Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Implementing prognostic and predictive biomarkers in CRC clinical trials

Abstract

Over the past two decades, several protein and genomic markers have refined the prognostic information of colorectal cancer (CRC) and helped to predict which patient group may benefit most from systemic treatment or targeted therapies. Of all these markers, KRAS represents the first biomarker integrated into clinical practice for CRC. Microarray-based gene-expression profiling has been used to identify prognostic signatures and to a lesser degree predictive signatures in CRC; however, common challenges with these types of studies are clinical study design, reproducibility, interpretation and reporting of the results. We focus on the clinical application of a range of published prognostic and predictive protein and genomic markers in CRC and discuss the different challenges associated with microarray-based gene-expression profiling. While none of these genomic signatures is currently in routine clinical use in CRC, novel adaptive clinical trial designs that incorporate putative genomic prognostic/predictive markers in prospective randomized trials, will enable a clinical validation of these markers and may facilitate the implementation of these biomarkers into routine medical practice.

Key Points

  • MSI-H in colorectal cancer (CRC) tumors is associated with a more favorable prognosis, which may be stronger in patients with stage II compared with stage III disease

  • 5-FU-based adjuvant therapy significantly reduces the recurrence risk in MSI-L/MSS, but not in MSI-H patients, who have a favorable prognosis and low recurrence risk

  • Several randomized studies have shown the negative predictive value of KRAS mutations for response to EGFR monoclonal antibodies; KRAS represents the first biomarker integrated into clinical practice in CRC

  • Patients with BRAF mutations have a poor prognosis; larger patient cohorts are needed to define the predictive role of BRAF, PIK3CA and PTEN for response to EGFR monoclonal antibodies

  • High-throughput technologies have helped to define a detailed picture of multiple genomic alterations and may be powerful tools for biomarker discovery and validation

  • Novel adaptive clinical trial design, incorporating putative genomic prognostic/predictive markers into prospective studies, will enable a clinical validation of these markers and their implementation in clinical practice

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proposed algorithm colorectal cancer.
Figure 2: Phases of drug and biomarker development.
Figure 3: Marker enrichment design.
Figure 4: Biomarker stratified design.
Figure 5: Hybrid biomarker design.

Similar content being viewed by others

References

  1. Benson, A. B. 3rd et al. American Society of Clinical Oncology recommendations on adjuvant chemotherapy for stage II colon cancer. J. Clin. Oncol. 22, 3408–3419 (2004).

    PubMed  Google Scholar 

  2. Boland, C. R. et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 58, 5248–5257 (1998).

    CAS  PubMed  Google Scholar 

  3. Tejpar, S. et al. Microsatellite instability (MSI) in stage II and III colon cancer treated with 5FU-LV or 5FU-LV and irinotecan (PETACC 3-EORTC 40993-SAKK 60/00 trial) [abstract]. J. Clin. Oncol. 27 (15 Suppl.), a4001 (2009).

    Google Scholar 

  4. Koopman, M. et al. Deficient mismatch repair system in patients with sporadic advanced colorectal cancer. Br. J. Cancer 100, 266–273 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Watanabe, T. et al. Molecular predictors of survival after adjuvant chemotherapy for colon cancer. N. Engl. J. Med. 344, 1196–1206 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ribic, C. M. et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N. Engl. J. Med. 349, 247–257 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. French, A. J. et al. Prognostic significance of defective mismatch repair and BRAF V600E in patients with colon cancer. Clin. Cancer Res. 14, 3408–3415 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Popat, S., Hubner, R. & Houlston, R. S. Systematic review of microsatellite instability and colorectal cancer prognosis. J. Clin. Oncol. 23, 609–618 (2005).

    CAS  PubMed  Google Scholar 

  9. Hutchins, G. et al. Value of mismatch repair, KRAS, and BRAF mutations in predicting recurrence and benefits from chemotherapy in colorectal cancer [abstract]. J. Clin. Oncol. 28 (15 Suppl.), a3517 (2010).

    Google Scholar 

  10. Sinicrope, F. et al. DNA mismatch repair status and site of tumor recurrence in stage II and III colon cancers treated in 5-fluorouracil-based adjuvant therapy trials [abstract]. J. Clin. Oncol. 28 (15 Suppl.), a3519 (2010).

    Google Scholar 

  11. Kim, G. P. et al. Analysis of time-dependent patterns of treatment effect and failure to explain the predictive role of deficient mismatch repair (dMMR) in stage II and III colon cancer (CC) [abstract]. J. Clin. Oncol. 28 (15 Suppl.), a3518 (2010).

    Google Scholar 

  12. Roth, A. D. et al. Stage-specific prognostic value of molecular markers in colon cancer: Results of the translational study on the PETACC 3-EORTC 40993-SAKK 60–00 trial [abstract]. J. Clin. Oncol. 27 (15 Suppl.), a4002 (2009).

    Google Scholar 

  13. Elsaleh, H. et al. Association of tumour site and sex with survival benefit from adjuvant chemotherapy in colorectal cancer. Lancet 355, 1745–1750 (2000).

    CAS  PubMed  Google Scholar 

  14. Sargent, D. J. et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J. Clin. Oncol. 28, 3219–3226 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bertagnolli, M. M. et al. Microsatellite instability predicts improved response to adjuvant therapy with irinotecan, fluorouracil, and leucovorin in stage III colon cancer: Cancer and Leukemia Group B Protocol 89803. J. Clin. Oncol. 27, 1814–1821 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hawkins, N. et al. CpG island methylation in sporadic colorectal cancers and its relationship to microsatellite instability. Gastroenterology 122, 1376–1387 (2002).

    CAS  PubMed  Google Scholar 

  17. Kambara, T. et al. BRAF mutation is associated with DNA methylation in serrated polyps and cancers of the colorectum. Gut 53, 1137–1144 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ogino, S. et al. CpG island methylator phenotype, microsatellite instability, BRAF mutation and clinical outcome in colon cancer. Gut 58, 90–96 (2009).

    PubMed  Google Scholar 

  19. Dahlin, A. M. et al. The role of the CpG island methylator phenotype in colorectal cancer prognosis depends on microsatellite instability screening status. Clin. Cancer Res. 16, 1845–1855 (2010).

    CAS  PubMed  Google Scholar 

  20. Van Rijnsoever, M., Elsaleh, H., Joseph, D., McCaul, K. & Iacopetta, B. CpG island methylator phenotype is an independent predictor of survival benefit from 5-fluorouracil in stage III colorectal cancer. Clin. Cancer Res. 9, 2898–2903 (2003).

    CAS  PubMed  Google Scholar 

  21. Andreyev, H. J., Norman, A. R., Cunningham, D., Oates, J. R. & Clarke, P. A. Kirsten ras mutations in patients with colorectal cancer: the multicenter “RASCAL” study. J. Natl Cancer Inst. 90, 675–684 (1998).

    CAS  PubMed  Google Scholar 

  22. Andreyev, H. J. et al. Kirsten ras mutations in patients with colorectal cancer: the 'RASCAL II' study. Br. J. Cancer 85, 692–696 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Richman, S. D. et al. KRAS and BRAF mutations in advanced colorectal cancer are associated with poor prognosis but do not preclude benefit from oxaliplatin or irinotecan: results from the MRC FOCUS trial. J. Clin. Oncol. 27, 5931–5937 (2009).

    CAS  PubMed  Google Scholar 

  24. Barault, L. et al. Hypermethylator phenotype in sporadic colon cancer: study on a population-based series of 582 cases. Cancer Res. 68, 8541–8546 (2008).

    CAS  PubMed  Google Scholar 

  25. Wang, C. et al. Prognostic significance of microsatellite instability and Ki-ras mutation type in stage II colorectal cancer. Oncology 64, 259–265 (2003).

    CAS  PubMed  Google Scholar 

  26. Roth, A. D. et al. Prognostic role of KRAS and BRAF in stage II and III resected colon cancer: results of the translational study on the PETACC-3, EORTC 40993, SAKK 60–00 trial. J. Clin. Oncol. 28, 466–474 (2010).

    CAS  PubMed  Google Scholar 

  27. Ogino, S. et al. KRAS mutation in stage III colon cancer and clinical outcome following intergroup trial CALGB 89803. Clin. Cancer Res. 15, 7322–7329 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lièvre, A. et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 66, 3992–3995 (2006).

    PubMed  Google Scholar 

  29. Lièvre, A. et al. KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J. Clin. Oncol. 26, 374–379 (2008).

    PubMed  Google Scholar 

  30. Moroni, M. et al. Gene copy number for epidermal growth factor receptor (EGFR) and clinical response to antiEGFR treatment in colorectal cancer: a cohort study. Lancet Oncol. 6, 279–286 (2005).

    CAS  PubMed  Google Scholar 

  31. Freeman, D. J. et al. Association of K-ras mutational status and clinical outcomes in patients with metastatic colorectal cancer receiving panitumumab alone. Clin. Colorectal Cancer 7, 184–190 (2008).

    CAS  PubMed  Google Scholar 

  32. De Roock, W. et al. KRAS wild-type state predicts survival and is associated to early radiological response in metastatic colorectal cancer treated with cetuximab. Ann. Oncol. 19, 508–515 (2008).

    CAS  PubMed  Google Scholar 

  33. Khambata-Ford, S. et al. Expression of epiregulin and amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab. J. Clin. Oncol. 25, 3230–3237 (2007).

    CAS  PubMed  Google Scholar 

  34. Benvenuti, S. et al. Oncogenic activation of the RAS/RAF signaling pathway impairs the response of metastatic colorectal cancers to anti-epidermal growth factor receptor antibody therapies. Cancer Res. 67, 2643–2648 (2007).

    CAS  PubMed  Google Scholar 

  35. Frattini, M. et al. PTEN loss of expression predicts cetuximab efficacy in metastatic colorectal cancer patients. Br. J. Cancer 97, 1139–1145 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Di Fiore, F. et al. Clinical relevance of KRAS mutation detection in metastatic colorectal cancer treated by cetuximab plus chemotherapy. Br. J. Cancer 96, 1166–1169 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Finocchiaro, G. et al. EGFR, HER2 and Kras as predictive factors for cetuximab sensitivity in colorectal cancer [abstract]. J. Clin. Oncol. 25 (18 Suppl.), a4021 (2007).

    Google Scholar 

  38. Di Fiore, F. et al. Role of KRAS mutation in predicting response, progression-free survival, and overall survival in irinotecan-refractory patients treated with cetuximab plus irinotecan for a metastatic colorectal cancer: Analysis of 281 individual data from published series [abstract]. J. Clin. Oncol. 26 (May 20 Suppl.), a4035 (2008).

    Google Scholar 

  39. Amado, R. G. et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J. Clin. Oncol. 26, 1626–1634 (2008).

    CAS  PubMed  Google Scholar 

  40. Karapetis, C. S. et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N. Engl. J. Med. 359, 1757–1765 (2008).

    CAS  PubMed  Google Scholar 

  41. Bokemeyer, C. et al. Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J. Clin. Oncol. 27, 663–671 (2009).

    CAS  PubMed  Google Scholar 

  42. Van Cutsem, E. et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N. Engl. J. Med. 360, 1408–1417 (2009).

    CAS  PubMed  Google Scholar 

  43. Van Cutsem, E. et al. Cetuximab plus FOLFIRI: Final data from the CRYSTAL study on the association of KRAS and BRAF biomarker status with treatment outcome [abstract]. J. Clin. Oncol. 28 (15 Suppl.), a3570 (2010).

    Google Scholar 

  44. Siena, S. et al. Randomized phase III study of panitumumab (pmab) with FOLFOX4 compared to FOLFOX4 alone as first-line treatment (tx) for metastatic colorectal cancer (mCRC): PRIME trial [abstract]. ASCO Gastrointestinal Cancers Symposium 283 (2010).

  45. Peeters, M. et al. Randomized phase III study of panitumumab (pmab) with FOLFIRI versus FOLFIRI alone as second-line treatment (tx) in patients (pts) with metastatic colorectal cancer (mCRC): Patient-reported outcomes (PRO) [abstract]. ASCO Gastrointestinal Cancers Symposium 282 (2010).

  46. Hurwitz, H. I., Yi, J., Ince, W., Novotny, W. F. & Rosen, O. The clinical benefit of bevacizumab in metastatic colorectal cancer is independent of K-ras mutation status: analysis of a phase III study of bevacizumab with chemotherapy in previously untreated metastatic colorectal cancer. Oncologist 14, 22–28 (2009).

    CAS  PubMed  Google Scholar 

  47. Allegra, C. J. et al. American Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy. J. Clin. Oncol. 27, 2091–2096 (2009).

    PubMed  Google Scholar 

  48. Takezawa, K. et al. Sorafenib inhibits non-small cell lung cancer cell growth by targeting B-RAF in KRAS wild-type cells and C-RAF in KRAS mutant cells. Cancer Res. 69, 6515–6521 (2009).

    CAS  PubMed  Google Scholar 

  49. Haigis, K. M. et al. Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon. Nat. Genet. 40, 600–608 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Scholl, C. et al. Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell 137, 821–834 (2009).

    CAS  PubMed  Google Scholar 

  51. Loupakis, F. et al. KRAS codon 61, 146 and BRAF mutations predict resistance to cetuximab plus irinotecan in KRAS codon 12 and 13 wild-type metastatic colorectal cancer. Br. J. Cancer 101, 715–721 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Di Nicolantonio, F. et al. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J. Clin. Oncol. 26, 5705–5712 (2008).

    CAS  PubMed  Google Scholar 

  53. Li, W. Q. et al. BRAF mutations are associated with distinctive clinical, pathological and molecular features of colorectal cancer independently of microsatellite instability status. Mol. Cancer 5, 2 (2006).

    PubMed  Google Scholar 

  54. Vilkin, A. et al. Microsatellite instability, MLH1 promoter methylation, and BRAF mutation analysis in sporadic colorectal cancers of different ethnic groups in Israel. Cancer 115, 760–769 (2009).

    CAS  PubMed  Google Scholar 

  55. Kumar, K. et al. Distinct BRAF (V600E) and KRAS mutations in high microsatellite instability sporadic colorectal cancer in African Americans. Clin. Cancer Res. 15, 1155–1161 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Souglakos, J. et al. Prognostic and predictive value of common mutations for treatment response and survival in patients with metastatic colorectal cancer. Br. J. Cancer 101, 465–472 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Bokemeyer, C. et al. Cetuximab with chemotherapy (CT) as first-line treatment for metastatic colorectal cancer (mCRC): Analysis of the CRYSTAL and OPUS studies according to KRAS and BRAF mutation status [abstract]. J. Clin. Oncol. 28 (15 Suppl.), a3506 (2010).

    Google Scholar 

  58. Tran, B. et al. Differences in sites of metastatic disease and outcomes observed in patients with BRAF mutant colorectal cancers [abstract]. J. Clin. Oncol. 28 (15 Suppl.), a3592 (2010).

    Google Scholar 

  59. Tejpar, S. et al. Mutant KRAS and BRAF gene expression profiles in colorectal cancer: Results of the translational study on the PETACC 3-EORTC 40993-SAKK 60–00 trial [abstract]. J. Clin. Oncol. 28 (15 Suppl.), a3505 (2010).

    Google Scholar 

  60. Laurent-Puig, P. et al. Analysis of PTEN, BRAF, and EGFR status in determining benefit from cetuximab therapy in wild-type KRAS metastatic colon cancer. J. Clin. Oncol. 27, 5924–5930 (2009).

    CAS  PubMed  Google Scholar 

  61. Bokemeyer, C. et al. Cetuximab with chemotherapy (CT) as first-line treatment for metastatic colorectal cancer (mCRC): Analysis of the CRYSTAL and OPUS studies according to KRAS and BRAF mutation status [abstract]. J. Clin. Oncol. 28 (15 Suppl.), a3506 (2010).

    Google Scholar 

  62. Jhawer, M. et al. PIK3CA mutation/PTEN expression status predicts response of colon cancer cells to the epidermal growth factor receptor inhibitor cetuximab. Cancer Res. 68, 1953–1961 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Perrone, F. et al. PI3KCA/PTEN deregulation contributes to impaired responses to cetuximab in metastatic colorectal cancer patients. Ann. Oncol. 20, 84–90 (2009).

    CAS  PubMed  Google Scholar 

  64. Sartore-Bianchi, A. et al. PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFR-targeted monoclonal antibodies. Cancer Res. 69, 1851–1857 (2009).

    CAS  PubMed  Google Scholar 

  65. Prenen, H. et al. PIK3CA mutations are not a major determinant of resistance to the epidermal growth factor receptor inhibitor cetuximab in metastatic colorectal cancer. Clin. Cancer Res. 15, 3184–3188 (2009).

    CAS  PubMed  Google Scholar 

  66. Loupakis, F. et al. PTEN expression and KRAS mutations on primary tumors and metastases in the prediction of benefit from cetuximab plus irinotecan for patients with metastatic colorectal cancer. J. Clin. Oncol. 27, 2622–2629 (2009).

    CAS  PubMed  Google Scholar 

  67. De Roock, W. et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol. 11, 753–762 (2010).

    CAS  PubMed  Google Scholar 

  68. Zhao, L. & Vogt, P. K. Hot-spot mutations in p110alpha of phosphatidylinositol 3-kinase (pI3K): differential interactions with the regulatory subunit p85 and with RAS. Cell Cycle 9, 596–600 (2010).

    CAS  PubMed  Google Scholar 

  69. Jacobs, B. et al. Amphiregulin and epiregulin mRNA expression in primary tumors predicts outcome in metastatic colorectal cancer treated with cetuximab. J. Clin. Oncol. 27, 5068–5074 (2009).

    CAS  PubMed  Google Scholar 

  70. Kyula, J. N. et al. Chemotherapy-induced activation of ADAM-17: a novel mechanism of drug resistance in colorectal cancer. Clin. Cancer Res. 16, 3378–3389 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Maxwell, P. J. et al. Identification of 5-fluorouracil-inducible target genes using cDNA microarray profiling. Cancer Res. 63, 4602–4606 (2003).

    CAS  PubMed  Google Scholar 

  72. Boyer, J. et al. Pharmacogenomic identification of novel determinants of response to chemotherapy in colon cancer. Cancer Res. 66, 2765–2777 (2006).

    CAS  PubMed  Google Scholar 

  73. Al-Mulla, F., Keith, W. N., Pickford, I. R., Going, J. J. & Birnie, G. D. Comparative genomic hybridization analysis of primary colorectal carcinomas and their synchronous metastases. Genes Chromosomes Cancer 24, 306–314 (1999).

    CAS  PubMed  Google Scholar 

  74. Gaasenbeek, M. et al. Combined array-comparative genomic hybridization and single-nucleotide polymorphism-loss of heterozygosity analysis reveals complex changes and multiple forms of chromosomal instability in colorectal cancers. Cancer Res. 66, 3471–3479 (2006).

    CAS  PubMed  Google Scholar 

  75. Lips, E. H. et al. Reliable high-throughput genotyping and loss-of-heterozygosity detection in formalin-fixed, paraffin-embedded tumors using single nucleotide polymorphism arrays. Cancer Res. 65, 10188–10191 (2005).

    CAS  PubMed  Google Scholar 

  76. Chan, E. C. et al. Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS). J. Proteome Res. 8, 352–361 (2009).

    CAS  PubMed  Google Scholar 

  77. Denkert, C. et al. Metabolite profiling of human colon carcinoma--deregulation of TCA cycle and amino acid turnover. Mol. Cancer 7, 72 (2008).

    PubMed  PubMed Central  Google Scholar 

  78. Luo, J. et al. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 137, 835–848 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Thomas, R. K. et al. High-throughput oncogene mutation profiling in human cancer. Nat. Genet. 39, 347–351 (2007).

    CAS  PubMed  Google Scholar 

  80. Bild, A. H. et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439, 353–357 (2006).

    CAS  PubMed  Google Scholar 

  81. Mariadason, J. M. et al. Gene expression profiling-based prediction of response of colon carcinoma cells to 5-fluorouracil and camptothecin. Cancer Res. 63, 8791–8812 (2003).

    CAS  PubMed  Google Scholar 

  82. Arango, D. et al. Molecular mechanisms of action and prediction of response to oxaliplatin in colorectal cancer cells. Br. J. Cancer 91, 1931–1946 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Allen, W. L. et al. Clinical determinants of response to irinotecan-based therapy derived from cell line models. Clin. Cancer Res. 14, 6647–6655 (2008).

    CAS  PubMed  Google Scholar 

  84. Nagrath, S. et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450, 1235–1239 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Cohen, S. J. et al. Prognostic significance of circulating tumor cells in patients with metastatic colorectal cancer. Ann. Oncol. 20, 1223–1229 (2009).

    CAS  PubMed  Google Scholar 

  86. Sastre, J. et al. Circulating tumor cells in colorectal cancer: correlation with clinical and pathological variables. Ann. Oncol. 19, 935–938 (2008).

    CAS  PubMed  Google Scholar 

  87. Holdhoff, M., Schmidt, K., Donehower, R. & Diaz, L. A. Jr. Analysis of circulating tumor DNA to confirm somatic KRAS mutations. J. Natl Cancer Inst. 101, 1284–1285 (2009).

    PubMed  Google Scholar 

  88. van de Vijver, M. J. et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347, 1999–2009 (2002).

    CAS  PubMed  Google Scholar 

  89. van 't Veer, L. J. & Weigelt, B. Road map to metastasis. Nat. Med. 9, 999–1000 (2003).

    CAS  Google Scholar 

  90. Weigelt, B. et al. Gene expression profiles of primary breast tumors maintained in distant metastases. Proc. Natl Acad. Sci. USA 100, 15901–15905 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Glas, A. M. et al. Converting a breast cancer microarray signature into a high-throughput diagnostic test. BMC Genomics 7, 278 (2006).

    PubMed  PubMed Central  Google Scholar 

  92. Buyse, M. et al. Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J. Natl Cancer Inst. 98, 1183–1192 (2006).

    CAS  PubMed  Google Scholar 

  93. van 't Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).

    CAS  PubMed  Google Scholar 

  94. Wang, Y. et al. Gene expression profiles and molecular markers to predict recurrence of Dukes' B colon cancer. J. Clin. Oncol. 22, 1564–1571 (2004).

    CAS  PubMed  Google Scholar 

  95. Barrier, A. et al. Colon cancer prognosis prediction by gene expression profiling. Oncogene 24, 6155–6164 (2005).

    CAS  PubMed  Google Scholar 

  96. Barrier, A. et al. Stage II colon cancer prognosis prediction by tumor gene expression profiling. J. Clin. Oncol. 24, 4685–4691 (2006).

    CAS  PubMed  Google Scholar 

  97. Eschrich, S. et al. Molecular staging for survival prediction of colorectal cancer patients. J. Clin. Oncol. 23, 3526–3535 (2005).

    CAS  PubMed  Google Scholar 

  98. O'Connell, M. J. et al. Relationship between tumor gene expression and recurrence in four independent studies of patients with stage II/III colon cancer treated with surgery alone or surgery plus adjuvant fluorouracil plus leucovorin. J. Clin. Oncol. 28, 3937–3944 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Kerr, D. et al. A quantitative multigene RT-PCR assay for prediction of recurrence in stage II colon cancer: Selection of the genes in four large studies and results of the independent, prospectively designed QUASAR validation study. J. Clin. Oncol. 27 (15 Suppl.), abstr 4000 (2009).

    Google Scholar 

  100. O'Connell, M. J. et al. Comparison of molecular and pathologic features of stage II and stage III colon cancer in four large studies conducted for development of the 12-gene colon cancer recurrence score [abstract]. ASCO Gastrointestinal Cancers Symposium 280 (2010).

  101. Rosenberg, R. et al. Independent validation of a prognostic genomic profile (ColoPrint) for stage II colon cancer (CC) patients [abstract]. J. Clin. Oncol. 28 (15 Suppl.), a3513 (2010).

    Google Scholar 

  102. Pogue-Geile, K. L. et al. Use of a prognostic (prog) gene index and nodal status to identify a subset of stage II and III colon cancer patients (pts) who may not need oxaliplatin (ox)-containing adjuvant chemotherapy [abstract]. J. Clin. Oncol. 28 (15 Suppl.), a3516 (2010).

    Google Scholar 

  103. Del Rio, M. et al. Gene expression signature in advanced colorectal cancer patients select drugs and response for the use of leucovorin, fluorouracil, and irinotecan. J. Clin. Oncol. 25, 773–780 (2007).

    CAS  PubMed  Google Scholar 

  104. de Reyniès, A., Boige, V., Milano, G., Faivre, J. & Laurent-Puig, P. KRAS mutation signature in colorectal tumors significantly overlaps with the cetuximab response signature. J. Clin. Oncol. 26, 2228–2230 (2008).

    PubMed  Google Scholar 

  105. Wang, Y., Miller, D. J. & Clarke, R. Approaches to working in high-dimensional data spaces: gene expression microarrays. Br. J. Cancer 98, 1023–1028 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Simon, R. Roadmap for developing and validating therapeutically relevant genomic classifiers. J. Clin. Oncol. 23, 7332–7341 (2005).

    CAS  PubMed  Google Scholar 

  107. Simon, R., Radmacher, M. D., Dobbin, K. & McShane, L. M. Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. J. Natl Cancer Inst. 95, 14–18 (2003).

    CAS  PubMed  Google Scholar 

  108. Shi, L. et al. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat. Biotechnol. 24, 1151–1161 (2006).

    CAS  PubMed  Google Scholar 

  109. Ramaswamy, S. & Golub, T. R. DNA microarrays in clinical oncology. J. Clin. Oncol. 20, 1932–1941 (2002).

    CAS  PubMed  Google Scholar 

  110. Chen, J., Byrne, G. E. Jr & Lossos, I. S. Optimization of RNA extraction from formalin-fixed, paraffin-embedded lymphoid tissues. Diagn. Mol. Pathol. 16, 61–72 (2007).

    PubMed  Google Scholar 

  111. Bibikova, M. et al. Quantitative gene expression profiling in formalin-fixed, paraffin-embedded tissues using universal bead arrays. Am. J. Pathol. 165, 1799–1807 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Horlings, H. M. et al. Gene expression profiling to identify the histogenetic origin of metastatic adenocarcinomas of unknown primary. J. Clin. Oncol. 26, 4435–4441 (2008).

    CAS  PubMed  Google Scholar 

  113. Farragher, S. M., Tanney, A., Kennedy, R. D. & Paul Harkin, D. RNA expression analysis from formalin fixed paraffin embedded tissues. Histochem. Cell Biol. 130, 435–445 (2008).

    CAS  PubMed  Google Scholar 

  114. Pepe, M. S. et al. Phases of biomarker development for early detection of cancer. J. Natl Cancer Inst. 93, 1054–1061 (2001).

    CAS  PubMed  Google Scholar 

  115. Mandrekar, S. J. & Sargent, D. J. Clinical trial designs for predictive biomarker validation: theoretical considerations and practical challenges. J. Clin. Oncol. 27, 4027–4034 (2009).

    PubMed  PubMed Central  Google Scholar 

  116. Simon, R. The use of genomics in clinical trial design. Clin. Cancer Res. 14, 5984–5993 (2008).

    PubMed  Google Scholar 

  117. Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    CAS  PubMed  Google Scholar 

  118. Maitournam, A. & Simon, R. On the efficiency of targeted clinical trials. Stat. Med. 24, 329–339 (2005).

    CAS  PubMed  Google Scholar 

  119. Simon, R. & Maitournam, A. Evaluating the efficiency of targeted designs for randomized clinical trials. Clin. Cancer Res. 10, 6759–6763 (2004).

    CAS  PubMed  Google Scholar 

  120. Simon, R. Clinical trials for predictive medicine: new challenges and paradigms. Clin. Trials 7, 516–524 (2010).

    PubMed  PubMed Central  Google Scholar 

  121. Simon, R. & Wang, S. J. Use of genomic signatures in therapeutics development in oncology and other diseases. Pharmacogenomics J. 6, 166–173 (2006).

    CAS  PubMed  Google Scholar 

  122. Mandrekar, S. J., Grothey, A., Goetz, M. P. & Sargent, D. J. Clinical trial designs for prospective validation of biomarkers. Am. J. Pharmacogenomics 5, 317–325 (2005).

    CAS  PubMed  Google Scholar 

  123. Sargent, D. J., Conley, B. A., Allegra, C. & Collette, L. Clinical trial designs for predictive marker validation in cancer treatment trials. J. Clin. Oncol. 23, 2020–2027 (2005).

    PubMed  Google Scholar 

  124. Mandrekar, S. J. & Sargent, D. J. Clinical trial designs for predictive biomarker validation: one size does not fit all. J. Biopharm. Stat. 19, 530–542 (2009).

    PubMed  PubMed Central  Google Scholar 

  125. Jiang, W., Freidlin, B. & Simon, R. Biomarker-adaptive threshold design: a procedure for evaluating treatment with possible biomarker-defined subset effect. J. Natl Cancer Inst. 99, 1036–1043 (2007).

    PubMed  Google Scholar 

  126. Wang, S. J., O'Neill, R. T. & Hung, H. M. Approaches to evaluation of treatment effect in randomized clinical trials with genomic subset. Pharm. Stat. 6, 227–244 (2007).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S. Van Schaeybroeck and P. G. Johnston provided substantial contribution to the discussion of content, and reviewed and edited the manuscript before submission and after peer review. All authors researched the data to include in the manuscript and contributed to the writing of the manuscript.

Corresponding author

Correspondence to Patrick G. Johnston.

Ethics declarations

Competing interests

P. G. Johnston is a consultant for Chugai Pharmaceuticals, Roche Pharmaceuticals and Sanofi-Aventis. He receives grant and research support from Amgen and AstraZeneca. He is the Director of Almac Diagnostics and the Society for Translational Oncology, and is a shareholder for Almac and Fusion Antibodies. The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Schaeybroeck, S., Allen, W., Turkington, R. et al. Implementing prognostic and predictive biomarkers in CRC clinical trials. Nat Rev Clin Oncol 8, 222–232 (2011). https://doi.org/10.1038/nrclinonc.2011.15

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2011.15

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer