Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Strategies for MMP inhibition in cancer: innovations for the post-trial era

Key Points

  • The 24 human matrix metalloproteinases (MMPs) degrade all the main protein components of the extracellular matrix and basement membrane; are overexpressed in human tumours; and were originally associated with peritumour tissue degradation and metastasis formation. As MMPs are promising therapeutic targets, an intensive drug discovery programme led to many clinical trials of MMP inhibitors (MMPIs) for cancer therapy. However, until very recent reports of success in gastric carcinoma, these trials have largely been disappointing.

  • Many MMPs have been identified over the past two decades and these enzymes are now known to be mediators of a number of important normal cell processes. MMPs are involved in the early stages of cancer, explaining the failure of many of the MMPIs in late-stage cancer clinical trials.

  • A greater understanding of the regulatory mechanisms that control MMP transcription, activation and inhibition provides several new avenues for therapeutic intervention. Many new drugs are designed to target these key regulatory points.

  • MMP gene transcription can be inhibited by targeting extracellular factors or their cognate cell-surface receptors, signal-transduction pathways and nuclear factors that activate expression of these genes. MMP activation can also be inhibited by targeting proteases that cleave and activate MMPs.

  • New classes of inhibitors that mask MMP substrate cleavage sites or block the substrate-binding exosites, MMP-activatable cytotoxics and gene-targeting strategies offer alternative approaches for MMP inhibition in cancer.

  • Degradomic techniques can be developed to profile the protease expression pattern in tumours. Degradomic monitoring of the tumour should be complemented by use of surrogate markers for assessment of in vivo MMP activity and inhibition during treatment. However, the lack of practical surrogate markers that are available now is a problem that urgently needs addressing to improve the specificity and clinical efficacy of MMPI-based therapies.

Abstract

For more than two decades, the view that tumour-associated matrix metalloproteinases (MMPs) were required for peritumour tissue degradation and metastasis dominated the drive to develop MMP inhibitors as anticancer therapeutics. Until recently, clinical trials with MMP inhibitors have yielded disappointing results, highlighting the need for better insight into the mechanisms by which this growing family of multifunctional enzymes contribute to tumour growth. It is now recognized that MMP activity is tightly regulated at several levels, providing new avenues for blocking these enzymes. What are the different approaches that can be used to target MMPs, and which of these might lead to new therapeutic strategies for cancer?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Human MMPs.
Figure 2: Levels of regulation of MMP expression and activity.
Figure 3: Regulatory elements in the promoter regions of human MMP genes.
Figure 4: Signalling pathways involved in MMP gene transcription, and potential strategies for therapeutic intervention.
Figure 5: Strategies for blocking proMMP activation.

Similar content being viewed by others

References

  1. Liotta, L. A. et al. Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284, 67–68 (1980).

    CAS  PubMed  Google Scholar 

  2. López-Otín, C. & Overall, C. M. Protease degradomics, a new challenge for proteomics. Nature Rev. Mol. Cell Biol. 3, 509–519 (2002).Introduction of novel concepts and proteomic approaches for protease profiling in pathological conditions, including cancer.

    Google Scholar 

  3. Brinckerhoff, C. E. & Matrisian, L. M. Matrix metalloproteinases: a tail of a frog that became a prince. Nature Rev. Mol. Cell Biol. 3, 207–214 (2002).Comprehensive chronicle of the MMP history.

    CAS  Google Scholar 

  4. Bramhall, S. R. et al. Marimastat as maintenance therapy for patients with advanced gastric cancer: a randomised trial. Br. J. Cancer 86, 1864–1870 (2002).First report of a placebo–controlled double-blind study of success in treating cancer with an MMPI.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Coussens, L. M., Fingleton, B. & Matrisian, L. M. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295, 2387–2392 (2002).Excellent analysis of the current status of MMPIs for cancer treatment.

    CAS  PubMed  Google Scholar 

  6. Egeblad, M. & Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nature Rev. Cancer 2, 163–175 (2002).Excellent and exhaustive description of the newly identified functions of MMPs in cancer.

    Google Scholar 

  7. McCullagh, K., Wadsworth, H. & Hann, M. Carboxyalkyl peptide derivatives. European Patent Application. EU 126,974, pp 1–111 (1984).

  8. Blobel, C. P. Functional and biochemical characterization of ADAMs and their predicted role in protein ectodomain shedding. Inflamm. Res. 51, 83–84 (2002).

    CAS  PubMed  Google Scholar 

  9. Cal, S. et al. Cloning, expression analysis, and structural characterization of seven novel human ADAMTSs, a family of metalloproteinases with disintegrin and thrombospondin-1 domains. Gene 283, 49–62 (2002)

    CAS  PubMed  Google Scholar 

  10. Amour, A. et al. The in vitro activity of ADAM-10 is inhibited by TIMP-1 and TIMP-3. FEBS Lett. 473, 275–279 (2000).

    CAS  PubMed  Google Scholar 

  11. Kashiwagi, M., Tortorella, M., Nagase, H. & Brew, K. TIMP-3 is a potent inhibitor of aggrecanase 1 (ADAM-TS4) and aggrecanase 2 (ADAM-TS5). J. Biol. Chem. 276, 12501–12504 (2001).

    CAS  PubMed  Google Scholar 

  12. Naglich, J. G. et al. Inhibition of angiogenesis and metastasis in two murine models by the matrix metalloproteinase inhibitor, BMS-275291. Cancer Res. 61, 8480–8485 (2001).

    CAS  PubMed  Google Scholar 

  13. Bissell, M. J. & Radisky, D. Putting tumours in context. Nature Rev. Cancer 1, 46–54 (2001).

    CAS  Google Scholar 

  14. Overall, C. M. Molecular determinants of metalloproteinase substrate specificity: matrix metalloproteinase substrate binding domains, modules and exosites. Mol. Biotechnol. 22, 51–86 (2002).

    CAS  PubMed  Google Scholar 

  15. Uría, J. A. & López-Otín, C. Matrilysin-2, a new matrix metalloproteinase expressed in human tumors and showing the minimal domain organization required for secretion, latency, and activity. Cancer Res. 60, 4745–4751 (2000).

    PubMed  Google Scholar 

  16. Seiki, M. Membrane-type matrix metalloproteinases. APMIS 107, 137–143 (1999).

    CAS  PubMed  Google Scholar 

  17. Morgunova, E. et al. Structure of human pro-matrix metalloproteinase-2: activation mechanism revealed. Science 284, 1667–1670 (1999).

    CAS  PubMed  Google Scholar 

  18. Steiner, D. F. The proprotein convertases. Curr. Opin. Chem. Biol. 2, 31–39 (1998).

    CAS  PubMed  Google Scholar 

  19. Gururajan, R., Grenet, J., Lahti, J. M. & Kidd, V. J. Isolation and characterization of two novel metalloproteinase genes linked to the Cdc2L locus on human chromosome 1p36. 3. Genomics 52, 101–106 (1998).

    CAS  PubMed  Google Scholar 

  20. Velasco, G. et al. Cloning and characterization of human MMP-23, a new matrix metalloproteinase predominantly expressed in reproductive tissues and lacking conserved domains in other family members. J. Biol. Chem. 274, 4570–4576 (1999).

    CAS  PubMed  Google Scholar 

  21. Sternlicht, M. D. et al. The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 98, 137–146 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Noe, V. et al. Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J. Cell Sci. 114, 111–118 (2001).

    CAS  PubMed  Google Scholar 

  23. Fingleton, B., Vargo-Gogola, T., Crawford, H. C. & Matrisian, L. M. Matrilysin (MMP-7) expression selects for cells with reduced sensitivity to apoptosis. Neoplasia 3, 459–468 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. McQuibban, G. A. et al. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science 289, 1202–1206 (2000).A breakthrough in the use of the yeast two-hybrid system to screen for substrates of extracellular proteases, with the finding that chemokines are novel members of the MMP substrate degradome.

    CAS  PubMed  Google Scholar 

  25. Cornelius, L. A. et al. Matrix metalloproteinases generate angiostatin: effects on neovascularization. J. Immunol. 161, 6845–6852 (1998).

    CAS  PubMed  Google Scholar 

  26. Fini, M. E., Cook, J. R., Mohan, R. & Brinckerhoff, C. E. in Matrix Metalloproteinases (eds Parks, W. C. & Mecham, R. P.) 299–356 (Academic Press, New York, 1998).

    Google Scholar 

  27. Westermarck, J. & Kähäri, V. M. Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J. 13, 781–792 (1999).

    CAS  PubMed  Google Scholar 

  28. Kheradmand, F., Werner, E., Tremble, P., Symons, M. & Werb, Z. Role of Rac1 and oxygen radicals in collagenase-1 expression induced by cell shape change. Science 280, 898–902 (1998).

    CAS  PubMed  Google Scholar 

  29. Overall, C. M., Wrana, J. L. & Sodek, J. Independent regulation of collagenase, 72-kDa progelatinase, and metalloendoproteinase inhibitor expression in human fibroblasts by transforming growth factor-β. J. Biol. Chem. 264, 1860–1869 (1989).

    CAS  PubMed  Google Scholar 

  30. Uría, J. A., Jiménez, M. G., Balbín, M., Freije, J. M. P. & López-Otín, C. Differential effects of transforming growth factor-β on the expression of collagenase-1 and collagenase-3 in human fibroblasts. J. Biol. Chem. 273, 9769–9777 (1998).

    PubMed  Google Scholar 

  31. Overall, C. M. Repression of tissue inhibitor of matrix metalloproteinase expression by all-trans-retinoic acid in rat bone cell populations: comparisons with transforming growth factor-β1. J. Cell. Physiol. 164, 17–25 (1995).

    CAS  PubMed  Google Scholar 

  32. Jiménez, M. J. et al. A regulatory cascade involving retinoic acid, Cbfa1, and matrix metalloproteinases is coupled to the development of a process of perichondrial invasion and osteogenic differentiation during bone formation. J. Cell Biol. 155, 1333–1344 (2001).

    PubMed  PubMed Central  Google Scholar 

  33. Simon, C., Goepfert, H. & Boyd, D. Inhibition of the p38 mitogen-activated protein kinase by SB 203580 blocks PMA-induced Mr 92,000 type IV collagenase secretion and in vitro invasion. Cancer Res. 58, 1135–1139 (1998).

    CAS  PubMed  Google Scholar 

  34. Johansson, N. et al. Expression of collagenase-3 (MMP-13) and collagenase-1 (MMP-1) by transformed keratinocytes is dependent on the activity of p38 mitogen-activated protein kinase. J. Cell Sci. 113, 227–235 (2000).

    CAS  PubMed  Google Scholar 

  35. Pendás, A. M., Balbin, M., Llano, E., Jimenez, M. G. & López-Otín, C. Structural analysis and promoter characterization of the human collagenase-3 gene (MMP13). Genomics 40, 222–233 (1997).

    PubMed  Google Scholar 

  36. Bond, M., Baker, A. H. & Newby, A. C. Nuclear factor κB activity is essential for matrix metalloproteinase-1 and -3 upregulation in rabbit dermal fibroblasts. Biochem. Biophys. Res. Commun. 264, 561–567 (1999).

    CAS  Google Scholar 

  37. Han, Y. P., Tuan, T. L., Wu, H., Hughes, M. & Garner, W. L. TNF-α stimulates activation of pro-MMP2 in human skin through NF-κB mediated induction of MT1-MMP. J. Cell Sci. 114, 131–139 (2001).

    CAS  PubMed  Google Scholar 

  38. Ala-aho, R. et al. Inhibition of collagenase-3 (MMP-13) expression in transformed human keratinocytes by interferon-γ is associated with activation of extracellular signal-regulated kinase-1,2 and STAT1. Oncogene. 19, 248–257 (2000).

    CAS  PubMed  Google Scholar 

  39. Crawford, H. C. et al. The PEA3 subfamily of Ets transcription factors synergizes with beta-catenin-LEF-1 to activate matrilysin transcription in intestinal tumors. Mol. Cell Biol. 21, 1370–1383 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Nakamoto, T. et al. CIZ, a zinc finger protein that interacts with p130(cas) and activates the expression of matrix metalloproteinases. Mol. Cell Biol. 20, 1649–1658 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sun, Y. et al. p53 down-regulates human matrix metalloproteinase-1 (collagenase-1) gene expression. J. Biol. Chem. 274, 11535–11540 (1999).

    CAS  PubMed  Google Scholar 

  42. Sun, Y. et al. Wild-type and mutant p53 differentially regulate the gene expression of human collagenase-3 (hMMP-13). J. Biol. Chem. 275, 11327–11332 (2000).

    CAS  PubMed  Google Scholar 

  43. Kerr, L. D., Miller, D. B. & Matrisian, L. M. TGF-β1 inhibition of transin/stromelysin gene expression is mediated through a Fos binding sequence. Cell 61, 267–278 (1990).

    CAS  PubMed  Google Scholar 

  44. Benderdour, M. et al. A novel negative regulatory element in the human collagenase-3 proximal promoter region. Biochem. Biophys. Res. Commun. 291, 1151–1159 (2002).

    CAS  PubMed  Google Scholar 

  45. Rutter, J. L. et al. A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter creates an Ets binding site and augments transcription. Cancer Res. 58, 5321–5325 (1998).

    CAS  PubMed  Google Scholar 

  46. Biondi, M. L. et al. MMP1 and MMP3 polymorphisms in promoter regions and cancer. Clin. Chem. 46, 2023–2024 (2000).

    CAS  PubMed  Google Scholar 

  47. Springman, E. B., Angleton, E. L., Birkedal-Hansen, H. & Van Wart, H. E. Multiple modes of activation of latent human fibroblast collagenase: evidence for the role of a Cys73 active-site zinc complex in latency and a 'cysteine switch' mechanism for activation. Proc. Natl Acad. Sci. USA 87, 364–368 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Becker, J. W. et al. Stromelysin-1: three-dimensional structure of the inhibited catalytic domain and of the C-truncated proenzyme. Protein Sci. 4, 1966–1976 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Bannikov, G. A., Karelina, T. V., Collier, I. E., Marmer, B. L. & Goldberg, G. I. Substrate binding of gelatinase B induces its enzymatic activity in the presence of intact propeptide. J. Biol. Chem. 277, 16022–16027 (2002).

    CAS  PubMed  Google Scholar 

  50. Overall, C. M. et al. Domain interactions in the gelatinase A:TIMP-2:MT1-MMP activation complex: the ectodomain of the 44-kDa form of membrane type-1 matrix metalloproteinase does not modulate gelatinase A activation. J. Biol. Chem. 275, 39497–39505 (2000).

    CAS  PubMed  Google Scholar 

  51. Holmbeck, K. et al. MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell 99, 81–92 (1999).First presentation of a Mmp-knockout mouse that has a dramatic phenotype.

    CAS  PubMed  Google Scholar 

  52. Knauper, V. et al. Cellular mechanisms for human collagenase-3 (MMP-13) activation: evidence that MT1-MMP (MMP-14) and gelatinase A (MMP-2) are able to generate active enzyme. J. Biol. Chem. 271, 17124–17131 (1996).

    CAS  PubMed  Google Scholar 

  53. Sato, H. et al. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 370, 61–65 (1994).Identification of the first MT-MMP that is responsible for the cellular activation of MMP-2, and a potential furin-cleavage site in a MMP.

    CAS  PubMed  Google Scholar 

  54. Morrison, C. J. et al. Cellular activation of MMP-2 (gelatinase A) by MT2-MMP occurs via a TIMP-2 independent pathway. J. Biol. Chem. 276, 47402–47410 (2001).Presentation of the first TIMP-2-independent cellular activation pathway of MMP-2 and the role of TIMP-4 in this process.

    CAS  PubMed  Google Scholar 

  55. Steffensen, B., Bigg, H. F. & Overall, C. M. The involvement of the fibronectin type II-like modules of human gelatinase A in cell surface localization and activation. J. Biol. Chem. 273, 20622–20628 (1998).

    CAS  PubMed  Google Scholar 

  56. Strongin, A. Y. et al. Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J. Biol. Chem. 270, 5331–5338 (1995).A classical paper on the mechanistic aspects of MMP-2 activation by MT1-MMP and the formation of a trimolecular complex on the cell surface.

    CAS  PubMed  Google Scholar 

  57. Zucker, S. et al. Tissue inhibitor of metalloproteinase-2 (TIMP-2) binds to the catalytic domain of the cell surface receptor, membrane type 1-matrix metalloproteinase 1 (MT1-MMP). J. Biol. Chem. 273, 1216–1222 (1998).

    CAS  PubMed  Google Scholar 

  58. Overall, C. M. et al. Identification of the tissue inhibitor of metalloproteinases-2 (TIMP-2) binding site on the hemopexin carboxyl domain of human gelatinase A by site-directed mutagenesis. The hierarchical role in binding TIMP-2 of the unique cationic clusters of hemopexin modules III and IV. J. Biol. Chem. 274, 4421–4429 (1999).

    CAS  PubMed  Google Scholar 

  59. Morgunova, E, Tuuttila, A., Bergmann, U. & Tryggvason, K. Structural insight into the complex formation of latent matrix metalloproteinase 2 with tissue inhibitor of metalloproteinase 2. Proc. Natl Acad. Sci. USA 99, 7414–7419 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Deryugina, E. I. et al. MT1-MMP initiates activation of pro-MMP-2 and integrin αvβ3 promotes maturation of MMP-2 in breast carcinoma cells. Exp. Cell Res. 263, 209–223 (2001).

    CAS  PubMed  Google Scholar 

  61. Pei, D. & Weiss, S. J. Furin-dependent intracellular activation of the human stromelysin-3 zymogen. Nature 375, 244–247 (1995).Comprehensive protein-engineering study that elucidates the furin mechanism of MMP activation.

    CAS  PubMed  Google Scholar 

  62. Pei, D., Kang, T. & Qi, H. Cysteine array matrix metalloproteinase (CA-MMP)/MMP-23 is a type II transmembrane matrix metalloproteinase regulated by a single cleavage for both secretion and activation. J. Biol. Chem. 275, 33988–33997 (2000).

    CAS  PubMed  Google Scholar 

  63. Velasco, G. et al. Human MT6-matrix metalloproteinase: identification, progelatinase A activation, and expression in brain tumors. Cancer Res. 60, 877–882 (2000).

    CAS  PubMed  Google Scholar 

  64. Brew, K., Dinakarpandian, D. & Nagase, H. Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim. Biophys. Acta 1477, 267–283 (2000).

    CAS  PubMed  Google Scholar 

  65. Khokha, R. et al. Antisense RNA-induced reduction in murine TIMP levels confers oncogenicity on Swiss 3T3 cells. Science 243, 947–950 (1989).One of the first papers ever reported on the use of antisense RNA to modulate a gene in vivo with a clear demonstration of the importance of the MMP/TIMP balance in maintaining a normal cell phenotype. Disruption of this balance is shown to cause cancer.

    CAS  PubMed  Google Scholar 

  66. Jiang, Y., Goldberg, I. D. & Shi, Y. E. Complex roles of tissue inhibitors of metalloproteinases in cancer. Oncogene 21, 2245–2252 (2002).

    CAS  PubMed  Google Scholar 

  67. Oh, J. et al. The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell 107, 789–800 (2001).

    CAS  PubMed  Google Scholar 

  68. Herman, M. P. et al. Tissue factor pathway inhibitor-2 is a novel inhibitor of matrix metalloproteinases with implications for atherosclerosis. J. Clin. Invest. 107, 1117–1126 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Mott, J. D. et al. Post-translational proteolytic processing of procollagen C-terminal proteinase enhancer releases a metalloproteinase inhibitor. J. Biol. Chem. 275, 1384–1390 (2000).

    CAS  PubMed  Google Scholar 

  70. Petitclerc, E. et al. New functions for non-collagenous domains of human collagen type IV. Novel integrin ligands inhibiting angiogenesis and tumor growth in vivo. J. Biol. Chem. 275, 8051–8061 (2000).

    CAS  PubMed  Google Scholar 

  71. Stetefeld, J. et al. The laminin-binding domain of agrin is structurally related to N-TIMP-1. Nature Struct. Biol. 8, 705–709 (2001).

    CAS  PubMed  Google Scholar 

  72. Hua, J. & Muschel, R. J. Inhibition of matrix metalloproteinase 9 expression by a ribozyme blocks metastasis in a rat sarcoma model system. Cancer Res. 56, 5279–5284 (1996).

    CAS  PubMed  Google Scholar 

  73. Kondraganti, S. et al. Selective suppression of matrix metalloproteinase-9 in human glioblastoma cells by antisense gene transfer impairs glioblastoma cell invasion. Cancer Res. 60, 6851–6855 (2000).

    CAS  PubMed  Google Scholar 

  74. Nagavarapu, U., Relloma, K. & Herron, G. S. Membrane type 1 matrix metalloproteinase regulates cellular invasiveness and survival in cutaneous epidermal cells. J. Invest. Dermatol. 118, 573–581 (2002).

    CAS  PubMed  Google Scholar 

  75. Ma, Z., Qin, H. & Benveniste, E. N. Transcriptional suppression of matrix metalloproteinase-9 gene expression by IFN-γ and IFN-β: critical role of STAT-1α. J. Immunol. 167, 5150–5159 (2001).

    CAS  PubMed  Google Scholar 

  76. Slaton, J. W. et al. Treatment with low-dose interferon-α restores the balance between matrix metalloproteinase-9 and E-cadherin expression in human transitional cell carcinoma of the bladder. Clin. Cancer Res. 7, 2840–2853 (2001).

    CAS  PubMed  Google Scholar 

  77. Mengshol, J. A., Mix, K. S. & Brinckerhoff, C. E. Matrix metalloproteinases as therapeutic targets in arthritic diseases: bull's-eye or missing the mark? Arthritis Rheum. 46, 13–20 (2002).

    CAS  PubMed  Google Scholar 

  78. Lal, A. et al. Mutant epidermal growth factor receptor up-regulates molecular effectors of tumor invasion. Cancer Res. 62, 3335–3339 (2002).

    CAS  PubMed  Google Scholar 

  79. Muraoka, R. S. et al. Blockade of TGF-β inhibits mammary tumor cell viability, migration, and metastases. J. Clin. Invest. 109, 1551–1559 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. McGaha, T. L., Phelps, R. G., Spiera, H. & Bona, C. Halofuginone, an inhibitor of type-I collagen synthesis and skin sclerosis, blocks transforming-growth-factor-β-mediated Smad3 activation in fibroblasts. J. Invest. Dermatol. 118, 461–470 (2002).

    CAS  PubMed  Google Scholar 

  81. Shin, M., Yan, C. & Boyd, D. An inhibitor of c-jun aminoterminal kinase (SP600125) represses c-Jun activation, DNA-binding and PMA-inducible 92-kDa type IV collagenase expression. Biochim. Biophys. Acta 1589, 311–316 (2002).

    CAS  PubMed  Google Scholar 

  82. Futamura, M. et al. Malolactomycin D, a potent inhibitor of transcription controlled by the Ras responsive element, inhibit Ras-mediated transformation activity with suppression of MMP-1 and MMP-9 in NIH3T3 cells. Oncogene 20, 6724–6730 (2001).

    CAS  PubMed  Google Scholar 

  83. Zhang, Y. et al. Hyaluronan-CD44s signaling regulates matrix metalloproteinase-2 secretion in a human lung carcinoma cell line QG90. Cancer Res. 62, 3962–3965 (2002).

    CAS  PubMed  Google Scholar 

  84. Karin, M. & Chang, L. AP-1-glucocorticoid receptor crosstalk taken to a higher level. J. Endocrinol. 169, 447–451 (2001).

    CAS  PubMed  Google Scholar 

  85. Sato, T. et al. Inhibition of activator protein-1 binding activity and phosphatidylinositol 3-kinase pathway by nobiletin, a polymethoxy flavonoid, results in augmentation of tissue inhibitor of metalloproteinases-1 production and suppression of production of matrix metalloproteinases-1 and -9 in human fibrosarcoma HT-1080 cells. Cancer Res. 62, 1025–1029 (2002).

    CAS  PubMed  Google Scholar 

  86. Mohan, R. et al. Curcuminoids inhibit the angiogenic response stimulated by fibroblast growth factor-2, including expression of matrix metalloproteinase gelatinase B. J. Biol. Chem. 275, 10405–10412 (2000).

    CAS  PubMed  Google Scholar 

  87. Adams, J. et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res. 59, 2615–2622 (1999).

    CAS  PubMed  Google Scholar 

  88. Mix, K. S. et al. A synthetic triterpenoid selectively inhibits the induction of matrix metalloproteinases 1 and 13 by inflammatory cytokines. Arthritis Rheum. 44, 1096–1104 (2001).

    CAS  PubMed  Google Scholar 

  89. Pan, M. R., Chuang, L. Y. & Hung, W. C. Non-steroidal anti-inflammatory drugs inhibit matrix metalloproteinase-2 expression via repression of transcription in lung cancer cells. FEBS Lett. 508, 365–368 (2001).

    CAS  PubMed  Google Scholar 

  90. Ala-aho, R., Grenman, R., Seth, P. & Kahari, V. M. Adenoviral delivery of p53 gene suppresses expression of collagenase-3 (MMP-13) in squamous carcinoma cells. Oncogene 21, 1187–1195 (2002).

    CAS  PubMed  Google Scholar 

  91. Koul, D. et al. Suppression of matrix metalloproteinase-2 gene expression and invasion in human glioma cells by MMAC/PTEN. Oncogene 20, 6669–6678 (2001).

    CAS  PubMed  Google Scholar 

  92. Fenrick, R. et al. TEL, a putative tumor suppressor, modulates cell growth and cell morphology of ras-transformed cells while repressing the transcription of stromelysin-1. Mol. Cell. Biol. 20, 5828–5839 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Lund, L. R. et al. Functional overlap between two classes of matrix-degrading proteases in wound healing. EMBO J. 18, 4645–4656 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Galvez, B. G., Matias-Roman, S., Albar, J. P., Sanchez-Madrid, F. & Arroyo, A. G. Membrane type 1-matrix metalloproteinase is activated during migration of human endothelial cells and modulates endothelial motility and matrix remodeling. J. Biol. Chem. 276, 37491–37500 (2001).

    CAS  PubMed  Google Scholar 

  95. van Lent, P. L., Holthuysen, A. E., Sloetjes, A., Lubberts, E. & van den Berg, W. B. Local overexpression of adeno-viral IL-4 protects cartilage from metallo proteinase-induced destruction during immune complex-mediated arthritis by preventing activation of pro-MMPs. Osteoarthr. Cartilage 10, 234–243 (2002).

    CAS  Google Scholar 

  96. Annabi, B. et al. Green tea polyphenol (–)-epigallocatechin 3-gallate inhibits MMP-2 secretion and MT1-MMP-driven migration in glioblastoma cells. Biochim. Biophys. Acta 1542, 209–220 (2002).

    CAS  PubMed  Google Scholar 

  97. Bassi, D. E. et al. Furin inhibition results in absent or decreased invasiveness and tumorigenicity of human cancer cells. Proc. Natl Acad. Sci. USA 98, 10326–10331 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Khatib, A. M. et al. Proprotein convertases in tumor progression and malignancy: novel targets in cancer therapy. Am. J. Pathol. 160, 1921–1935 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Maquoi, E. et al. Inhibition of matrix metalloproteinase 2 maturation and HT1080 invasiveness by a synthetic furin inhibitor. FEBS Lett. 424, 262–266 (1998).

    CAS  PubMed  Google Scholar 

  100. Basset, P. et al. A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature 348, 699–704 (1990).

    CAS  PubMed  Google Scholar 

  101. Bein, K. & Simons, M. Thrombospondin type 1 repeats interact with matrix metalloproteinase 2. Regulation of metalloproteinase activity. J. Biol. Chem. 275, 32167–32173 (2000).

    CAS  PubMed  Google Scholar 

  102. Rodriguez-Manzaneque, J. C. et al. Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc. Natl Acad. Sci. USA 98, 12485–12490 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Yang, Z., Strickland, D. K. & Bornstein, P. Extracellular matrix metalloproteinase 2 levels are regulated by the low density lipoprotein-related scavenger receptor and thrombospondin 2. J. Biol. Chem. 276, 8403–8408 (2001).

    CAS  PubMed  Google Scholar 

  104. Kim, Y. M. et al. Endostatin inhibits endothelial and tumor cellular invasion by blocking the activation and catalytic activity of matrix metalloproteinase. Cancer Res. 60, 5410–5413 (2000).

    CAS  PubMed  Google Scholar 

  105. Nakada, M. et al. Suppression of membrane-type 1 matrix metalloproteinase (MMP)-mediated MMP-2 activation and tumor invasion by testican 3 and its splicing variant gene product, N-tes. Cancer Res. 61, 8896–8902 (2001).

    CAS  PubMed  Google Scholar 

  106. Bigg, H. F. et al. Tissue inhibitor of metalloproteinases-4 (TIMP-4) inhibits, but does not support, the activation of gelatinase A via efficient inhibition of membrane type 1-matrix metalloproteinase. Cancer Res. 61, 3610–3618 (2001).

    CAS  PubMed  Google Scholar 

  107. Butler, G. S. et al. The TIMP2 membrane type 1 metalloproteinase 'receptor' regulates the concentration and efficient activation of progelatinase A. A kinetic study. J. Biol. Chem. 273, 871–880 (1998).

    CAS  PubMed  Google Scholar 

  108. Sgadari, C. et al. HIV protease inhibitors are potent anti-angiogenic molecules and promote regression of Kaposi sarcoma. Nature Med. 8, 225–232 (2002).Illustrates the feasibility of targeting proMMP activation for cancer therapy. The paper demonstrates that HIV-protease inhibitors are able to block proMMP-2 activation, and this effect is associated with the regression of sarcomas in HIV patients.

    CAS  PubMed  Google Scholar 

  109. Andre, P. et al. An inhibitor of HIV-1 protease modulates proteasome activity, antigen presentation, and T cell responses. Proc. Natl Acad. Sci. USA 95, 13120–13124 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Liang, J. S. et al. HIV protease inhibitors protect apolipoprotein B from degradation by the proteasome: a potential mechanism for protease inhibitor-induced hyperlipidemia. Nature Med. 7, 1327–1331 (2001).

    CAS  PubMed  Google Scholar 

  111. Kruger, A., Fata, J. E. & Khokha, R. Altered tumor growth and metastasis of a T-cell lymphoma in Timp-1 transgenic mice. Blood 90, 1993–2000 (1997).

    CAS  PubMed  Google Scholar 

  112. Martin, D. C. et al. Transgenic TIMP-1 inhibits simian virus 40 T antigen-induced hepatocarcinogenesis by impairment of hepatocellular proliferation and tumor angiogenesis. Lab. Invest. 79, 225–234 (1999).

    CAS  PubMed  Google Scholar 

  113. Brown, P. D. Clinical studies with matrix metalloproteinase inhibitors. APMIS 107, 174–180 (1999).

    CAS  PubMed  Google Scholar 

  114. Duivenvoorden, W. C. et al. Doxycycline decreases tumor burden in a bone metastasis model of human breast cancer. Cancer Res. 62, 1588–1591 (2002).

    CAS  PubMed  Google Scholar 

  115. Cianfrocca, M. et al. Matrix metalloproteinase inhibitor COL-3 in the treatment of AIDS-related Kaposi's sarcoma: a phase I AIDS malignancy consortium study. J. Clin. Oncol. 20, 153–159 (2002).

    CAS  PubMed  Google Scholar 

  116. Boissier, S. et al. Bisphosphonates inhibit breast and prostate carcinoma cell invasion, an early event in the formation of bone metastases. Cancer Res. 60, 2949–2954 (2000).

    CAS  PubMed  Google Scholar 

  117. Hidalgo, M. & Eckhardt, S. G. Development of matrix metalloproteinase inhibitors in cancer therapy. J. Natl Cancer Inst. 93, 178–193 (2001).

    CAS  PubMed  Google Scholar 

  118. Bramhall, S. R., Rosemurgy, A., Brown, P. D., Bowry, C. & Buckels, J. A. Marimastat as first-line therapy for patients with unresectable pancreatic cancer: a randomized trial. J. Clin. Oncol. 19, 3447–3455 (2001).

    CAS  PubMed  Google Scholar 

  119. Bramhall, S. R. et al. A double-blind placebo-controlled, randomised study comparing gemcitabine and Marimastat with gemcitabine and placebo as first line therapy in patients with advanced pancreatic cancer. Br. J. Cancer 87, 161–167 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Groves, M. D. et al. Phase II trial of temozolomide plus the matrix metalloproteinase inhibitor, Marimastat, in recurrent and progressive glioblastoma multiforme. J. Clin. Oncol 20, 1383–1388 (2002).This work provides support to the hypothesis that MMPIs, in combination with other drugs, might improve the clinical outcome of cancer patients.

    CAS  PubMed  Google Scholar 

  121. Zucker, S., Cao, J. & Chen, W. T. Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment. Oncogene 19, 6642–6650 (2000).

    CAS  PubMed  Google Scholar 

  122. Fingleton, B., Heppner Goss, K. J., Crawford, H. C. & Matrisian, L. M. Matrilysin in early stage intestinal tumorigenesis. APMIS 107, 102–110 (1999).

    CAS  PubMed  Google Scholar 

  123. Pozzi, A., LeVine, W. F. & Gardner, H. A. Low plasma levels of matrix metalloproteinase 9 permit increased tumor angiogenesis. Oncogene 22, 272–281 (2002).

    Google Scholar 

  124. Kruger, A. et al. Hydroxamate-type matrix metalloproteinase inhibitor promotes liver metastasis. Cancer Res. 61, 1272–1275 (2001).

    CAS  PubMed  Google Scholar 

  125. Maquoi, E. et al. Stimulation of matrix metalloproteinase-9 expression in human fibrosarcoma cells by synthetic matrix metalloproteinase inhibitors. Exp. Cell Res. 275, 110–121 (2002).

    CAS  PubMed  Google Scholar 

  126. Toth, M. et al. Tissue inhibitor of metalloproteinase (TIMP)-2 acts synergistically with synthetic matrix metalloproteinase (MMP) inhibitors but not with TIMP-4 to enhance the (membrane type 1)-MMP-dependent activation of pro-MMP-2. J. Biol. Chem. 275, 41415–41423 (2000).

    CAS  PubMed  Google Scholar 

  127. Vazquez, F. et al. METH-1, a human ortholog of ADAMTS-1, and METH-2 are members of a new family of proteins with angio-inhibitory activity. J. Biol. Chem. 274, 23349–23357 (1999).

    CAS  PubMed  Google Scholar 

  128. Gomis-Ruth, F. X. et al. Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1. Nature 389, 77–81 (1997).

    CAS  PubMed  Google Scholar 

  129. Bode, W. et al. Structural properties of matrix metalloproteinases. Cell Mol. Life Sci. 55, 639–652 (1999).

    CAS  PubMed  Google Scholar 

  130. Turk, B. E, Huang, L. L., Piro, E. T. & Cantley, L. C. Determination of protease cleavage site motifs using mixture-based oriented peptide libraries. Nature Biotechnol. 19, 661–667 (2001).

    CAS  Google Scholar 

  131. Koivunen, E. et al. Tumor targeting with a selective gelatinase inhibitor. Nature Biotechnol. 17, 768–774 (1999).

    CAS  Google Scholar 

  132. Bernardo, M. M., Brown, S., Li, Z. H., Fridman, R. & Mobashery, S. Design, synthesis, and characterization of potent, slow-binding inhibitors that are selective for gelatinases. J. Biol. Chem. 277, 11201–11207 (2002).

    CAS  PubMed  Google Scholar 

  133. Garbisa, S. et al. Tumor gelatinases and invasion inhibited by the green tea flavonol epigallocatechin-3-gallate. Cancer 91, 822–832 (2001).

    CAS  PubMed  Google Scholar 

  134. Falardeau, P., Champagne, P., Poyet, P., Hariton, C. & Dupont, E. Neovastat, a naturally-occurring multifunctional antiangiogenic drug, in phase III clinical trials. Semin. Oncol. 28, 620–625 (2001).

    CAS  PubMed  Google Scholar 

  135. Baker, A. H., George, S. J., Zaltsman, A. B., Murphy, G. & Newby, A. C. Inhibition of invasion and induction of apoptotic cell death of cancer cell lines by overexpression of TIMP-3. Br. J. Cancer. 79, 1347–1355 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Bello, L. et al. Simultaneous inhibition of glioma angiogenesis, cell proliferation, and invasion by a naturally occurring fragment of human metalloproteinase-2. Cancer Res. 61, 8730–8736 (2001).Analysis of possibilities of disrupting non-catalytic activities of MMPs.

    CAS  PubMed  Google Scholar 

  137. Du, L. et al. cDNA cloning of the murine Pex gene implicated in X-linked hypophosphatemia and evidence for expression in bone. Genomics 36, 22–28 (1996).

    CAS  PubMed  Google Scholar 

  138. Pfeifer, A., Kessler, T., Silletti, S., Cheresh, D. A. & Verma, I. M. Suppression of angiogenesis by lentiviral delivery of PEX, a noncatalytic fragment of matrix metalloproteinase 2. Proc. Natl Acad. Sci. USA 97, 12227–12232 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Silletti, S., Kessler, T., Goldberg, J., Boger, D. L. & Cheresh, D. A. Disruption of matrix metalloproteinase 2 binding to integrin αvβ3 by an organic molecule inhibits angiogenesis and tumor growth in vivo. Proc. Natl Acad. Sci. USA 98, 119–124 (2001).

    CAS  PubMed  Google Scholar 

  140. Tam, E., Wu, Y. I., Butler, G. S., Stack, S. M. & Overall, C. M. Collagen binding properties of the MT1-MMP hemopexin C domain: the ectodomain of the 44-kDa autocatalytic fragment of MT1–MMP inhibits cell invasion by disrupting native type I collagen cleavage. J. Biol. Chem. 25 Jul 2002 [epub ahead of print].

  141. Peng, K. W., Vile, R., Cosset, F. L. & Russell, S. Selective transduction of protease-rich tumors by matrix-metalloproteinase-targeted retroviral vectors. Gene Ther. 6, 1552–1557 (1999).Together with references 142 and 143 , this paper is an example of novel strategies for cancer therapy that is based on exploiting MMP function.

    CAS  PubMed  Google Scholar 

  142. Liu, S., Netzel-Arnett, S., Birkedal-Hansen, H. & Leppla, S. H. Tumor cell-selective cytotoxicity of matrix metalloproteinase-activated anthrax toxin. Cancer Res. 60, 6061–6067 (2000).

    CAS  PubMed  Google Scholar 

  143. Hayashi, M., Tomita, M. & Yoshizato, K. Interleukin-2-collagen chimeric protein which liberates interleukin-2 upon collagenolysis. Protein Eng. 15, 429–436 (2002).

    CAS  PubMed  Google Scholar 

  144. Lippman, S. M. & Matrisian, L. M. Protease inhibitors in oral carcinogenesis and chemoprevention. Clin. Cancer Res. 6, 4599–4603 (2000).

    CAS  PubMed  Google Scholar 

  145. Balbin, M. et al. Identification and enzymatic characterization of two diverging murine counterparts of human interstitial collagenase (MMP-1) expressed at sites of embryo implantation. J. Biol. Chem. 276, 10253–10262 (2001).

    CAS  PubMed  Google Scholar 

  146. Weissleder, R. Scaling down imaging: molecular mapping of cancer in mice. Nature Rev. Cancer 2, 11–18 (2002).Excellent discussion of potential solutions to the problem of assessment of in vivo inhibition of MMPs.

    CAS  Google Scholar 

  147. Schatzkin, A. & Gail, M. The promise and peril of surrogate end points in cancer research. Nature Rev. Cancer 2, 19–27 (2002).

    CAS  Google Scholar 

  148. Gross, J. & Lapiere C. M. Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc. Natl Acad. Sci. USA 48, 1014–1022 (1962).The first demonstration of an animal collagenase that is active at neutral pH, normal temperature and isotonicity: the starting point of studies on MMPs.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Hirohata, S. et al. Punctin, a novel ADAMTS-like molecule, ADAMTSL-1, in extracellular matrix. J. Biol. Chem. 277, 12182–12189 (2002).

    CAS  PubMed  Google Scholar 

  150. Levitt, N. C. et al. Phase I and pharmacological study of the oral matrix metalloproteinase inhibitor, MMI270 (CGS27023A), in patients with advanced solid cancer. Clin. Cancer Res. 7, 1912–1922 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all members of our labs for their helpful comments on the manuscript and apologize for omission of relevant works due to space constraints. C.M.O. is supported by a Canada Research Chair in Metalloproteinase Biology, and by grants from the National Cancer Institute of Canada, Canadian Institutes for Health Research, the Protein Engineering Network of Centers of Excellence and the Canadian Arthritis Network of Centers of Excellence. C.L-O. is supported by the Comisión Interministerial de Ciencia y Tecnología-Spain and by the European Union. The Instituto Universitario de Oncología is supported by Obra Social Cajastur-Asturias, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos López-Otín.

Related links

Related links

DATABASES

Cancer.gov

bladder cancer

breast cancer

gastric carcinoma

Kaposi's sarcoma

lymphoma

multiple myeloma

non-small-cell lung cancer

ovarian cancer

pancreatic carcinoma

renal-cell carcinoma

LocusLink

ADAMTS-1

ADAMTS-2

ADAMTS-3

ADAMTS-4

ADAMTS-5

ADAMTS-8

ADAMTS-13

ADAMTS-14

agrin

αvβ3 integrin

β1-integrin

bFGF

C/EBP

CBFA1

CD40L

chymase

CIZ

type I collagen

type IV collagen

CREB

EGF

EGR1

endostatin

ERK1

ERK2

ETS

FASL

FOS

furin

hemopexin

IFN-α

IFN-β

IFN-γ

IκB

IL-1

IL-4

IL-13

JUN

α2-macroglobulin

MAPK

MMP-1

MMP-2

MMP-3

MMP-7

MMP-9

MMP-11

MMP-13

MMP-14

MMP-23A

MMP-23B

MMP-28

MT1-MMP

MT2-MMP

NF-κB

p53

PCPE

plasmin

PTEN

RAS

RECK

SPC1

STAT1

TCF4

TEL

testican-3

TFPI2

TGF-β

thrombospondin-1

thrombospondin-2

TIMP1

TIMP-2

TIMP-3

TIMP-4

TNF-α

tryptase

VEGF

Medscape DrugInfo

gemcitabine

Periostat

temozolomide

OMIM

Ehlers–Danlos syndrome VIIC

rheumatoid arthritis

thrombotic thrombocytopenic purpura

Saccharomyces Genome DataBase

kex2

FURTHER INFORMATION

ADAMs and ADAMTSs

Aeterna Laboratories

Agouron Pharmaceuticals

British Biotech Pharmaceuticals

MEROPS database, version 5.7

MMP clinical trials

Glossary

BASEMENT MEMBRANE

A specialized form of extracellular matrix that is mainly composed of type IV collagen, nidogen, laminins and perlecan, and that separates epithelial cells from the underlying supporting stroma.

PROTEOLYTIC PROCESSING

Proteolysis that is distinct from degradation in that it represents highly specific and limited substrate cleavage, which results in a specific change of protein function.

S1′ SUBSITE

The active-site cleft of proteases can be topographically defined as a series of sites in which the substrate amino-acid residues bind. The subsites (S) that bind the substrate amino-acid residues amino-terminal of the scissile bond are consecutively numbered as S (unprimed subsites), whereas the subsites that are carboxy-terminal of the scissile bond are S′ (primed subsites). For MMPs, the S1′ site is the main specificity determinant.

GLUCOCORTICOIDS

Compounds that interact with specific steroid receptors and downregulate the expression of genes that mediate inflammatory processes.

DEGRADOMICS

The application of emerging genomic and proteomic approaches to the genetic, structural and functional characterization of proteases, their substrates and inhibitors on an organism-wide scale.

DEGRADOME

The complete set of proteases that is expressed at a specific time by a cell, tissue or organism. The degradome of a protease is its substrate repertoire.

PROTEASE CHIPS

Solid-phase devices for high-throughput analysis of proteases and their substrate repertoires at an organism, tissue or cellular level.

EXOSITE

A substrate-binding site that lies outside the active-site cleft of a protease and that is located on specialized substrate-binding modules/domains.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Overall, C., López-Otín, C. Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer 2, 657–672 (2002). https://doi.org/10.1038/nrc884

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc884

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing