Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

VEGF and the quest for tumour angiogenesis factors

Abstract

The ability of tumours to induce new blood-vessel formation has been a major focus of cancer research over the past few decades, and vascular endothelial growth factor (VEGF) is now known to be central to this process. The quest for VEGF and other factors that promote tumour angiogenesis was initiated many decades ago, and a long and complicated path has led to the development of inhibitors of these molecules as anticancer agents. How did this field begin, and how have we arrived at our present understanding of the role of VEGF in tumour progression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The earliest in vivo images of tumour angiogenesis.
Figure 2: Effects of an anti-VEGF monoclonal antibody on angiogenesis induced by the A673 rhabdomyosarcoma cell line, as seen in the dorsal skinfold transparent chamber model in the mouse.

References

  1. Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971).

    Article  CAS  PubMed  Google Scholar 

  2. Ferrara, N. & Alitalo, K. Clinical applications of angiogenic growth factors and their inhibitors. Nature Med. 5, 1359–1364 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Yancopoulos, G. D. et al. Vascular-specific growth factors and blood vessel formation. Nature 407, 242–248 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Carmeliet, P. Mechanisms of angiogenesis and arteriogenesis, Nature Med. 6, 389–395 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Ferrara, N. & Davis-Smyth, T. The biology of vascular endothelial growth factor. Endocr. Rev. 18, 4–25 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Neufeld, G., Cohen, T., Gengrinovitch, S. & Poltorak, Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 13, 9–22 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Algire, G. H., Chalkley, H. W., Legallais, F. Y. & Park, H. D. Vascular reactions of normal and malignant tissues in vivo. I. Vascular reactions of mice to wounds and to normal and neoplastic transplants, J. Natl Cancer Inst. 6, 73–85 (1945).

    Article  Google Scholar 

  8. Lewis, W. H. The vascular pattern of tumors. Johns Hopkins Hosp. Bull. 41, 156–162 (1927).

    Google Scholar 

  9. Ludford, R. J. The differential reaction to trypan blue of normal and malignant cells in vitro. Imp. Cancer Res. Fund Sci. Rep. 10, 169–190 (1932).

    Google Scholar 

  10. Sandison, J. C. Observations on growth of blood vessels as seen in transparent chamber introduced into rabbit' s ear. Am. J. Anat. 41, 475–496 (1928).

    Article  Google Scholar 

  11. Jain, R. K., Schlenger, K., Hockel, M. & Yuan, F. Quantitative angiogenesis assays: progress and problems. Nature Med. 3, 1203–1208 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Ide, A. G., Baker, N. H. & Warren, S. L. Vascularization of the Brown Pearce rabbit epithelioma transplant as seen in the transparent ear chamber. Am. J. Roentgenol. 42, 891–899 (1939).

    Google Scholar 

  13. Tannock, I. F. The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour. Br. J. Cancer 22, 258–273 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Michaelson, I. C. The mode of development of the vascular system of the retina with some observations on its significance for certain retinal disorders, Trans. Ophthalmol. Soc. UK 68, 137–180 (1948).

    Google Scholar 

  15. Greenblatt, M. & Shubick, P. Tumor angiogenesis: transfilter diffusion studies in the hamster by the transparent chamber technique. J. Natl Cancer Inst. 41, 111–124 (1968).

    CAS  PubMed  Google Scholar 

  16. Ehrmann, R. L. & Knoth, M. Choriocarcinoma. Transfilter stimulation of vasoproliferation in the hamster cheek pouch. Studied by light and electron microscopy. J. Natl Cancer Inst. 41, 1329–1341 (1968).

    CAS  PubMed  Google Scholar 

  17. Folkman, J., Merler, E., Abernathy, C. & Williams, G. Isolation of a tumor factor responsible for angiogenesis, J. Exp. Med. 133, 275–288 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Klagsbrun, M., Knighton, D. & Folkman, J. Tumor angiogenesis activity in cells grown in tissue culture. Cancer Res. 36, 110–114 (1976).

    CAS  PubMed  Google Scholar 

  19. Folkman, J. & Klagsbrun, M. Angiogenic factors. Science 235, 442–447 (1987).

    Article  CAS  PubMed  Google Scholar 

  20. Folkman, J., Haudenschild, C. C. & Zetter, B. R. Long-term culture of capillary endothelial cells. Proc. Natl Acad. Sci. USA 76, 5217–5221 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Maciag, T., Cerundolo, J., Ilsley, S., Kelley, P. R. & Forand, R. An endothelial cell growth factor from bovine hypothalamus: identification and partial characterization. Proc. Natl Acad. Sci. USA 76, 5674–5678 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gospodarowicz, D. Localization of a fibroblast growth factor and its effects alone and with hydrocortisone on 3T3 cell growth. Nature 249, 123–126 (1974).

    Article  CAS  PubMed  Google Scholar 

  23. Gospodarowicz, D., Ferrara, N., Schweigerer, L. & Neufeld, G. Structural characterization and biological functions of fibroblast growth factor. Endocr. Rev. 8, 95–114 (1987).

    Article  CAS  PubMed  Google Scholar 

  24. Shing, Y. et al. Heparin affinity: purification of a tumor-derived capillary endothelial cell growth factor. Science 223, 1296–1299 (1984).

    Article  CAS  PubMed  Google Scholar 

  25. Lobb, R. R. & Fett, J. W. Purification of two distinct growth factors from bovine neural tissue by heparin affinity chromatography. Biochemistry 23, 6295–6299 (1984).

    Article  CAS  PubMed  Google Scholar 

  26. Thomas, K. A. et al. Pure brain-derived acidic fibroblast growth factor is a potent angiogenic vascular endothelial cell mitogen with sequence homology to interleukin 1. Proc. Natl Acad. Sci. USA 82, 6409–6413 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Esch, F. et al. Primary structure of bovine pituitary basic fibroblast growth factor (FGF) and comparison with the amino-terminal sequence of bovine brain acidic FGF. Proc. Natl Acad. Sci. USA 82, 6507–6511 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jaye, M. et al. Human endothelial cell growth factor: cloning, nucleotide sequence, and chromosome localization. Science 233, 541–545 (1986).

    Article  CAS  PubMed  Google Scholar 

  29. Abraham, J. A. et al. Nucleotide sequence of a bovine clone encoding the angiogenic protein, basic fibroblast growth factor. Science 233, 545–548 (1986).

    Article  CAS  PubMed  Google Scholar 

  30. Gospodarowicz, D. & Thakral, K. K. Production of a corpus luteum angiogenic factor responsible for proliferation of capillaries and neovascularization of the corpus luteum. Proc. Natl Acad. Sci. USA 75, 847–851 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vlodavsky, I. et al. Endothelial cell-derived basic fibroblast growth factor: synthesis and deposition into subendothelial extracellular matrix. Proc. Natl Acad. Sci. USA 84, 2292–2296 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Prudovsky, I. et al. The intracellular translocation of the components of the fibroblast growth factor 1 release complex precedes their assembly prior to export. J. Cell Biol. 158, 201–208 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dennis, P. A. & Rifkin, D. B. Studies on the role of basic fibroblast growth factor in vivo: inability of neutralizing antibodies to block tumor growth. J. Cell. Physiol. 144, 84–98 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. Wang, Y. & Becker, D. Antisense targeting of basic fibroblast growth factor and fibroblast growth factor receptor-1 in human melanomas blocks intratumoral angiogenesis and tumor growth. Nature Med. 3, 887–893 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Miller, D. L., Ortega, S., Bashayan, O., Basch, R. & Basilico, C. Compensation by fibroblast growth factor 1 (FGF1) does not account for the mild phenotypic defects observed in FGF2 null mice. Mol. Cell. Biol. 20, 2260–2268 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dono, R., Texido, G., Dussel, R., Ehmke, H. & Zeller, R. Impaired cerebral cortex development and blood pressure regulation in FGF-2-deficient mice. EMBO J. 17, 4213–4225 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Senger, D. R. et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219, 983–985 (1983).

    Article  CAS  PubMed  Google Scholar 

  38. Ferrara, N. & Henzel, W. J. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem. Biophys. Res. Comm. 161, 851–858 (1989).

    Article  CAS  PubMed  Google Scholar 

  39. Ferrara, N., Schweigerer, L., Neufeld, G., Mitchell, R. & Gospodarowicz, D. Pituitary follicular cells produce basic fibroblast growth factor. Proc. Natl Acad. Sci. USA 84, 5773–5777 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Plouet, J., Schilling, J. & Gospodarowicz, D. Isolation and characterization of a newly identified endothelial cell mitogen produced by AtT20 cells. EMBO J. 8, 3801–3808 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Connolly, D. T. et al. Human vascular permeability factor. Isolation from U937 cells. J. Biol. Chem. 264, 20017–20024 (1989).

    Article  CAS  PubMed  Google Scholar 

  42. Leung, D. W., Cachianes, G., Kuang, W. J., Goeddel, D. V. & Ferrara, N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246, 1306–1309 (1989).

    Article  CAS  PubMed  Google Scholar 

  43. Keck, P. J. et al. Vascular permeability factor, an endothelial cell mitogen related to PDG. Science 246, 1309–1312 (1989).

    Article  CAS  PubMed  Google Scholar 

  44. Conn, G. et al. Amino acid and cDNA sequences of a vascular endothelial cell mitogen that is homologous to platelet-derived growth factor. Proc. Natl Acad. Sci. USA 87, 2628–2632 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Senger, D. R., Connolly, D. T., Van de Water, L., Feder, J. & Dvorak, H. F. Purification and NH2-terminal amino acid sequence of guinea pig tumor-secreted vascular permeability factor. Cancer Res. 50, 1774–1778 (1990).

    CAS  PubMed  Google Scholar 

  46. Houck, K. A. et al. The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol. Endocrinol. 5, 1806–1814 (1991).

    Article  CAS  PubMed  Google Scholar 

  47. Tischer, E. et al. The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J. Biol. Chem. 266, 11947–11954 (1991).

    Article  CAS  PubMed  Google Scholar 

  48. Houck, K. A., Leung, D. W., Rowland, A. M., Winer, J. & Ferrara, N. Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J. Biol. Chem. 267, 26031–26037 (1992).

    Article  CAS  PubMed  Google Scholar 

  49. Park, J. E., Keller, H.-A. & Ferrara, N. The vascular endothelial growth factor isoforms (VEGF): differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol. Biol. Cell 4, 1317–1326 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bassett, D. L. The changes in the vascular pattern of the ovary of the albino rat during the estrous cycle. Am. J. Anat. 73, 251–278 (1943).

    Article  Google Scholar 

  51. Phillips, H. S., Hains, J., Leung, D. W. & Ferrara, N. Vascular endothelial growth factor is expressed in rat corpus luteum. Endocrinology 127, 965–967 (1990).

    Article  CAS  PubMed  Google Scholar 

  52. Ferrara, N. et al. Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nature Med. 4, 336–340 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Breier, G., Albrecht, U., Sterrer, S. & Risau, W. Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development 114, 521–532 (1992).

    Article  CAS  PubMed  Google Scholar 

  54. Jakeman, L. B., Winer, J., Bennett, G. L., Altar, C. A. & Ferrara, N. Binding sites for vascular endothelial growth factor are localized on endothelial cells in adult rat tissues. J. Clin. Invest. 89, 244–253 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shweiki, D., Itin, A., Soffer, D. & Keshet, E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843–845 (1992).

    Article  CAS  PubMed  Google Scholar 

  56. Plate, K. H., Breier, G., Weich, H. A. & Risau, W. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359, 845–848 (1992).

    Article  CAS  PubMed  Google Scholar 

  57. Jelkmann, W. Erythropoietin: structure, control of production, and function. Physiol. Rev. 72, 449–489 (1992).

    Article  CAS  PubMed  Google Scholar 

  58. Goldberg, M. A. & Schneider, T. J. Similarities between the oxygen-sensing mechanisms regulating the expression of vascular endothelial growth factor and erythropoietin. J. Biol. Chem. 269, 4355–4361 (1994).

    Article  CAS  PubMed  Google Scholar 

  59. Levy, A. P., Levy, N. S., Wegner, S. & Goldberg, M. A. Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia, J. Biol. Chem. 270, 13333–13340 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Liu, Y., Cox, S. R., Morita, T. & Kourembanas, S. Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5′ enhancer. Circ. Res. 77, 638–643 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Wang, G. L. & Semenza, G. L. Purification and characterization of hypoxia-inducible factor 1. J. Biol. Chem. 270, 1230–1237 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Iliopoulos, O., Levy, A. P., Jiang, C., Kaelin, W. G. Jr & Goldberg, M. A. Negative regulation of hypoxia-inducible genes by the von Hippel–Lindau protein. Proc. Natl Acad. Sci. USA 93, 10595–10599 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Maxwell, P. H. & Ratcliffe, P. J. Oxygen sensors and angiogenesis. Semin. Cell. Dev. Biol. 13, 29–37 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. de Vries, C. et al. The FMS-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255, 989–991 (1992).

    Article  CAS  PubMed  Google Scholar 

  65. Shibuya, M. et al. Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase (FLT) closely related to the FMS family. Oncogene 5, 519–524 (1990).

    CAS  PubMed  Google Scholar 

  66. Terman, B. I. et al. Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem. Biophys. Res. Commun. 187, 1579–1586 (1992).

    Article  CAS  PubMed  Google Scholar 

  67. Millauer, B. et al. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72, 835–846 (1993).

    Article  CAS  PubMed  Google Scholar 

  68. Quinn, T. P., Peters, K. G., De Vries, C., Ferrara, N. & Williams, L. T. Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium. Proc. Natl Acad. Sci. USA 90, 7533–7537 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fong, G. H., Rossant, J., Gertsenstein, M. & Breitman, M. L. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376, 66–70 (1995).

    Article  CAS  PubMed  Google Scholar 

  70. Shalaby, F. et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376, 62–66 (1995).

    Article  CAS  PubMed  Google Scholar 

  71. Fujisawa, H. & Kitsukawa, T. Receptors for collapsin/semaphorins. Curr. Opin. Neurobiol. 8, 587–592 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Soker, S., Takashima, S., Miao, H. Q., Neufeld, G. & Klagsbrun, M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92, 735–745 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Yang, K. & Cepko, C. L. Flk-1, a receptor for vascular endothelial growth factor (VEGF), is expressed by retinal progenitor cells. J. Neurosci. 16, 6089–6099 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Oosthuyse, B. et al. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nature Genet. 28, 131–138 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Maglione, D., Guerriero, V., Viglietto, G., Delli-Bovi, P. & Persico, M. G. Isolation of a human placenta cDNA coding for a protein related to the vascular permeability factor. Proc. Natl Acad. Sci. USA 88, 9267–9271 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Olofsson, B. et al. Vascular endothelial growth factor B, a novel growth factor for endothelial cells. Proc. Natl Acad. Sci. USA 93, 2576–2581 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Joukov, V. et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. 15, 1751 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lee, J. et al. Vascular endothelial growth factor-related protein: a ligand and specific activator of the tyrosine kinase receptor Flt4. Proc. Natl Acad. Sci. USA 93, 1988–1992 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Orlandini, M., Marconcini, L., Ferruzzi, R. & Oliviero, S. Identification of a c-fos-induced gene that is related to the platelet-derived growth factor/vascular endothelial growth factor family. Proc. Natl Acad. Sci. USA 93, 11675–11680 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Karkkainen, M. J., Makinen, T. & Alitalo, K. Lymphatic endothelium: a new frontier of metastasis research. Nature Cell Biol. 4, E2–E5 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Ferrara, N. et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439–442 (1996).

    Article  CAS  PubMed  Google Scholar 

  82. Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. Haigh, J. J., Gerber, H. P., Ferrara, N. & Wagner, E. F. Conditional inactivation of VEGF-A in areas of collagen2a1 expression results in embryonic lethality in the heterozygous state. Development 127, 1445–1453 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Ferrara, N. et al. Expression of vascular endothelial growth factor does not promote transformation but confers a growth advantage in vivo to Chinese hamster ovary cells. J. Clin. Invest. 91, 160–170 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Riechmann, L., Clark, M., Waldmann, H. & Winter, G. Reshaping human antibodies for therapy. Nature 332, 323–327 (1988).

    Article  CAS  PubMed  Google Scholar 

  86. Kim, K. J. et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumor growth in vivo. Nature 362, 841–844 (1993).

    Article  CAS  PubMed  Google Scholar 

  87. Millauer, B., Shawver, L. K., Plate, K. H., Risau, W. & Ullrich, A. Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 367, 576–579 (1994).

    Article  CAS  PubMed  Google Scholar 

  88. Warren, R. S., Yuan, H., Matli, M. R., Gillett, N. A. & Ferrara, N. Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis. J. Clin. Invest. 95, 1789–1797 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Melnyk, O., Shuman, M. A. & Kim, K. J. Vascular endothelial growth factor promotes tumor dissemination by a mechanism distinct from its effect on primary tumor growth. Cancer Res. 56, 921–924 (1996).

    CAS  PubMed  Google Scholar 

  90. Asano, M., Yukita, A., Matsumoto, T., Kondo, S. & Suzuki, H. Inhibition of tumor growth and metastasis by an immunoneutralizing monoclonal antibody to human vascular endothelial growth factor/vascular permeability factor 121. Cancer Res. 55, 5296–5301 (1995).

    CAS  PubMed  Google Scholar 

  91. Borgstrom, P., Bourdon, M. A., Hillan, K. J., Sriramarao, P. & Ferrara, N. Neutralizing anti-vascular endothelial growth factor antibody completely inhibits angiogenesis and growth of human prostate carcinoma micro tumors in vivo. Prostate 35, 1–10 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. Millauer, B. et al. Dominant-negative inhibition of Flk-1 suppresses the growth of many tumor types in vivo. Cancer Res. 56, 1615–1620 (1996).

    CAS  PubMed  Google Scholar 

  93. Inoue, M., Hager, J. H., Ferrara, N., Gerber, H. P. & Hanahan, D. VEGF-A has a critical, nonredundant role in angiogenic switching and pancreatic beta cell carcinogenesis. Cancer Cell 1, 193–202 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Borgstrom, P., Hillan, K. J., Sriramarao, P. & Ferrara, N. Complete inhibition of angiogenesis and growth of microtumors by anti-vascular endothelial growth factor neutralizing antibody: novel concepts of angiostatic therapy from intravital videomicroscopy. Cancer Res. 6, 4032–4039 (1996).

    Google Scholar 

  95. Dvorak, H. F., Brown, L. F., Detmar, M. & Dvorak, A. M. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am. J. Pathol. 146, 1029–1039 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Rak, J. et al. Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res. 55, 4575–4580 (1995).

    CAS  PubMed  Google Scholar 

  97. Grugel, S., Finkenzeller, G., Weindel, K., Barleon, B. & Marme, D. Both v-Ha-Ras and v-Raf stimulate expression of the vascular endothelial growth factor in NIH 3T3 cells. J. Biol. Chem. 270, 25915–25919 (1995).

    Article  CAS  PubMed  Google Scholar 

  98. Okada, F. et al. Impact of oncogenes in tumor angiogenesis: mutant K-ras up-regulation of vascular endothelial growth factor/vascular permeability factor is necessary, but not sufficient for tumorigenicity of human colorectal carcinoma cells. Proc. Natl Acad. Sci. USA 95, 3609–3614 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ferrara, N. VEGF: an update on biological and therapeutic aspects. Curr. Opin. Biotech. 11, 617–624 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Yang, J. C., Haworth, L., Steinberg, S. M., Rosenberg, S. A. & Novotny, W. A randomized double-blind placebo-controlled trial of bevacizumab (anti–VEGF antibody) demonstrating a prolongation in time to progression in patients with metastatic renal cancer. (ASCO 2002).

  101. Belperio, J. A. et al. CXC chemokines in angiogenesis. J. Leuk. Biol. 68, 1–8 (2000).

    CAS  Google Scholar 

  102. LeCouter, J. et al. Identification of an angiogenic mitogen selective for endocrine gland endothelium. Nature 412, 877–884 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. LeCouter, J., Lin, R. & Ferrara, N. Endocrine gland-derived VEGF and the emerging hypothesis of organ-specific regulation of angiogenesis. Nature Med. 8, 913–917 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Gerber, H. P. et al. VEGF is required for growth and survival in neonatal mice. Development 126, 1149–1159 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Gerber, H. P. et al. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nature Med. 5, 623–628 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Garner, A. in Pathobiology of Ocular Disease 2nd edn (eds Garner, A. & Klintworth, G. K.) 1625–1710 (Marcel Dekker, New York, 1994).

    Google Scholar 

  107. Patz, A. Studies on retinal neovascularization. Invest. Ophthalmol. Visual Sci. 19, 1133–1138 (1980).

    CAS  Google Scholar 

  108. Miller, J. W. et al. Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Am. J. Pathol. 145, 574–584 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Aiello, L. P. et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N. Engl. J. Med. 331, 1480–1487 (1994).

    Article  CAS  PubMed  Google Scholar 

  110. Adamis, A. P. et al. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am. J. Ophthalmol. 118, 445–450 (1994).

    Article  CAS  PubMed  Google Scholar 

  111. Malecaze, F. et al. Detection of vascular endothelial growth factor mRNA and vascular endothelial growth factor-like activity in proliferative diabetic retinopathy. Arch. Ophthalmol. 112, 1476–1482 (1994).

    Article  CAS  PubMed  Google Scholar 

  112. Aiello, L. P. et al. Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc. Natl Acad. Sci. USA 92, 10457–10461 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Adamis, A. P. et al. Inhibition of vascular endothelial growth factor prevents retinal ischemia-associated iris neovascularization in a nonhuman primate. Arch. Ophthalmol. 114, 66–71 (1996).

    Article  CAS  PubMed  Google Scholar 

  114. Krzystolik, M. G. et al. Prevention of experimental choroidal neovascularization with intravitreal anti-vascular endothelial growth factor antibody fragment. Arch. Ophthalmol. 120, 338–346 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank E. Filvaroff and N. van Bruggen for critically reading this manuscript.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Cancer.gov

melanoma

renal-cell carcinoma

rhabdomyosarcoma

LocusLink

aFgf

aFGF

angiogenin

bFgf

bFGF

EGF

EG-VEGF

Flk1

FLK1

Flt1

FLT1

FMS

HIF-1α

IL-8

KIT

PDGF

RAS

TGF-α

TGF-β

TNF-α

Vegf

VEGF

VEGFB

VEGFC

VEGFD

Glossary

FOLLICULAR OR FOLLICULO-STELLATE CELLS

A population of non-hormone-secreting cells in the anterior pituitary. These cells are believed to have several functions, including ion transport, phagocytosis and production of several growth factors.

NH2-TERMINAL AMINO-ACID SEQUENCING

A technique that is used to determine a portion of the amino-acid sequence of a purified protein, starting at the amino terminus. Traditionally, this is a crucial step in protein discovery as it allows verification of the identity (or novelty) of the protein and enables the design of an oligonucleotide probe that is suitable for cDNA cloning.

SECRETORY SIGNAL SEQUENCE

An amino-terminal amino-acid sequence with a hydrophobic core that directs a protein to cross the membrane of the endoplasmic reticulum, where it is removed. It is a typical structural requirement for secreted proteins.

GRANULOSA CELLS

The cells around the oocyte in the ovarian follicle, which are devoid of blood vessels. After ovulation, granulosa cells differentiate into the progesterone-producing luteal cells and this process is accompanied by extensive angiogenesis.

HUMANIZATION

A technique that is used to overcome the immunogenicity of mouse antibodies for human clinical trials. In the simplest case, the complementarity-determining regions of a mouse monoclonal antibody with the desired antigen specificity are transferred into a human antibody that therefore acquires the binding characteristics of the mouse antibody. The amino-acid sequence of the final humanized antibody is 93–95% human.

INSULINOMA

A tumour that arises from the insulin-producing β-cells in the pancreatic islets.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrara, N. VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2, 795–803 (2002). https://doi.org/10.1038/nrc909

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc909

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing