Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Oncogenic tyrosine kinases and the dna-damage response

Key Points

  • Mutation and overexpression of tyrosine kinases causes their constitutive activation, often leading to malignant transformation. These oncogenic tyrosine kinases (OTKs) can induce uncontrolled growth, protection from apoptosis, inhibition of differentiation and/or dysregulation of adhesion.

  • Chemotherapy and radiotherapy have been successfully used for several decades to treat cancer, but cures are still rare events in OTK-positive tumours, because OTKs can induce resistance to cytostatic drugs and irradiation by means of at least three mechanisms:

  • Following DNA damage, OTKs enhance repair of DNA lesions (especially by homologous recombination repair).

  • They also prolong activation of cell-cycle checkpoints, providing more time for repair of otherwise lethal lesions.

  • By upregulating anti-apoptotic members of the B-cell lymphoma (BCL2) family, such as BCL-XL, OTKs provide a cytoplasmic 'umbrella', protecting mitochondria in a tumour cell from the 'rain' of apoptotic signals coming from the damaged DNA in the nucleus, thereby preventing release of cytochrome c and activation of caspases.

  • The unrepaired and aberrantly repaired DNA lesions that result from spontaneous and/or drug-induced damage can therefore accumulate in OTK-containing tumour cells, leading to genomic instability and malignant progression.

  • OTKs represent a good target for antitumour treatments. However, simultaneous treatment with OTK inhibitors and chemo- or radiotherapy might represent a more rational strategy, because OTK inhibitors should abrogate OTK-induced resistance to DNA damage and increase the efficiency of chemo-/radiotherapy. Such experimental strategies are in clinical trials.

Abstract

Oncogenic tyrosine kinases (OTKs) are involved in the induction of many types of tumour, including haematological malignancies and cancers of the breast, prostate, colon and lung. Neoplastic cells that express OTKs are usually resistant to apoptosis that is induced by DNA-damaging agents, such as cytostatic drugs and irradiation, and they display genomic instability. So, what are the mechanisms involved, and what is the potential for overcoming OTK-mediated resistance in the clinic?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic mechanisms in human tumours that lead to uncontrolled activation of oncogenic tyrosine kinases.
Figure 2: A model of oncogenic-tyrosine-kinase-induced drug resistance.
Figure 3: Interplay of the RAD51 paralogues during homologous recombination repair of double-strand breaks.

Similar content being viewed by others

References

  1. Kolibaba, K. S. & Druker, B. J. Protein tyrosine kinases and cancer. Biochim. Biophys. Acta 1333, F217–F248 (1997).

    CAS  PubMed  Google Scholar 

  2. Blume-Jensen, P. & Hunter, T. Oncogenic kinase signalling. Nature 411, 355–365 (2001).

    CAS  PubMed  Google Scholar 

  3. Tatosyan, A. G. & Mizenina, O. A. Kinases of the Src family: structure and functions. Biochemistry 65, 49–58 (2000).

    CAS  PubMed  Google Scholar 

  4. Porter, A. C. & Vaillancourt, R. R. Tyrosine kinase receptor-activated signal transduction pathways which lead to oncogenesis. Oncogene 17, 1343–1352 (1998).

    CAS  PubMed  Google Scholar 

  5. Sawyers, C. L. Signal transduction pathways involved in BCR–ABL transformation. Baillieres Clin. Haematol. 10, 223–231 (1997).

    CAS  PubMed  Google Scholar 

  6. Amarante-Mendes, G. P. et al. BCR–ABL exerts its antiapoptotic effect against diverse apoptotic stimuli through blockage of mitochondrial release of cytochrome c and activation of caspase-3. Blood 91, 1700–1705 (1998).Shows that BCR–ABL can reduce apoptosis that is induced by genotoxic drugs by inhibiting the release of cytochrome c from mitochondria.

    CAS  PubMed  Google Scholar 

  7. Masumoto, N., Nakano, S., Fujishima, H., Kohno, K. & Niho, Y. v-SRC induces cisplatin resistance by increasing the repair of cisplatin–DNA interstrand cross-links in human gallbladder adenocarcinoma cells. Int. J. Cancer 80, 731–737 (1999).

    CAS  PubMed  Google Scholar 

  8. Yu, D. & Hung, M. C. Role of ERBB2 in breast cancer chemosensitivity. Bioessays 22, 673–680 (2000).

    CAS  PubMed  Google Scholar 

  9. Bedi, A. et al. BCR–ABL-mediated inhibition of apoptosis with delay of G2/M transition after DNA damage: a mechanism of resistance to multiple anticancer agents. Blood 86, 1148–1158 (1995).

    CAS  PubMed  Google Scholar 

  10. Dubrez, L. et al. BCR–ABL delays apoptosis upstream of procaspase-3 activation. Blood 91, 2415–2422 (1998).

    CAS  PubMed  Google Scholar 

  11. Maru, Y., Bergmann, E., Coin, F., Egly, J. M. & Shibuya, M. TFIIH functions are altered by the P210BCR–ABL oncoprotein produced on the Philadelphia chromosome. Mutat. Res. 483, 83–88 (2001).

    CAS  PubMed  Google Scholar 

  12. Nishii, K. et al. ts BCR-ABL kinase activation confers increased resistance to genotoxic damage via cell cycle block. Oncogene 13, 2225–2234 (1996).Shows that DNA-damage-induced G2/M delay has an essential role in BCR–ABL-mediated drug resistance.

    CAS  PubMed  Google Scholar 

  13. Slupianek, A. et al. BCR/ABL regulates mammalian RecA homologs, resulting in drug resistance. Mol. Cell 8, 795–806 (2001).Provides the first evidence that BCR–ABL stimulates RAD51 and HRR, identifies the signalling pathways that regulate RAD51 and implicates RAD51 in BCR–ABL-dependent drug resistance.

    CAS  PubMed  Google Scholar 

  14. Deutsch, E. et al. BCR–ABL down-regulates the DNA repair protein DNA-PKcs. Blood 97, 2084–2090 (2001).Shows that BCR–ABL can downmodulate DNA–PK cs and exert a negative influence on NHEJ.

    CAS  PubMed  Google Scholar 

  15. Albrecht, T. et al. Primary proliferating immature myeloid cells from CML patients are not resistant to induction of apoptosis by DNA damage and growth factor withdrawal. Br. J. Haematol. 95, 501–507 (1996).

    CAS  PubMed  Google Scholar 

  16. Amos, T. A. et al. Apoptosis in chronic myeloid leukaemia: normal responses by progenitor cells to growth factor deprivation, X-irradiation and glucocorticoids. Br. J. Haematol. 91, 387–393 (1995).

    CAS  PubMed  Google Scholar 

  17. Pegram, M. D. et al. The effect of HER2/neu overexpression on chemotherapeutic drug sensitivity in human breast and ovarian cancer cells. Oncogene 15, 537–547 (1997).

    CAS  PubMed  Google Scholar 

  18. el-Deiry, W. S. Role of oncogenes in resistance and killing by cancer therapeutic agents. Curr. Opin. Oncol. 9, 79–87 (1997).

    CAS  PubMed  Google Scholar 

  19. Harrison, D. J. Molecular mechanisms of drug resistance in tumours. J. Pathol. 175, 7–12 (1995).

    CAS  PubMed  Google Scholar 

  20. Goldie, J. H. Modelling the process of drug resistance. Lung Cancer 10, S91–S96 (1994).

  21. Pietras, R. J. et al. Antibody to HER2/neu receptor blocks DNA repair after cisplatin in human breast and ovarian cancer cells. Oncogene 9, 1829–1838 (1994).

    CAS  PubMed  Google Scholar 

  22. Dubrez, L., Goldwasser, F., Genne, P., Pommier, Y. & Solary, E. The role of cell cycle regulation and apoptosis triggering in determining the sensitivity of leukemic cells to topoisomerase I and II inhibitors. Leukemia 9, 1013–1024 (1995).

    CAS  PubMed  Google Scholar 

  23. Cambier, N., Chopra, R., Strasser, A., Metcalf, D. & Elefanty, A. G. BCR–ABL activates pathways mediating cytokine independence and protection against apoptosis in murine hematopoietic cells in a dose-dependent manner. Oncogene 16, 335–348 (1998).

    CAS  PubMed  Google Scholar 

  24. Strano, S. et al. From p63 to p53 across p73. FEBS Lett. 490, 163–170 (2001).

    CAS  PubMed  Google Scholar 

  25. Aebi, S. et al. Resistance to cytotoxic drugs in DNA mismatch repair-deficient cells. Clin. Cancer Res. 3, 1763–1767 (1997).

    CAS  PubMed  Google Scholar 

  26. Coultas, L. & Strasser, A. The molecular control of DNA damage-induced cell death. Apoptosis 5, 491–507 (2000).

    CAS  PubMed  Google Scholar 

  27. Modesti, M. & Kanaar, R. DNA repair: spot(light)s on chromatin. Curr. Biol. 11, R229–R232 (2001).

    CAS  PubMed  Google Scholar 

  28. Norbury, C. J. & Hickson, I. D. Cellular responses to DNA damage. Annu. Rev. Pharmacol. Toxicol. 41, 367–401 (2001).

    CAS  PubMed  Google Scholar 

  29. Vispe, S., Cazaux, C., Lesca, C. & Defais, M. Overexpression of Rad51 protein stimulates homologous recombination and increases resistance of mammalian cells to ionizing radiation. Nucleic Acids Res. 26, 2859–2864 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Dasika, G. K. et al. DNA damage-induced cell cycle checkpoints and DNA strand break repair in development and tumorigenesis. Oncogene 18, 7883–7899 (1999).Presents the interplay between checkpoints and DNA repair in health and disease.

    CAS  PubMed  Google Scholar 

  31. Shi, Y. A structural view of mitochondria-mediated apoptosis. Nature Struct. Biol. 8, 394–401 (2001).

    CAS  PubMed  Google Scholar 

  32. Slupianek, A. et al. Fusion tyrosine kinases induce drug resistance by stimulation of homology-dependent recombination repair, prolongation of G2/M phase and protection from apoptosis. Mol. Cell. Biol. (in the press).Shows that HRR, G2/M delay and BCL-X L work together to protect leukaemia cells from genotoxic treatment.

  33. Michel, B. et al. Rescue of arrested replication forks by homologous recombination. Proc. Natl Acad. Sci. USA 98, 8181–8188 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Sattler, M. et al. The BCR/ABL tyrosine kinase induces production of reactive oxygen species in hematopoietic cells. J. Biol. Chem. 275, 24273–24278 (2000).

    CAS  PubMed  Google Scholar 

  35. Majsterek, I. et al. Is BCR/ABL-mediated increase in the effectiveness of DNA repair involved in the cancer cells drug resistance? Cell Biol. Int. (in the press).

  36. Hoeijmakers, J. H. Genome maintenance mechanisms for preventing cancer. Nature 411, 366–374 (2001).

    CAS  PubMed  Google Scholar 

  37. Khanna, K. K. & Jackson, S. P. DNA double-strand breaks: signaling, repair and the cancer connection. Nature Genet. 27, 247–254 (2001).Describes the mechanisms that are involved in the repair of DSBs, and discusses their role in genomic stability/instability.

    CAS  PubMed  Google Scholar 

  38. Raderschall, E. et al. Elevated levels of RAD51 recombination protein in tumor cells. Cancer Res. 62, 219–225 (2002).

    CAS  PubMed  Google Scholar 

  39. Collis, S. J. et al. Ribozyme minigene-mediated RAD51 down-regulation increases radiosensitivity of human prostate cancer cells. Nucleic Acids Res. 29, 1534–1538 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Pierce, A. J., Hu, P., Han, M., Ellis, N. & Jasin, M. Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells. Genes Dev. 15, 3237–3242 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Tsai, C. M., Chang, K. T., Li, L., Perng, R. P. & Yang, L. Y. Interrelationships between cellular nucleotide excision repair, cisplatin cytotoxicity, HER2/neu gene expression, and epidermal growth factor receptor level in non-small cell lung cancer cells. Jpn. J. Cancer Res. 91, 213–222 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhou, B. B. & Elledge, S. J. The DNA damage response: putting checkpoints in perspective. Nature 408, 433–439 (2000).

    CAS  PubMed  Google Scholar 

  43. Shapiro, G. I. & Harper, J. W. Anticancer drug targets: cell cycle and checkpoint control. J. Clin. Invest. 104, 1645–1653 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Bracey, T. S., Williams, A. C. & Paraskeva, C. Inhibition of radiation-induced G2 delay potentiates cell death by apoptosis and/or the induction of giant cells in colorectal tumor cells with disrupted p53 function. Clin. Cancer Res. 3, 1371–1381 (1997).

    CAS  PubMed  Google Scholar 

  45. Chan, T. A., Hermeking, H., Lengauer, C., Kinzler, K. W. & Vogelstein, B. 14-3-3σ is required to prevent mitotic catastrophe after DNA damage. Nature 401, 616–620 (1999).

    CAS  PubMed  Google Scholar 

  46. Elledge, S. J. Cell cycle checkpoints: preventing an identity crisis. Science 274, 1664–1672 (1996).

    CAS  PubMed  Google Scholar 

  47. Chen, G. & Hitomi, M. Dissociation of CDK2 from cyclin A in response to the topoisomerase II inhibitor etoposide in v-SRC-transformed but not normal NIH 3T3 cells. Exp. Cell Res. 249, 327–336 (1999).

    CAS  PubMed  Google Scholar 

  48. Stiewe, T., Parssanedjad, K., Esche, H., Opalka, B. & Putzer, B. M. E1A overcomes the apoptosis block in BCR–ABL+ leukemia cells and renders cells susceptible to induction of apoptosis by chemotherapeutic agents. Cancer Res. 60, 3957–3964 (2000).

    CAS  PubMed  Google Scholar 

  49. Salloukh, H. F., Vowles, I., Heisterkamp, N., Groffen, J. & Laneuville, P. Early events in leukemogenesis in p190BCR–ABL transgenic mice. Oncogene 19, 4362–4374 (2000).

    CAS  PubMed  Google Scholar 

  50. Quackenbush, R. C. et al. Analysis of the biologic properties of p230 BCR–ABL reveals unique and overlapping properties with the oncogenic p185 and p210 BCR–ABL tyrosine kinases. Blood 95, 2913–2921 (2000).

    CAS  PubMed  Google Scholar 

  51. Voncken, J. W. et al. BCR/ABL p210 and p190 cause distinct leukemia in transgenic mice. Blood 86, 4603–4611 (1995).

    CAS  PubMed  Google Scholar 

  52. Ilaria, R. L. Jr & Van Etten, R. A. p210 and p190(BCR–ABL) induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members. J. Biol. Chem. 271, 31704–31710 (1996).

    CAS  PubMed  Google Scholar 

  53. Li, G. M. The role of mismatch repair in DNA damage-induced apoptosis. Oncol. Res. 11, 393–400 (1999).

    CAS  PubMed  Google Scholar 

  54. Makin, G. & Hickman, J. A. Apoptosis and cancer chemotherapy. Cell Tissue Res. 301, 143–152 (2000).

    CAS  PubMed  Google Scholar 

  55. Amarante-Mendes, G. P. et al. BCL2-independent BCR–ABL-mediated resistance to apoptosis: protection is correlated with up regulation of BCL-XL . Oncogene 16, 1383–1390 (1998).

    CAS  PubMed  Google Scholar 

  56. Karni, R., Jove, R. & Levitzki, A. Inhibition of pp60c-SRC reduces BCL-XL expression and reverses the transformed phenotype of cells overexpressing EGF and HER2 receptors. Oncogene 18, 4654–4662 (1999).

    CAS  PubMed  Google Scholar 

  57. Kumar, R., Mandal, M., Lipton, A., Harvey, H. & Thompson, C. B. Overexpression of HER2 modulates BCL2, BCL-XL, and tamoxifen-induced apoptosis in human MCF-7 breast cancer cells. Clin. Cancer Res. 2, 1215–1219 (1996).

    CAS  PubMed  Google Scholar 

  58. Horita, M. et al. Blockade of the BCR–ABL kinase activity induces apoptosis of chronic myelogenous leukemia cells by suppressing signal transducer and activator of transcription 5-dependent expression of BCL-XL . J. Exp. Med. 191, 977–984 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Skorski, T. et al. Transformation of hematopoietic cells by BCR–ABL requires activation of a PI3K/AKT-dependent pathway. EMBO J. 16, 6151–6161 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang, Z. H. et al. Expression of BCL2 and BAX in EGFR-antisense transfected and untransfected glioblastoma cells. Anticancer Res. 19, 4167–4170 (1999).

    CAS  PubMed  Google Scholar 

  61. Li, Y., Bhuiyan, M. & Sarkar, F. H. Induction of apoptosis and inhibition of c-ERBB2 in MDA-MB-435 cells by genistein. Int. J. Oncol. 15, 525–533 (1999).

    CAS  PubMed  Google Scholar 

  62. Carson, W. E., Haldar, S., Baiocchi, R. A., Croce, C. M. & Caligiuri, M. A. The c-KIT ligand suppresses apoptosis of human natural killer cells through the upregulation of BCL2. Proc. Natl Acad. Sci. USA 91, 7553–7557 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Salomoni, P., Condorelli, F., Sweeney, S. M. & Calabretta, B. Versatility of BCR–ABL-expressing leukemic cells in circumventing proapoptotic BAD effects. Blood 96, 676–684 (2000).

    CAS  PubMed  Google Scholar 

  64. Neshat, M. S., Raitano, A. B., Wang, H. G., Reed, J. C. & Sawyers, C. L. The survival function of the BCR–ABL oncogene is mediated by BAD-dependent and-independent pathways: roles for phosphatidylinositol 3-kinase and RAF. Mol. Cell Biol. 20, 1179–1186 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. de Groot, R. P., Raaijmakers, J. A., Lammers, J. W. & Koenderman, L. STAT5-dependent cyclin D1 and BCL-XL expression in BCR–ABL-transformed cells. Mol. Cell Biol. Res. Commun. 3, 299–305 (2000).

    CAS  PubMed  Google Scholar 

  66. Gesbert, F. & Griffin, J. D. BCR–ABL activates transcription of the BCL-X gene through STAT5. Blood 96, 2269–2276 (2000).

    CAS  PubMed  Google Scholar 

  67. Datta, S. R. et al. AKT phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231–241 (1997).

    CAS  PubMed  Google Scholar 

  68. del Peso, L., Gonzalez-Garcia, M., Page, C., Herrera, R. & Nunez, G. Interleukin-3-induced phosphorylation of BAD through the protein kinase AKT. Science 278, 687–689 (1997).

    CAS  PubMed  Google Scholar 

  69. Zha, J., Harada, H., Yang, E., Jockel, J. & Korsmeyer, S. J. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-XL . Cell 87, 619–628 (1996).

    CAS  PubMed  Google Scholar 

  70. Zhou, B. P. et al. HER2/neu induces p53 ubiquitination via AKT-mediated MDM2 phosphorylation. Nature Cell Biol. 3, 973–982 (2001).

    CAS  PubMed  Google Scholar 

  71. Miyashita, T. et al. Tumor suppressor p53 is a regulator of BCL2 and BAX gene expression in vitro and in vivo. Oncogene 9, 1799–1805 (1994).

    CAS  PubMed  Google Scholar 

  72. Blume-Jensen, P., Janknecht, R. & Hunter, T. The kit receptor promotes cell survival via activation of PI 3-kinase and subsequent Akt-mediated phosphorylation of Bad on Ser136. Curr. Biol. 8, 779–782 (1998).

    CAS  PubMed  Google Scholar 

  73. Aitken, R. J. & Krausz, C. Oxidative stress, DNA damage and the Y chromosome. Reproduction 122, 497–506 (2001).

    CAS  PubMed  Google Scholar 

  74. Benhar, M., Dalyot, I., Engelberg, D. & Levitzki, A. Enhanced ROS production in oncogenically transformed cells potentiates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase activation and sensitization to genotoxic stress. Mol. Cell. Biol. 21, 6913–6926 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Laval, J. Role of DNA repair enzymes in the cellular resistance to oxidative stress. Pathol. Biol. 44, 14–24 (1996).

    CAS  PubMed  Google Scholar 

  76. Wang, D., Kreutzer, D. A. & Essigmann, J. M. Mutagenicity and repair of oxidative DNA damage: insights from studies using defined lesions. Mutat. Res. 400, 99–115 (1998).

    CAS  PubMed  Google Scholar 

  77. Kelman, Z. et al. Rearrangements in the p53 gene in Philadelphia chromosome positive chronic myelogenous leukemia. Blood 74, 2318–2324 (1989).

    CAS  PubMed  Google Scholar 

  78. Eyfjord, J. E. et al. TP53 abnormalities and genetic instability in breast cancer. Acta Oncol. 34, 663–667 (1995).

    CAS  PubMed  Google Scholar 

  79. Skorski, T. et al. Blastic transformation of p53-deficient bone marrow cells by p210BCR–ABL tyrosine kinase. Proc. Natl Acad. Sci. USA 93, 13137–13142 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Honda, H. et al. Acquired loss of p53 induces blastic transformation in p210BCR–ABL-expressing hematopoietic cells: a transgenic study for blast crisis of human CML. Blood 95, 1144–1150 (2000).

    CAS  PubMed  Google Scholar 

  81. Salloukh, H. F. & Laneuville, P. Increase in mutant frequencies in mice expressing the BCR–ABL activated tyrosine kinase. Leukemia 14, 1401–1404 (2000).

    CAS  PubMed  Google Scholar 

  82. Kolodner, R. D. & Marsischky, G. T. Eukaryotic DNA mismatch repair. Curr. Opin. Genet. Dev. 9, 89–96 (1999).

    CAS  PubMed  Google Scholar 

  83. Flores-Rozas, H. & Kolodner, R. D. Links between replication, recombination and genome instability in eukaryotes. Trends Biochem. Sci. 25, 196–200 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Pierce, A. J. et al. Double-strand breaks and tumorigenesis. Trends Cell. Biol. 11, S52–S59 (2001).Discusses the role of DSB repair in the induction of genomic instability and malignant transformation.

    CAS  PubMed  Google Scholar 

  85. Richardson, C. & Jasin, M. Coupled homologous and nonhomologous repair of a double-strand break preserves genomic integrity in mammalian cells. Mol. Cell. Biol. 20, 9068–9075 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Rinehart, F. P., Ritch, T. G., Deininger, P. L. & Schmid, C. W. Renaturation rate studies of a single family of interspersed repeated sequences in human deoxyribonucleic acid. Biochemistry 20, 3003–3010 (1981).

    CAS  PubMed  Google Scholar 

  87. Kim, C., Rubin, C. M. & Schmid, C. W. Genome-wide chromatin remodeling modulates the Alu heat shock response. Gene 276, 127–133 (2001).

    CAS  PubMed  Google Scholar 

  88. Gebow, D., Miselis, N. & Liber, H. L. Homologous and nonhomologous recombination resulting in deletion: effects of p53 status, microhomology, and repetitive DNA length and orientation. Mol. Cell. Biol. 20, 4028–4035 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Bishop, A. J. & Schiestl, R. H. Homologous recombination as a mechanism of carcinogenesis. Biochim. Biophys. Acta 1471, M109–M121 (2001).

    CAS  PubMed  Google Scholar 

  90. Kolomietz, E. et al. Primary chromosomal rearrangements of leukemia are frequently accompanied by extensive submicroscopic deletions and may lead to altered prognosis. Blood 97, 3581–3588 (2001).

    CAS  PubMed  Google Scholar 

  91. Jasin, M. Chromosome breaks and genomic instability. Cancer Invest. 18, 78–86 (2000).

    CAS  PubMed  Google Scholar 

  92. Cavenee, W. K. et al. Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 305, 779–784 (1983).

    CAS  PubMed  Google Scholar 

  93. Ikawa, S., Nakagawara, A. & Ikawa, Y. p53 family genes: structural comparison, expression and mutation. Cell Death Differ. 6, 1154–1161 (1999).

    CAS  PubMed  Google Scholar 

  94. Hadsell, D. L. et al. Cooperative interaction between mutant p53 and des(1-3)IGF-I accelerates mammary tumorigenesis. Oncogene 19, 889–898 (2000).

    CAS  PubMed  Google Scholar 

  95. Li, B., Rosen, J. M., McMenamin-Balano, J., Muller, W. J. & Perkins, A. S. neu/ERBB2 cooperates with p53-172H during mammary tumorigenesis in transgenic mice. Mol. Cell. Biol. 17, 3155–3163 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Bartek, J. & Lukas, J. Pathways governing G1/S transition and their response to DNA damage. FEBS Lett. 490, 117–122 (2001).

    CAS  PubMed  Google Scholar 

  97. Willers, H. et al. Dissociation of p53-mediated suppression of homologous recombination from G1/S cell cycle checkpoint control. Oncogene 19, 632–639 (2000).

    CAS  PubMed  Google Scholar 

  98. Sturzbecher, H. W., Donzelmann, B., Henning, W., Knippschild, U. & Buchhop, S. p53 is linked directly to homologous recombination processes via RAD51/RecA protein interaction. EMBO J. 15, 1992–2002 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Meyn, M. S. High spontaneous intrachromosomal recombination rates in ataxia-telangiectasia. Science 260, 1327–1330 (1993).

    CAS  PubMed  Google Scholar 

  100. Rohlfs, E. M. et al. In-frame deletions of BRCA1 may define critical functional domains. Hum. Genet. 107, 385–390 (2000).

    CAS  PubMed  Google Scholar 

  101. Moynahan, M. E., Chiu, J. W., Koller, B. H. & Jasin, M. Brca1 controls homology-directed DNA repair. Mol. Cell 4, 511–518 (1999).

    CAS  PubMed  Google Scholar 

  102. Papavasiliou, F. N. & Schatz, D. G. Cell-cycle-regulated DNA double-stranded breaks in somatic hypermutation of immunoglobulin genes. Nature 408, 216–221 (2000).

    CAS  PubMed  Google Scholar 

  103. Canitrot, Y. et al. Mutator phenotype of BCR–ABL transfected Ba/F3 cell lines and its association with enhanced expression of DNA polymerase-β. Oncogene 18, 2676–2680 (1999).

    CAS  PubMed  Google Scholar 

  104. Jakupciak, J. P. & Wells, R. D. Gene conversion (recombination) mediates expansions of CTG·CAG repeats. J. Biol. Chem. 275, 40003–40013 (2000).

    CAS  PubMed  Google Scholar 

  105. Baumann, P. & West, S. C. Role of the human RAD51 protein in homologous recombination and double-stranded-break repair. Trends Biochem. Sci. 23, 247–251 (1998).

    CAS  PubMed  Google Scholar 

  106. Bucka, A. & Stasiak, A. RecA-mediated strand exchange traverses substitutional heterologies more easily than deletions or insertions. Nucleic Acids Res. 29, 2464–2470 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Elliott, B. & Jasin, M. Repair of double-strand breaks by homologous recombination in mismatch repair-defective mammalian cells. Mol. Cell. Biol. 21, 2671–2682 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Arnaudeau, C. et al. RAD51 supports spontaneous non-homologous recombination in mammalian cells, but not the corresponding process induced by topoisomerase inhibitors. Nucleic Acids Res. 29, 662–667 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Kohno, K. et al. Construction and characterization of a Rad51Rad52 double mutant as a host for YAC libraries. Gene 188, 175–181 (1997).

    CAS  PubMed  Google Scholar 

  110. Thiesing, J. T., Ohno-Jones, S., Kolibaba, K. S. & Druker, B. J. Efficacy of STI-571, an ABL tyrosine kinase inhibitor, in conjunction with other antileukemic agents against BCR–ABL-positive cells. Blood 96, 3195–3199 (2000).Shows the advantage of targeting of BCR–ABL kinase combined with cytotoxic treatment.

    CAS  PubMed  Google Scholar 

  111. Skorski, T. et al. Highly efficient elimination of Philadelphia leukemic cells by exposure to BCR–ABL antisense oligodeoxynucleotides combined with mafosfamide. J. Clin. Invest. 92, 194–202 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Fang, G. et al. CGP57148B (STI-571) induces differentiation and apoptosis and sensitizes BCR–ABL-positive human leukemia cells to apoptosis due to antileukemic drugs. Blood 96, 2246–2253 (2000).

    CAS  PubMed  Google Scholar 

  113. Donato, N. J., Wu, J. Y., Zhang, L., Kantarjian, H. & Talpaz, M. Down-regulation of interleukin-3/granulocyte-macrophage colony-stimulating factor receptor β-chain in BCR–ABL(+) human leukemic cells: association with loss of cytokine-mediated STAT5 activation and protection from apoptosis after BCR–ABL inhibition. Blood 97, 2846–2853 (2001).

    CAS  PubMed  Google Scholar 

  114. Druker, B. J. et al. Chronic myelogenous leukemia. Hematology 87–112 (2001).

  115. Carter, P. Improving the efficacy of antibody-based cancer therapies. Nature Rev. Cancer 1, 118–129 (2001).

    CAS  Google Scholar 

  116. Sirotnak, F. M., Zakowski, M. F., Miller, V. A., Scher, H. I. & Kris, M. G. Efficacy of cytotoxic agents against human tumor xenografts is markedly enhanced by coadministration of ZD1839 (Iressa), an inhibitor of EGFR tyrosine kinase. Clin. Cancer Res. 6, 4885–4892 (2000).

    CAS  PubMed  Google Scholar 

  117. Roger, R. et al. BCR–ABL does not prevent apoptotic death induced by human natural killer or lymphokine-activated killer cells. Blood 87, 1113–1122 (1996).

    CAS  PubMed  Google Scholar 

  118. Fuchs, E. J., Bedi, A., Jones, R. J. & Hess, A. D. Cytotoxic T cells overcome BCR–ABL-mediated resistance to apoptosis. Cancer Res. 55, 463–466 (1995).

    CAS  PubMed  Google Scholar 

  119. Falkenburg, J. H. et al. Complete remission of accelerated phase chronic myeloid leukemia by treatment with leukemia-reactive cytotoxic T lymphocytes. Blood 94, 1201–1208 (1999).

    CAS  PubMed  Google Scholar 

  120. Meyer zum Buschenfelde, C., Nicklisch, N., Rose-John, S., Peschel, C. & Bernhard, H. Generation of tumor-reactive CTL against the tumor-associated antigen HER2 using retrovirally transduced dendritic cells derived from CD34+ hematopoietic progenitor cells. J. Immunol. 165, 4133–4140 (2000).

    CAS  PubMed  Google Scholar 

  121. Nieborowska-Skorska, M. et al. Oncogene-targeted antisense oligodeoxynucleotides combined with chemotherapy or immunotherapy: a new approach for tumor treatment? Folia Histochem. Cytobiol. 32, 35–40 (1994).

    CAS  PubMed  Google Scholar 

  122. Mailand, N. et al. Rapid destruction of human CDC25A in response to DNA damage. Science 288, 1425–1429 (2000).

    CAS  PubMed  Google Scholar 

  123. Falck, J., Mailand, N., Syljuasen, R. G., Bartek, J. & Lukas, J. The ATM–CHK2–CCD25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410, 842–847 (2001).

    CAS  PubMed  Google Scholar 

  124. Taylor, W. R. & Stark, G. R. Regulation of the G2/M transition by p53. Oncogene 20, 1803–1815 (2001).

    CAS  PubMed  Google Scholar 

  125. Chan, T. A., Hwang, P. M., Hermeking, H., Kinzler, K. W. & Vogelstein, B. Cooperative effects of genes controlling the G(2)/M checkpoint. Genes Dev. 14, 1584–1588 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Shah, J. V. & Cleveland, D. W. Waiting for anaphase: MAD2 and the spindle assembly checkpoint. Cell 103, 997–1000 (2000).

    CAS  PubMed  Google Scholar 

  127. Antonsson, B. & Martinou, J. C. The BCL2 protein family. Exp. Cell Res. 256, 50–57 (2000).

    CAS  PubMed  Google Scholar 

  128. Gross, A., McDonnell, J. M. & Korsmeyer, S. J. BCL2 family members and the mitochondria in apoptosis. Genes Dev. 13, 1899–1911 (1999).Presents an overview of the role of BCL2 proteins in the release of cytochrome c from the mitochondria to the cytoplasm.

    CAS  PubMed  Google Scholar 

  129. Masson, J. Y. et al. Identification and purification of two distinct complexes containing the five RAD51 paralogs. Genes Dev. 15, 3296–3307 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants from National Institutes of Health/National Cancer Institute and American Cancer Society. T.S. is a Scholar of the Leukemia and Lymphoma Society. I would like to thank Michal O. Nowicki, whose help was essential during preparation of the figures.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Cancer.gov

chronic myelogenous leukaemia

lung cancer

prostate cancer

vulval cancer

LocusLink

ABL

AKT

ALK

ATM

BAD

BAX

BCL2

BCL-XL

BCR

BRCA1

caspase-3

CDC2

CDK2

cyclin A

cytochrome c

ERBB1

ERBB2

IGF1R

JAK2

KIT

MDM2

MLH1

MSH2

NPM

p53

p73

PDGFRβ

RAD51

RAD52

RB

SRC

STAT5

TEL

TFIIH

Medscape DrugInfo

cisplatin

daunorubicin

etoposide

Gleevec

Herceptin

mitomycin C

<i>Saccharomyces</i> Genome Database

rad51

rad52

Glossary

COMET ASSAY

Gross DNA damage can be assessed electrophoretically: intact DNA forms a 'comet head', whereas damaged DNA localizes in the tail.

RAD51 PARALOGUES

The RAD51-like proteins RAD51B, RAD51C, RAD51D, XRCC2, XRCC32 and DMC1 share significant sequence homology with RAD51 and are likely to have arisen through gene duplication and divergent evolution; the paralogues collaborate with RAD51 in homologous recombination.

TOPOISOMERASE II

An enzyme that catalyses changes in DNA topology between relaxed and supercoiled states by transiently cleaving and re-ligating both strands of the double helix.

HOMEOLOGOUS

In contrast to homologous recombination, homeologous recombination allows pairing of the invading strand with divergent sequences, resulting in unfaithful repair.

GENE CONVERSION

Non-reciprocal transfer of genetic information from one DNA duplex to the other.

SOMATIC HYPERMUTATION

Point mutations that occur in the immunoglobulin gene variable regions (and some other genes) during B-cell differentiation.

TRIPLET REPEATS

Trinucleotide repeats, the expansion of which is associated with hereditary neurological disorders.

TANDEM REPEAT LOCI

Duplicate sequences that are present in a fragment of DNA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skorski, T. Oncogenic tyrosine kinases and the dna-damage response. Nat Rev Cancer 2, 351–360 (2002). https://doi.org/10.1038/nrc799

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc799

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing