Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Role of cancer stem cells in pancreatic ductal adenocarcinoma

Abstract

As our understanding of pancreatic cancer evolves, evidence is growing to support a role for cancer stem cells in this devastating disease. Cancer stem cells constitute a distinct subpopulation in the tumor and are considered to drive both tumorigenesis and metastasis; these cells are thought to be highly resistant to standard treatment modalities. Here we review the current knowledge on pancreatic cancer stem cells and the implementation of cancer stem cell markers as prognostic or predictive biomarkers. We also discuss prospects for the use of cancer stem cells as targets for future therapeutic regimens in pancreatic cancer.

Key Points

  • Conventional chemotherapy and radiotherapy affect rapidly dividing pancreatic cancer cells but fail to target cancer stem cells that drive tumorigenesis and metastasis

  • Pancreatic cancer stem cells with either a CD44+CD24+ESA+ or a CD133+ phenotype have been identified from primary human pancreatic ductal adenocarcinoma

  • The metastatic potential of pancreatic ductal adenocarcinoma seems to be determined by a subpopulation of CD133+ cells that co-express CXCR4

  • Developmental signaling pathways that regulate self-renewal and cell fate in normal stem cells are also involved in pancreatic cancer stem cells and might serve as novel biomarkers and therapeutic targets

  • Any treatment designed to eradicate pancreatic cancer needs to eliminate all cancer stem cells from the tumor

  • The success of any approach that targets pancreatic cancer stem cells will depend upon further identification and characterization of normal pancreatic stem cells, cancer stem cells and the surrounding tumor stroma

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FACS dot plot of a fresh human PDAC specimen.
Figure 2: Model of conventional versus CSC-targeting therapy.

Similar content being viewed by others

References

  1. Hill, R. P. & Perris, R. “Destemming” cancer stem cells. J. Natl Cancer Inst. 99, 1435–1440 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Fishman, M. P. & Melton, D. A. Pancreatic lineage analysis using a retroviral vector in embryonic mice demonstrates a common progenitor for endocrine and exocrine cells. Int. J. Dev. Biol. 46, 201–207 (2002).

    CAS  PubMed  Google Scholar 

  3. Xu, X. et al. β Cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 132, 197–207 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Dor, Y., Brown, J., Martinez, O. I. & Melton, D. A. Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429, 41–46 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Bonner-Weir, S. & Sharma, A. Pancreatic stem cells. J. Pathol. 197, 519–526 (2002).

    Article  PubMed  Google Scholar 

  6. Zhou, Q. et al. A multipotent progenitor domain guides pancreatic organogenesis. Dev. Cell 13, 103–114 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive haematopoietic cell. Nat. Med. 3, 730–737 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Fidler, I. J. Metastasis: quantitative analysis of distribution and fate of tumor embolized and labeled with 125I-5-iodo-2′-deoxyuridine. J. Natl Cancer Inst. 45, 773–782 (1970).

    CAS  PubMed  Google Scholar 

  10. Clarke, M. F. & Fuller, M. Stem cells and cancer: two faces of Eve. Cell 124, 1111–1115 (2006).

    Article  CAS  Google Scholar 

  11. Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001).

    Article  CAS  Google Scholar 

  12. Clarke, M. F. et al. Cancer stem cells-—perspectives on current status and future directions: AACR Workshop on Cancer Stem Cells. Cancer Res. 66, 9339–9344 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Li, L. & Neaves, W. B. Normal stem cells and cancer stem cells: the niche matters. Cancer Res. 66, 4553–4557 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Yoo, M. H. & Hatfield, D. L. The cancer stem cell theory: is it correct? Mol. Cells 26, 514–516 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Kelly, P. N., Dakic, A., Adams, J. M., Nutt, S. L & Strasser, A. Tumour growth need not be driven by rare cancer stem cells. Science 317, 337 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Vermeulen, L., Sprick, M. R., Kemper, K., Stassi, G. & Medema, J. P. Cancer stem cells—old concepts, new insights. Cell Death Differ. 15, 947–958 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Challen, G. A. & Little, M. H. A side order of stem cells: the SP phenotype. Stem Cells 24, 3–12 (2006).

    Article  PubMed  Google Scholar 

  18. Chen, J. et al. Pituitary progenitor cells tracked down by side population dissection. Stem Cells 27, 1182–1195 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Haraguchi, N. et al. Cancer stem cells in human gastrointestinal cancers. Hum. Cell 19, 24–29 (2006).

    Article  PubMed  Google Scholar 

  20. Wu, C. & Alman, B. A. Side population cells in human cancers. Cancer Lett. 268, 1–9 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Ibrahim, S. F., Diercks, A. H., Petersen, T. W. & van den Engh, G. Kinetic analyses as a critical parameter in defining the side population (SP) phenotype. Exp. Cell Res. 313, 1921–1926 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Montanaro, F. et al. Demystifying SP cell purification: viability, yield and phenotype are defined by isolation parameters. Exp. Cell Res. 298, 144–154 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Olempska, M. et al. Detection of tumour stem cell markers in pancreatic carcinoma cell lines. Hepatobiliary Pancreat. Dis. Int. 6, 92–97 (2007).

    CAS  PubMed  Google Scholar 

  24. Haraguchi, N. et al. Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells 24, 506–513 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Zhou, J. et al. Persistence of side population cells with high drug efflux capacity in pancreatic cancer. World J. Gastroenterol. 14, 925–930 (2008).

    Article  PubMed  Google Scholar 

  26. Gou, S. et al. Establishment of clonal colony-forming assay for propagation of pancreatic cancer cells with stem cell properties. Pancreas 34, 429–435 (2007).

    Article  PubMed  Google Scholar 

  27. Shah, A. N. et al. Development and characterization of gemcitabine-resistant pancreatic tumour cells. Ann. Surg. Oncol. 14, 3629–3637 (2007).

    Article  PubMed  Google Scholar 

  28. Hermann, P. C. et al. Distinct populations of cancer stem cells determine tumour growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1, 313–323 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Burkert, J., Otto, W. R. & Wright, N. A. Side populations of gastrointestinal cancers are not enriched in stem cells. J. Pathol. 214, 564–573 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Li, C. et al. Identification of pancreatic cancer stem cells. Cancer Res. 67, 1030–1037 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Müller, A. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56 (2001).

    Article  PubMed  Google Scholar 

  32. Croker, A. K. & Allan, A. l. Cancer stem cells: implications for the progression and treatment of metastatic disease. J. Cell Mol. Med. 12, 374–390 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Gremeaux, L. et al. In search of cancer stem cells in primary human tumors: a “side population” is present in both benign and malignant neoplasms. Presented at the ISSCR 6th Annual Meeting.

  34. Boman, B. M. & Wicha, M. S. Cancer stem cells: a step toward the cure. J. Clin. Oncol. 26, 2795–2799 (2008).

    Article  PubMed  Google Scholar 

  35. Gu, G., Dubauskaite, J. & Melton, D. A. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129, 2447–2457 (2002).

    CAS  PubMed  Google Scholar 

  36. Liu, T. et al. Pancreas duodenal homeobox-1 expression and significance in pancreatic cancer. World J. Gastroenterol. 13, 2615–2618 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Quint, K. et al. The expression pattern of PDX-1, SHH, Patched and Gli-1 Is associated with pathological and clinical features in human pancreatic cancer. Pancreatology 9, 116–126 (2008).

    Article  Google Scholar 

  38. Koizumi, M. et al. Increased PDX-1 expression is associated with outcome in patients with pancreatic cancer. Surgery 134, 260–266 (2003).

    Article  Google Scholar 

  39. Bolos, V., Grego-Bessa, J. & de la Pompa, J. L. Notch signalling in development and cancer. Endocr. Rev. 28, 339–363 (2007).

    Article  CAS  Google Scholar 

  40. Miyamoto, Y. et al. Notch mediates TGFα-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell 3, 565–576 (2003).

    Article  CAS  Google Scholar 

  41. van Es, J. H. et al. Notch–γ-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435, 959–963 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Zaret, K. S. & Grompe, M. Generation and regeneration of cells of the liver and pancreas. Science 322, 1490–1494 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Thayer, S. P. et al. Hedgehog is an early and late mediator of pancreatic cancer tumourigenesis. Nature 425, 851–856 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Liu, M. S., Yang, P. Y & Yeh, T. S. Sonic hedgehog signalling pathway in pancreatic cystic neoplasms and ductal adenocarcinoma. Pancreas 34, 340–346 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. James, L. F., Panter, K. E., Gaffield, W. & Molyneux, R. J. Biomedical applications of poisonous plant research. J. Agric. Food Chem. 52, 3211–3230 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Berman, D. M. et al. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature 425, 846–851 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Feldmann, G. et al. Blockade of hedgehog signalling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res. 67, 2187–2196 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Yoshida, K. et al. Screening of genes specifically activated in the pancreatic juice ductal cells from the patients with pancreatic ductal carcinoma. Cancer Sci. 94, 263–270 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Immervoll, H., Hoem, D., Sakariassen, P. Ø., Steffensen, O. J & Molven, A. Expression of the “stem cell marker” CD133 in pancreas and pancreatic ductal adenocarcinomas. BMC Cancer 8, 48 (2008).

    Article  PubMed  Google Scholar 

  50. Maeda, S. et al. CD133 expression is correlated with lymph node metastasis and vascular endothelial growth factor-C expression in pancreatic cancer. Br. J. Cancer 98, 1389–1397 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Kayali, A. G. et al. The stromal cell-derived factor-1α–CXCR4 ligand-receptor axis is critical for progenitor survival and migration in the pancreas. J. Cell Biol. 163, 859–869 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Taichman, R. S. et al. Use of the stromal cell-derived factor-1–CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res. 62, 1832–1837 (2002).

    CAS  PubMed  Google Scholar 

  53. Kucia, M. et al. CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion. J. Mol. Histol. 35, 233–245 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Garcea, G., Neal, C. P., Pattenden, C. J., Steward, W. P. & Berry, D. P. Molecular prognostic markers in pancreatic cancer: a systematic review. Eur. J. Cancer 41, 2213–2236 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Gotoda, T. et al. Expression of CD44 variants and its association with survival in pancreatic cancer. Jpn J. Cancer Res. 89, 1033–1040 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Charrad, R. S. et al. Effects of anti-CD44 monoclonal antibodies on differentiation and apoptosis of human myeloid leukemia cell lines. Blood 99, 290–299 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Fong, D. et al. Ep-CAM expression in pancreatic and ampullary carcinomas: frequency and prognostic relevance. J. Clin. Pathol. 61, 31–35 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. He, X. C. et al. PTEN-deficient intestinal stem cells initiate intestinal polyposis. Nat. Genet. 39, 189–198 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Di Cristofano, A. & Pandolfi P. P. The multiple roles of PTEN in tumour suppression. Cell 100, 387–390 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Yilmaz, O. H. et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441, 475–482 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Okada, T., Sawada, T. & Kubota, K. Rapamycin enhances the anti-tumour effect of gemcitabine in pancreatic cancer cells. Hepatogastroenterology 54, 2129–2133 (2007).

    CAS  PubMed  Google Scholar 

  62. Cheng, J. Q., Lindsley, C. W., Cheng, G. Z., Yang, H. & Nicosia, S. V. The Akt–PKB pathway: molecular target for cancer drug discovery. Oncogene 24, 7482–7492 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Rhodes, N. et al. Characterization of an Akt kinase inhibitor with potent pharmacodynamic and antitumour activity. Cancer Res. 68, 2366–2374 (2008).

    Article  CAS  Google Scholar 

  64. Dingli, D. & Michor, F. Successful therapy must eradicate cancer stem cells. Stem Cells 24, 2603–2610 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Gil, J., Stembalska, A., Pesz, K. A. & Sasiadek, M. M. Cancer stem cells: the theory and perspectives in cancer therapy. J. Appl. Genet. 49, 193–199 (2008).

    Article  PubMed  Google Scholar 

  66. Wicha, M. S. Cancer stem cell heterogeneity in hereditary breast cancer. Breast Cancer Res. 10, 105 (2008).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank Vik Van Duppen from the Laboratory of Experimental Hematology (SCIL) for sharing his knowledge on fluorescence-activated cell sorting, and Herlinda Vekemans from the ILT (K. U. Leuven) for medical English proofreading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baki Topal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sergeant, G., Vankelecom, H., Gremeaux, L. et al. Role of cancer stem cells in pancreatic ductal adenocarcinoma. Nat Rev Clin Oncol 6, 580–586 (2009). https://doi.org/10.1038/nrclinonc.2009.127

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2009.127

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing