66. Lund-Andersen, H. Mechanisms for monitoring changes in retinal status following therapeutic intervention in diabetic retinopathy. Surv. Ophthalmol. 47, S270–277 (2002).

    PubMed  Google Scholar 

  67. Aiello, L. P. The potential role of PKC β in diabetic retinopathy and macular edema. Surv. Ophthalmol. 47 Suppl 2, S263–269 (2002).

    PubMed  Google Scholar 

  68. Jaffe, G. J. et al. Safety and pharmacokinetics of an intraocular fluocinolone acetonide sustained delivery device. Invest. Ophthalmol. Vis. Sci. 41, 3569–3575 (2000).

    CAS  PubMed  Google Scholar 

  69. Ciulla, T. A., Criswell, M. H., Danis, R. P. & Hill, T. E. Intravitreal triamcinolone acetonide inhibits choroidal neovascularization in a laser-treated rat model. Arch. Ophthalmol. 119, 399–404 (2001).

    CAS  PubMed  Google Scholar 

  70. Martidis, A. et al. Intravitreal triamcinolone for refractory diabetic macular edema. Ophthalmology 109, 920–927 (2002).

    PubMed  Google Scholar 

  71. Edwards, M. G., Bressler, N. M. & Raja, S. C. in Ophthalmology (eds Yanoff, M. & Duker, J. S.) 8:28.1–28:28.10 (Mosby, London, 1999). A good general overview of clinical aspects of age-related macular degeneration.

    Google Scholar 

  72. Husain, D., Ambati, B., Adamis, A. P. & Miller, J. W. Mechanisms of age-related macular degeneration. Ophthalmol. Clin. North Am. 15, 87–91 (2002).

    PubMed  Google Scholar 

  73. Crabb, J. W. et al. Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc. Natl Acad. Sci. USA 99, 14682–14687 (2002). A sophisticated proteomics approach to age-related macular degeneration pathogenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Hageman, G. S. et al. An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch's membrane interface in aging and age-related macular degeneration. Prog. Retin. Eye Res. 20, 705–732 (2001). This paper presents a new hypothesis involving inflammation and immunity in the pathogenesis of age-related macular degeneration.

    CAS  PubMed  Google Scholar 

  75. Anderson, D. H., Mullins, R. F., Hageman, G. S. & Johnson, L. V. A role for local inflammation in the formation of drusen in the aging eye. Am. J. Ophthalmol. 134, 411–431 (2002).

    CAS  PubMed  Google Scholar 

  76. Agarwal, N. et al. Levobetaxolol-induced up-regulation of retinal bFGF and CNTF mRNAs and preservation of retinal function against a photic-induced retinopathy. Exp. Eye Res. 74, 445–453 (2002).

    CAS  PubMed  Google Scholar 

  77. Seiler, M. J. et al. Selective photoreceptor damage in albino rats using continuous blue light. A protocol useful for retinal degeneration and transplantation research. Graefes. Arch. Clin. Exp. Ophthalmol. 238, 599–607 (2000).

    CAS  PubMed  Google Scholar 

  78. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, β-carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch. Ophthalmol. 119, 1417–1436 (2001).

  79. Okamoto, N. et al. Transgenic mice with increased expression of vascular endothelial growth factor in the retina: a new model of intraretinal and subretinal neovascularization. Am. J. Pathol. 151, 281–291 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Penn, J. S. & Henry, M. M. Assessing retinal neovascularization in an animal model of proliferative retinopathy. Microvasc. Res. 51, 126–130 (1996).

    CAS  PubMed  Google Scholar 

  81. Robinson, G. S. et al. Oligodeoxynucleotides inhibit retinal neovascularization in a murine model of proliferative retinopathy. Proc. Natl Acad. Sci. USA 93, 4851–4856 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Griggs, J. et al. Inhibition of proliferative retinopathy by the anti-vascular agent combretastatin-A4. Am. J. Pathol. 160, 1097–1103 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Garcia, C. et al. Efficacy of Prinomastat (AG3340), a matrix metalloprotease inhibitor, in treatment of retinal neovascularization. Curr. Eye Res. 24, 33–38 (2002).

    PubMed  Google Scholar 

  84. Bainbridge, J. W. et al. Inhibition of retinal neovascularisation by gene transfer of soluble VEGF receptor sFlt-1. Gene Ther. 9, 320–326 (2002).

    CAS  PubMed  Google Scholar 

  85. Murata, T. et al. Response of experimental retinal neovascularization to thiazolidinediones. Arch. Ophthalmol. 119, 709–717 (2001).

    CAS  PubMed  Google Scholar 

  86. Smith, L. E. et al. Essential role of growth hormone in ischemia-induced retinal neovascularization. Science 276, 1706–1709 (1997).

    CAS  PubMed  Google Scholar 

  87. Preclinical and phase 1A clinical evaluation of an anti-VEGF pegylated aptamer (EYE001) for the treatment of exudative age-related macular degeneration. Retina 22, 143–152 (2002).

  88. Presta, L. G. et al. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res. 57, 4593–4599 (1997).

    CAS  PubMed  Google Scholar 

  89. Krzystolik, M. G. et al. Prevention of experimental choroidal neovascularization with intravitreal anti-vascular endothelial growth factor antibody fragment. Arch. Ophthalmol. 120, 338–346 (2002).

    CAS  PubMed  Google Scholar 

  90. Das, A., McLamore, A., Song, W., McGuire, P. G. Retinal neovascularization is suppressed with a matrix metalloproteinase inhibitor. Arch. Ophthalmol. 117, 498–503 (1999).

    CAS  PubMed  Google Scholar 

  91. Friedlander, M. et al. Involvement of integrins αv β3 and αv β5 in ocular neovascular diseases. Proc. Natl Acad. Sci. USA 93, 9764–9769 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Clark, A. F., Bingaman, D. P. & Kapin, M. A. Ocular angiostatic agents. Expert Opin. Ther. Patents 10, 427–448 (2000).

    CAS  Google Scholar 

  93. Clark, A. F. AL-3789: a novel ophthalmic angiostatic steroid. Exp. Opin. Invest. Drugs 6, 1867–1877 (1997).

    CAS  Google Scholar 

  94. Penn, J. S., Rajaratnam, V. S., Collier, R. J. & Clark, A. F. The effect of an angiostatic steroid on neovascularization in a rat model of retinopathy of prematurity. Invest. Ophthalmol. Vis. Sci. 42, 283–290 (2001).

    CAS  PubMed  Google Scholar 

  95. Rechtman, E., Ciulla, T. A., Criswell, M. H., Pollack, A. & Harris, A. An update on photodynamic therapy in age-related macular degeneration. Expert Opin. Pharmacother. 3, 931–938 (2002).

    CAS  PubMed  Google Scholar 

  96. Sieving, P. A. in Ophthalmology (eds Yanoff, M. & Duker, J. S.) 8:11.1–18:11.10. (Mosby, London, 1999).

    Google Scholar 

  97. Zack, D. J. et al. What can we learn about age-related macular degeneration from other retinal diseases? Mol. Vis. 5, 30 (1999). A good overview of the molecular genetics of retinal degenerative diseases.

    CAS  PubMed  Google Scholar 

  98. Stone, E. M., Sheffield, V. C. & Hageman, G. S. Molecular genetics of age-related macular degeneration. Hum. Mol. Genet. 10, 2285–2292 (2001). A good overview of the molecular genetics of retinal degenerative diseases.

    CAS  PubMed  Google Scholar 

  99. Allikmets, R. et al. A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nature Genet. 15, 236–246 (1997).

    CAS  PubMed  Google Scholar 

  100. Weber, B. H., Vogt, G., Pruett, R. C., Stohr, H. & Felbor, U. Mutations in the tissue inhibitor of metalloproteinases-3 (TIMP3) in patients with Sorsby's fundus dystrophy. Nature Genet. 8, 352–356 (1994).

    CAS  PubMed  Google Scholar 

  101. Petrukhin, K. et al. Identification of the gene responsible for Best macular dystrophy. Nature Genet. 19, 241–247 (1998).

    CAS  PubMed  Google Scholar 

  102. Stone, E. M. et al. A single EFEMP1 mutation associated with both Malattia Leventinese and Doyne honeycomb retinal dystrophy. Nature Genet. 22, 199–202 (1999).

    CAS  PubMed  Google Scholar 

  103. Stone, E. M. et al. Allelic variation in ABCR associated with Stargardt disease but not age-related macular degeneration. Nature Genet. 20, 328–329 (1998).

    CAS  PubMed  Google Scholar 

  104. de la Paz, M. A., Pericak-Vance, M. A., Lennon, F., Haines, J. L. & Seddon, J. M. Exclusion of TIMP3 as a candidate locus in age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 38, 1060–1065 (1997).

    CAS  PubMed  Google Scholar 

  105. Allikmets, R. et al. Evaluation of the Best disease gene in patients with age-related macular degeneration and other maculopathies. Hum. Genet. 104, 449–453 (1999).

    CAS  PubMed  Google Scholar 

  106. Felbor, U., Doepner, D., Schneider, U., Zrenner, E. & Weber, B. H. Evaluation of the gene encoding the tissue inhibitor of metalloproteinases-3 in various maculopathies. Invest. Ophthalmol. Vis. Sci. 38, 1054–1059 (1997).

    CAS  PubMed  Google Scholar 

  107. Weber, B. H. et al. A mouse model for Sorsby fundus dystrophy. Invest. Ophthalmol. Vis. Sci. 43, 2732–2740 (2002).

    PubMed  Google Scholar 

  108. Rakoczy, P. E. et al. Progressive age-related changes similar to age-related macular degeneration in a transgenic mouse model. Am. J. Pathol. 161, 1515–1524 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Fauser, S., Luberichs, J. & Schuttauf, F. Genetic animal models for retinal degeneration. Surv. Ophthalmol. 47, 357–367 (2002).

    PubMed  Google Scholar 

  110. Chang, B. et al. Retinal degeneration mutants in the mouse. Vision Res. 42, 517–525 (2002).

    CAS  PubMed  Google Scholar 

  111. Chader, G. J. Animal models in research on retinal degenerations: past progress and future hope. Vision Res. 42, 393–399 (2002). A good introduction to animal models for retinal degeneration.

    PubMed  Google Scholar 

  112. Yamazaki, H. et al. Preservation of retinal morphology and functions in royal college surgeons rat by nilvadipine, a Ca2+ antagonist. Invest. Ophthalmol. Vis. Sci. 43, 919–926 (2002).

    PubMed  Google Scholar 

  113. McGee Sanftner, L. H., Abel, H., Hauswirth, W. W. & Flannery, J. G. Glial cell line derived neurotrophic factor delays photoreceptor degeneration in a transgenic rat model of retinitis pigmentosa. Mol. Ther. 4, 622–629 (2001).

    CAS  PubMed  Google Scholar 

  114. Liang, F. Q. et al. AAV-mediated delivery of ciliary neurotrophic factor prolongs photoreceptor survival in the rhodopsin knockout mouse. Mol. Ther. 3, 241–248 (2001).

    CAS  PubMed  Google Scholar 

  115. Campochiaro, P. A. Gene therapy for retinal and choroidal diseases. Expert Opin. Biol. Ther. 2, 537–544 (2002). A good overview on the potential use of gene therapy for retinal diseases.

    CAS  PubMed  Google Scholar 

  116. Acland, G. M. et al. Gene therapy restores vision in a canine model of childhood blindness. Nature Genet. 28, 92–95 (2001).

    CAS  PubMed  Google Scholar 

  117. Bielory, L. Update on ocular allergy treatment. Expert Opin. Pharmacother. 3, 541–553 (2002).

    PubMed  Google Scholar 

  118. Bielory, L. Ocular allergy guidelines: a practical treatment algorithm. Drugs 62, 1611–1634 (2002). An overview of new therapeutic drugs for treatment of ocular allergy

    CAS  PubMed  Google Scholar 

  119. Yanni, J. M. et al. A current appreciation of sites for pharmacological intervention in allergic conjunctivitis: effects of new topical ocular drugs. Acta Ophthalmol. Scand. Suppl. 228, 33–37 (1999). An overview of new therapeutic drugs for treating allergic conjunctivitis.

    Google Scholar 

  120. Kunert, K. S., Tisdale, A. S. & Gipson, I. K. Goblet cell numbers and epithelial proliferation in the conjunctiva of patients with dry eye syndrome treated with cyclosporine. Arch. Ophthalmol. 120, 330–337 (2002).

    CAS  PubMed  Google Scholar 

  121. Fujihara, T., Murakami, T., Fujita, H., Nakamura, M. & Nakata, K. Improvement of corneal barrier function by the P2Y(2) agonist INS365 in a rat dry eye model. Invest. Ophthalmol. Vis. Sci. 42, 96–100 (2001).

    CAS  PubMed  Google Scholar 

  122. Calonge, M. The treatment of dry eye. Surv. Ophthalmol. 45, S227–239 (2001). A summary of new therapeutic approaches for treating dry eye.

    PubMed  Google Scholar 

  123. Nelson, M. L. & Martidis, A. Managing cystoid macular edema after cataract surgery. Curr. Opin. Ophthalmol. 14, 39–43 (2003).

    PubMed  Google Scholar 

  124. Foster, C. S. et al. Efficacy and safety of rimexolone 1% ophthalmic suspension vs 1% prednisolone acetate in the treatment of uveitis. Am. J. Ophthalmol. 122, 171–182 (1996).

    CAS  PubMed  Google Scholar 

  125. Leibowitz, H. M. et al. Intraocular pressure-raising potential of 1. 0% rimexolone in patients responding to corticosteroids. Arch. Ophthalmol. 114, 933–937 (1996).

    CAS  PubMed  Google Scholar 

  126. Bodor, N. Retrometabolic drug design—novel aspects, future directions. Pharmazie 56, S67–74 (2001).

    CAS  PubMed  Google Scholar 

  127. Howes, J. F. Loteprednol etabonate: a review of ophthalmic clinical studies. Pharmazie 55, 178–183 (2000).

    CAS  PubMed  Google Scholar 

  128. Thielen, T. L, Castle, S. S. & Terry, J. E. Anterior ocular infections: an overview of pathophysiology and treatment. Ann. Pharmacother. 34, 235–246 (2000).

    CAS  PubMed  Google Scholar 

  129. Guembel, H. O. & Ohrloff, C. Opportunistic infections of the eye in immunocompromised patients. Ophthalmologica 211, 53–61 (1997).

    PubMed  Google Scholar 

  130. Smith, A., Pennefather, P. M., Kaye, S. B. & Hart, C. A. Fluoroquinolones: place in ocular therapy. Drugs 61, 747–761 (2001).

    CAS  PubMed  Google Scholar 

  131. Goldstein, M. H., Kowalski, R. P. & Gordon, Y. J. Emerging fluoroquinolone resistance in bacterial keratitis: a 5-year review. Ophthalmology 106, 1313–1318 (1999).

    CAS  PubMed  Google Scholar 

  132. Schoenwald, R. D. in Textbook of Ocular Pharmacology. (eds Zimmerman, T. J., Kooner, K. S., Sharir, M. & Fechtner, R. D.) 119–138 (Lippincott-Raven, Philadelphia, 1997). A good introduction to ocular pharmacokinetics.

    Google Scholar 

  133. Sasaki, H. et al. Enhancement of ocular drug penetration. Crit. Rev. Ther. Drug. Carrier Syst. 16, 85–146 (1999).

    CAS  PubMed  Google Scholar 

  134. Kaur, I. P. & Kanwar, M. Ocular preparations: the formulation approach. Drug Dev. Ind. Pharm. 28, 473–493 (2002).

    CAS  PubMed  Google Scholar 

  135. Loftsson, T. & Stefansson, E. Cyclodextrins in eye drop formulations: enhanced topical delivery of corticosteroids to the eye. Acta Ophthalmol. Scand. 80, 144–150 (2002).

    CAS  PubMed  Google Scholar 

  136. Kaur, I. P. & Smitha, R. Penetration enhancers and ocular bioadhesives: two new avenues for ophthalmic drug delivery. Drug Dev. Ind. Pharm. 28, 353–369 (2002).

    CAS  PubMed  Google Scholar 

  137. Kimura, H. & Ogura, Y. Biodegradable polymers for ocular drug delivery. Ophthalmologica 215, 143–155 (2001).

    CAS  PubMed  Google Scholar 

  138. Geroski, D. H. & Edelhauser, H. F. Transscleral drug delivery for posterior segment disease. Adv. Drug Deliv. Rev. 52, 37–48 (2001). A discussion of a new delivery route for drugs to treat disorders at the back of the eye.

    CAS  PubMed  Google Scholar 

  139. Ke, T. L., Clark, A. F. & Gracy, R. W. Age-related permeability changes in rabbit corneas. J. Ocul. Pharmacol. Ther. 15, 513–523 (1999).

    CAS  PubMed  Google Scholar 

  140. Sheffield, V. C. et al. Genetic linkage of familial open angle glaucoma to chromosome 1q21-q31. Nature Genet. 4, 47–50 (1993).

    CAS  PubMed  Google Scholar 

  141. Fauss, D. J. et al. in Basic Aspects of Glaucoma Research III (ed. Lutjen-Drecoll, E.) 319–330 (Schattauer, New York, 1993).

    Google Scholar 

  142. Nguyen, T. D. et al. Gene structure and properties of TIGR, an olfactomedin-related glycoprotein cloned from glucocorticoid-induced trabecular meshwork cells. J. Biol. Chem. 273, 6341–6350 (1998).

    CAS  PubMed  Google Scholar 

  143. Kubota, R. et al. A novel myosin-like protein (myocilin) expressed in the connecting cilium of the photoreceptor: molecular cloning, tissue expression, and chromosomal mapping. Genomics 41, 360–369 (1997).

    CAS  PubMed  Google Scholar 

  144. Fingert, J. H. et al. Analysis of myocilin mutations in 1703 glaucoma patients from five different populations. Hum. Mol. Genet. 8, 899–905 (1999).

    CAS  PubMed  Google Scholar 

  145. Fingert, J. H., Stone, E. M., Sheffield, V. C. & Alward, W. L. Myocilin glaucoma. Surv. Ophthalmol. 47, 547–561 (2002). An excellent update on the role of myocilin in glaucoma with emphasis on describing MYOC mutations, expression heredity, and pathogenesis.

    PubMed  Google Scholar 

  146. Alward, W. L. et al. Clinical features associated with mutations in the chromosome 1 open-angle glaucoma gene (GLC1A). N. Engl. J. Med. 338, 1022–1027 (1998).

    CAS  PubMed  Google Scholar 

  147. Alward, W. L. et al. Variations in the myocilin gene in patients with open-angle glaucoma. Arch. Ophthalmol. 120, 1189–1197 (2002).

    CAS  PubMed  Google Scholar 

  148. Tamm, E. R. Myocilin and glaucoma: facts and ideas. Prog. Retin. Eye Res. 21, 395–428 (2002). An excellent review of myocilin, from gene structure to myocilin localization and function.

    CAS  PubMed  Google Scholar 

  149. Lam, D. S. et al. Truncations in the TIGR gene in individuals with and without primary open-angle glaucoma. Invest. Ophthalmol. Vis. Sci. 41, 1386–1391 (2000).

    CAS  PubMed  Google Scholar 

  150. Kim, B. S. et al. Targeted disruption of the myocilin gene (Myoc) suggests that human glaucoma-causing mutations are gain of function. Mol. Cell Biol. 21, 7707–7713 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Clark, A F. et al. Glucocorticoid induction of the glaucoma gene MYOC in human and monkey trabecular meshwork cells and tissues. Invest. Ophthalmol. Vis. Sci. 42, 1769–1780 (2001).

    CAS  PubMed  Google Scholar 

  152. Filla, M. S. et al. In vitro localization of TIGR/MYOC in trabecular meshwork extracellular matrix and binding to fibronectin. Invest. Ophthalmol. Vis. Sci. 43, 151–161 (2002).

    PubMed  Google Scholar 

  153. Fingert, J. H. et al. Evaluation of the myocilin (MYOC) glaucoma gene in monkey and human steroid-induced ocular hypertension. Invest. Ophthalmol. Vis. Sci. 42, 145–152 (2001).

    CAS  PubMed  Google Scholar 

  154. Fautsch, M. P., Bahler, C. K., Jewison, D. J. & Johnson, D. H. Recombinant TIGR/MYOC increases outflow resistance in the human anterior segment. Invest. Ophthalmol. Vis. Sci. 41, 4163–4168 (2000).

    CAS  PubMed  Google Scholar 

  155. Caballero, M., Rowlette, L. L. & Borras, T. Altered secretion of a TIGR/MYOC mutant lacking the olfactomedin domain. Biochim. Biophys. Acta 1502, 447–460 (2000).

    CAS  PubMed  Google Scholar 

  156. Jacobson, N. et al. Non-secretion of mutant proteins of the glaucoma gene myocilin in cultured trabecular meshwork cells and in aqueous humor. Hum. Mol. Genet. 10, 117–125 (2001).

    CAS  PubMed  Google Scholar 

  157. Zhou, Z. & Vollrath, D. A cellular assay distinguishes normal and mutant TIGR/myocilin protein. Hum. Mol. Genet. 8, 2221–2228 (1999).

    CAS  PubMed  Google Scholar 

  158. Klein, B. E., Klein, R. & Lee, K. E. Incidence of age-related cataract over a 10-year interval: the Beaver Dam Eye Study. Ophthalmology 109, 2052–2057 (2002).

    PubMed  Google Scholar 

  159. Panchapakesan, J. et al. Five year incidence of cataract surgery: the Blue Mountains Eye Study. Br. J. Ophthalmol. 87, 168–172 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. McKinnon, S. J. et al. Baculoviral IAP repeat-containing-4 protects optic nerve axons in a rat glaucoma model. Mol. Ther. 5, 780–787 (2002).

    CAS  PubMed  Google Scholar 

  161. Tatton, W. G. Apoptotic mechanisms in neurodegeneration: possible relevance to glaucoma. Eur. J. Ophthalmol. 9, S22–29 (1999). A good review of the apoptotic pathways involved in glaucoma.

    PubMed  Google Scholar 

  162. Hare, W. et al. Efficacy and safety of memantine, an NMDA-type open-channel blocker, for reduction of retinal injury associated with experimental glaucoma in rat and monkey. Surv. Ophthalmol. 45, S284–289; discussion S295–286 (2001).

    PubMed  Google Scholar 

  163. Wood, J. P., Desantis, L., Chao, H. M. & Osborne, N. N. Topically applied betaxolol attenuates ischaemia-induced effects to the rat retina and stimulates BDNF mRNA. Exp. Eye Res. 72, 79–86 (2001).

    CAS  PubMed  Google Scholar 

  164. Neufeld, A. H., Sawada, A. & Becker, B. Inhibition of nitric-oxide synthase 2 by aminoguanidine provides neuroprotection of retinal ganglion cells in a rat model of chronic glaucoma. Proc. Natl Acad. Sci. USA 96, 9944–9948 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Tatton, W. G., Chalmers-Redman, R. M. & Tatton, N. A. Apoptosis and anti-apoptosis signalling in glaucomatous retinopathy. Eur. J. Ophthalmol. 11, S12–22 (2001).

    PubMed  Google Scholar 

  166. Nakazawa, T., Tamai, M. & Mori, N. Brain-derived neurotrophic factor prevents axotomized retinal ganglion cell death through MAPK and PI3K signaling pathways. Invest. Ophthalmol. Vis. Sci. 43, 3319–3326 (2002).

    PubMed  Google Scholar 

  167. Ko, M. L., Hu, D. N., Ritch, R., Sharma, S. C. & Chen, C. F. Patterns of retinal ganglion cell survival after brain-derived neurotrophic factor administration in hypertensive eyes of rats. Neurosci. Lett. 305, 139–142 (2001).

    CAS  PubMed  Google Scholar 

  168. Zhou, J. et al. Characterization of RGS5 in regulation of G protein-coupled receptor signaling. Life Sci. 68, 1457–1469 (2001).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbot F. Clark.

Related links

Related links

DATABASES

LocusLink

CYP1B1

endothelin-1

FOXC1

MYOC

OPTN

PITX2

RPE65

FURTHER INFORMATION

RetNet

Glossary

CATARACT

An opacity of the lens that causes the loss of transparency and/or the scattering of light entering the eye.

AGE-RELATED MACULAR DEGENERATION

Retinal neurodegenerative disease of the aged that leads to the progressive loss of central vision.

GLAUCOMA

A heterogeneous group of optic neuropathies that lead to progressive vision loss and blindness.

OPHTHALMOLOGY

The branch of medicine that deals with the eye and eye diseases.

TRABECULAR MESHWORK

Reticulated tissue at the junction of the iris and cornea which imparts resistance to aqueous humour outflow and thereby regulates intraocular pressure.

OPTIC NERVE HEAD

Region at the back of the eye where 1 million retinal ganglion cell axons exit the eye through the sclera to form the optic nerve.

OCULAR HYPERTENSION

Condition in which the pressure inside the eye (intraocular pressure) is higher than normal (usually defined as >21 mm Hg)

MATRIX METALLOPROTEINASES

Family of extracellular enzymes responsible for the degradation and turnover of extracellular matrix molecules.

RETINOPATHY

Degenerative disease of the retina, which is the multilayered neural tissue of the eye responsible for phototransduction and integration of visual signals.

VASCULAR ENDOTHELIAL GROWTH FACTOR

A cytokine responsible for vascular leakage and neovascularization.

DRUSEN

Deposits containing complex lipids and calcium that can accumulate with age.

BRUCH'S MEMBRANE

Basement membrane that separates the retinal pigment epithelium from the vascular choroid.

MACULA

Central region of the retina with the highest concentration of cone photoreceptors that is responsible for color and acute vision.

DRY EYE

A condition characterized by ocular discomfort and caused be ocular tissue deficiencies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, A., Yorio, T. Ophthalmic drug discovery. Nat Rev Drug Discov 2, 448–459 (2003). https://doi.org/10.1038/nrd1106

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1106

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing