Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Constitutional epimutation as a mechanism for cancer causality and heritability?

Abstract

Constitutional epimutation, which is an aberration in gene expression due to an altered epigenotype that is widely distributed in normal tissues (albeit frequently mosaic), provides an alternative mechanism to genetic mutation for cancer predisposition. Observational studies in cancer-affected families have revealed intergenerational inheritance of constitutional epimutation, providing unique insights into the heritability of epigenetic traits in humans. In this Opinion article, the potential contribution of constitutional epimutation to the 'missing' causality and heritability of cancer is explored.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The contribution of genetic and putative epigenetic factors and their interactions to cancer causality.
Figure 2: Characteristic examples of primary and secondary constitutional epimutations.
Figure 3: Potential onset and erasure of constitutional epimutations during epigenetic reprogramming events in the human life cycle.
Figure 4: Observed inheritance patterns of constitutional MLH1 epimutations.

Similar content being viewed by others

References

  1. Eichler, E. E. et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat. Rev. Genet. 11, 446–450 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Maher, B. Personal genomes: the case of the missing heritability. Nature 456, 18–21 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Petronis, A. Epigenetics as a unifying principle in the aetiology of complex traits and diseases. Nature 465, 721–727 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. McCarthy, M. I. & Hirschhorn, J. N. Genome-wide association studies: potential next steps on a genetic journey. Hum. Mol. Genet. 17, R156–R165 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jones, P. A. & Baylin, S. B. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet. 3, 415–428 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Feinberg, A. P. & Vogelstein, B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301, 89–92 (1983).

    Article  CAS  PubMed  Google Scholar 

  7. Feinberg, A. P. & Vogelstein, B. Hypomethylation of ras oncogenes in primary human cancers. Biochem. Biophys. Res. Commun. 111, 47–54 (1983).

    Article  CAS  PubMed  Google Scholar 

  8. De Smet, C. et al. The activation of human gene MAGE-1 in tumor cells is correlated with genome-wide demethylation. Proc. Natl Acad. Sci. USA 93, 7149–7153 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Cho, B. et al. Promoter hypomethylation of a novel cancer/testis antigen gene CAGE is correlated with its aberrant expression and is seen in premalignant stage of gastric carcinoma. Biochem. Biophys. Res. Commun. 307, 52–63 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Gama-Sosa, M. A. et al. The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res. 11, 6883–6894 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Eden, A., Gaudet, F., Waghmare, A. & Jaenisch, R. Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300, 455 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Hansen, K. D. et al. Increased methylation variation in epigenetic domains across cancer types. Nat. Genet. 43, 768–775 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Greger, V., Passarge, E., Hopping, W., Messmer, E. & Horsthemke, B. Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum. Genet. 83, 155–158 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Gonzalez-Zulueta, M. et al. Methylation of the 5′ CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing. Cancer Res. 55, 4531–4535 (1995).

    CAS  PubMed  Google Scholar 

  15. Graff, J. R. et al. E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res. 55, 5195–5199 (1995).

    CAS  PubMed  Google Scholar 

  16. Cunningham, J. M. et al. Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability. Cancer Res. 58, 3455–3460 (1998).

    CAS  PubMed  Google Scholar 

  17. Veigl, M. L. et al. Biallelic inactivation of hMLH1 by epigenetic gene silencing, a novel mechanism causing human MSI cancers. Proc. Natl Acad. Sci. USA 95, 8698–8702 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Kane, M. F. et al. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res. 57, 808–811 (1997).

    CAS  PubMed  Google Scholar 

  19. Toyota, M. et al. CpG island methylator phenotype in colorectal cancer. Proc. Natl Acad. Sci. USA 96, 8681–8686 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Weisenberger, D. J. et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat. Genet. 38, 787–793 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Hinoue, T. et al. Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome Res. 22, 271–282 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Noushmehr, H. et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17, 510–522 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shih, A. H., Abdel-Wahab, O., Patel, J. P. & Levine, R. L. The role of mutations in epigenetic regulators in myeloid malignancies. Nat. Rev. Cancer 12, 599–612 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Esteller, M. et al. DNA methylation patterns in hereditary human cancers mimic sporadic tumorigenesis. Hum. Mol. Genet. 10, 3001–3007 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Steenman, M. J. et al. Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms' tumour. Nat. Genet. 7, 433–439 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Goelz, S. E., Vogelstein, B., Hamilton, S. R. & Feinberg, A. P. Hypomethylation of DNA from benign and malignant human colon neoplasms. Science 228, 187–190 (1985).

    Article  CAS  PubMed  Google Scholar 

  27. Cui, H., Horon, I. L., Ohlsson, R., Hamilton, S. R. & Feinberg, A. P. Loss of imprinting in normal tissue of colorectal cancer patients with microsatellite instability. Nat. Med. 4, 1276–1280 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Fernando, W. C. et al. The CIMP phenotype in BRAF mutant serrated polyps from a prospective colonoscopy patient cohort. Gastroenterol. Res. Pract. 2014, 374926 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hawkins, N. J. et al. MGMT methylation is associated primarily with the germline C>T SNP (rs16906252) in colorectal cancer and normal colonic mucosa. Mod. Pathol. 22, 1588–1599 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Wong, J. J., Hawkins, N. J., Ward, R. L. & Hitchins, M. P. Methylation of the 3p22 region encompassing MLH1 is representative of the CpG island methylator phenotype in colorectal cancer. Mod. Pathol. 24, 396–411 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Cho, N. Y., Kim, J. H., Moon, K. C. & Kang, G. H. Genomic hypomethylation and CpG island hypermethylation in prostatic intraepithelial neoplasm. Virchows Arch. 454, 17–23 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Cui, H. et al. Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science 299, 1753–1755 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Ito, Y. et al. Somatically acquired hypomethylation of IGF2 in breast and colorectal cancer. Hum. Mol. Genet. 17, 2633–2643 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pufulete, M. et al. Folate status, genomic DNA hypomethylation, and risk of colorectal adenoma and cancer: a case control study. Gastroenterology 124, 1240–1248 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Slaughter, D. P., Southwick, H. W. & Smejkal, W. 'Field cancerization' in oral stratified squamous epithelium. Clinical implications of multicentric origin. Cancer 6, 963–968 (1953).

    Article  CAS  PubMed  Google Scholar 

  36. Candiloro, I. L. & Dobrovic, A. Detection of MGMT promoter methylation in normal individuals is strongly associated with the T allele of the rs16906252 MGMT promoter single nucleotide polymorphism. Cancer Prev. Res. 2, 862–867 (2009).

    Article  CAS  Google Scholar 

  37. Fuke, C. et al. Age related changes in 5-methylcytosine content in human peripheral leukocytes and placentas: an HPLC-based study. Ann. Hum. Genet. 68, 196–204 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Bjornsson, H. T. et al. Intra-individual change over time in DNA methylation with familial clustering. JAMA 299, 2877–2883 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kwabi-Addo, B. et al. Age-related DNA methylation changes in normal human prostate tissues. Clin. Cancer Res. 13, 3796–3802 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Heyn, H. et al. Linkage of DNA methylation quantitative trait loci to human cancer risk. Cell Rep. 7, 331–338 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Li, Q. et al. Integrative eQTL-based analyses reveal the biology of breast cancer risk loci. Cell 152, 633–641 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rapkins, R. W. et al. The MGMT promoter SNP rs16906252 is a risk factor for MGMT methylation in glioblastoma and is predictive of response to temozolomide. Neuro Oncol. http:/dx.doi.org/10.1093/neuonc/nov064, (2015).

  43. Brennan, K. & Flanagan, J. M. Is there a link between genome-wide hypomethylation in blood and cancer risk? Cancer Prev. Res. 5, 1345–1357 (2012).

    Article  CAS  Google Scholar 

  44. Huang, W. Y. et al. Prospective study of genomic hypomethylation of leukocyte DNA and colorectal cancer risk. Cancer Epidemiol. Biomarkers Prev. 21, 2014–2021 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nan, H. et al. Pre-diagnostic leukocyte genomic DNA methylation and the risk of colorectal cancer in women. PLoS ONE 8, e59455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Holliday, R. The inheritance of epigenetic defects. Science 238, 163–170 (1987).

    Article  CAS  PubMed  Google Scholar 

  47. Hitchins, M. P. & Ward, R. L. Constitutional (germline) MLH1 epimutation as an aetiological mechanism for hereditary non-polyposis colorectal cancer. J. Med. Genet. 46, 793–802 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. van Overveld, P. G. et al. Hypomethylation of D4Z4 in 4q-linked and non-4q-linked facioscapulohumeral muscular dystrophy. Nat. Genet. 35, 315–317 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Horsthemke, B. Epimutations in human disease. Curr. Top. Microbiol. Immunol. 310, 45–59 (2006).

    CAS  PubMed  Google Scholar 

  50. Hesson, L. B., Hitchins, M. P. & Ward, R. L. Epimutations and cancer predisposition: importance and mechanisms. Curr. Opin. Genet. Dev. 20, 290–298 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Oey, H. & Whitelaw, E. On the meaning of the word 'epimutation'. Trends Genet. 30, 519–520 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Moulton, T. et al. Epigenetic lesions at the H19 locus in Wilms' tumour patients. Nat. Genet. 7, 440–447 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. Moulton, T. et al. Genomic imprinting and Wilms' tumor. Med. Pediatr. Oncol. 27, 476–483 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Engel, J. R. et al. Epigenotype-phenotype correlations in Beckwith–Wiedemann syndrome. J. Med. Genet. 37, 921–926 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. DeBaun, M. R. et al. Epigenetic alterations of H19 and LIT1 distinguish patients with Beckwith–Wiedemann syndrome with cancer and birth defects. Am. J. Hum. Genet. 70, 604–611 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cooper, W. N. et al. Molecular subtypes and phenotypic expression of Beckwith–Wiedemann syndrome. Eur. J. Hum. Genet. 13, 1025–1032 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Scott, R. H. et al. Constitutional 11p15 abnormalities, including heritable imprinting center mutations, cause nonsyndromic Wilms tumor. Nat. Genet. 40, 1329–1334 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Cerrato, F. et al. Different mechanisms cause imprinting defects at the IGF2/H19 locus in Beckwith–Wiedemann syndrome and Wilms' tumour. Hum. Mol. Genet. 17, 1427–1435 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Murrell, A. et al. Distinct methylation changes at the IGF2-H19 locus in congenital growth disorders and cancer. PLoS ONE 3, e1849 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ravenel, J. D. et al. Loss of imprinting of insulin-like growth factor-II (IGF2) gene in distinguishing specific biologic subtypes of Wilms tumor. J. Natl Cancer Inst. 93, 1698–1703 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Lynch, H. T., Snyder, C. L., Shaw, T. G., Heinen, C. D. & Hitchins, M. P. Milestones of Lynch syndrome: 1895–2015. Nat. Rev. Cancer 15, 181–194 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Miyakura, Y. et al. Extensive but hemiallelic methylation of the hMLH1 promoter region in early-onset sporadic colon cancers with microsatellite instability. Clin. Gastroenterol. Hepatol. 2, 147–156 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Suter, C. M., Martin, D. I. & Ward, R. L. Germline epimutation of MLH1 in individuals with multiple cancers. Nat. Genet. 36, 497–501 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Hitchins, M. et al. MLH1 germline epimutations as a factor in hereditary nonpolyposis colorectal cancer. Gastroenterology 129, 1392–1399 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Hitchins, M. P. et al. Inheritance of a cancer-associated MLH1 germ-line epimutation. N. Engl. J. Med. 356, 697–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Gazzoli, I., Loda, M., Garber, J., Syngal, S. & Kolodner, R. D. A hereditary nonpolyposis colorectal carcinoma case associated with hypermethylation of the MLH1 gene in normal tissue and loss of heterozygosity of the unmethylated allele in the resulting microsatellite instability-high tumor. Cancer Res. 62, 3925–3928 (2002).

    CAS  PubMed  Google Scholar 

  67. Hitchins, M. P. The role of epigenetics in Lynch syndrome. Fam. Cancer 12, 189–205 (2013).

    Article  PubMed  Google Scholar 

  68. Goel, A. et al. De novo constitutional MLH1 epimutations confer early-onset colorectal cancer in two new sporadic Lynch syndrome cases, with derivation of the epimutation on the paternal allele in one. Int. J. Cancer 128, 869–878 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hitchins, M. P. & Lynch, H. T. Dawning of the epigenetic era in hereditary cancer. Clin. Genet. 85, 413–416 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Pineda, M. et al. MLH1 methylation screening is effective in identifying epimutation carriers. Eur. J. Hum. Genet. 20, 1256–1264 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. van Roon, E. H. et al. Early onset MSI-H colon cancer with MLH1 promoter methylation, is there a genetic predisposition? BMC Cancer 10, 180 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pinheiro, H. et al. Allele-specific CDH1 downregulation and hereditary diffuse gastric cancer. Hum. Mol. Genet. 19, 943–952 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Snell, C., Krypuy, M., Wong, E. M., Loughrey, M. B. & Dobrovic, A. BRCA1 promoter methylation in peripheral blood DNA of mutation negative familial breast cancer patients with a BRCA1 tumour phenotype. Breast Cancer Res. 10, R12 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hansmann, T. et al. Constitutive promoter methylation of BRCA1 and RAD51C in patients with familial ovarian cancer and early-onset sporadic breast cancer. Hum. Mol. Genet. 21, 4669–4679 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Galetzka, D. et al. Monozygotic twins discordant for constitutive BRCA1 promoter methylation, childhood cancer and secondary cancer. Epigenetics 7, 47–54 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wong, E. M. et al. Constitutional methylation of the BRCA1 promoter is specifically associated with BRCA1 mutation-associated pathology in early-onset breast cancer. Cancer Prev. Res. 4, 23–33 (2011).

    Article  CAS  Google Scholar 

  77. Wojdacz, T. K., Thestrup, B. B., Cold, S., Overgaard, J. & Hansen, L. L. No difference in the frequency of locus-specific methylation in the peripheral blood DNA of women diagnosed with breast cancer and age-matched controls. Future Oncol. 7, 1451–1455 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Sparago, A. et al. Microdeletions in the human H19 DMR result in loss of IGF2 imprinting and Beckwith–Wiedemann syndrome. Nat. Genet. 36, 958–960 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Chan, T. L. et al. Heritable germline epimutation of MSH2 in a family with hereditary nonpolyposis colorectal cancer. Nat. Genet. 38, 1178–1183 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Ligtenberg, M. J. et al. Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3′ exons of TACSTD1. Nat. Genet. 41, 112–117 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Kuiper, R. P. et al. Recurrence and variability of germline EPCAM deletions in Lynch syndrome. Hum. Mutat. 32, 407–414 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Kempers, M. J. et al. Risk of colorectal and endometrial cancers in EPCAM deletion-positive Lynch syndrome: a cohort study. Lancet Oncol. 12, 49–55 (2011).

    Article  PubMed  Google Scholar 

  83. Lynch, H. T. et al. Lynch syndrome-associated extracolonic tumors are rare in two extended families with the same EPCAM deletion. Am. J. Gastroenterol. 106, 1829–1836 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hitchins, M. P. et al. Dominantly inherited constitutional epigenetic silencing of MLH1 in a cancer-affected family is linked to a single nucleotide variant within the 5′UTR. Cancer Cell 20, 200–213 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Kwok, C. T. et al. The MLH1 c.-27C>A and c.85G>T variants are linked to dominantly inherited MLH1 epimutation and are borne on a European ancestral haplotype. Eur. J. Hum. Genet. 22, 617–624 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Morak, M. et al. Biallelic MLH1 SNP cDNA expression or constitutional promoter methylation can hide genomic rearrangements causing Lynch syndrome. J. Med. Genet. 48, 513–519 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Raval, A. et al. Downregulation of death-associated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia. Cell 129, 879–890 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hitchins, M. et al. Germline epimutations of APC are not associated with inherited colorectal polyposis. Gut 55, 586–587 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. van Doorn, R., Zoutman, W. H. & Gruis, N. A. Absence of germline epimutation of the CDKN2A gene in familial melanoma. J. Invest. Dermatol. 129, 781–784 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Hyland, P. L. et al. Constitutional promoter methylation and risk of familial melanoma. Epigenetics 9, 685–692 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nag, A. et al. Chromatin signature of widespread monoallelic expression. elLfe 2, e01256 (2013).

    Google Scholar 

  92. Cubas, P., Vincent, C. & Coen, E. An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401, 157–161 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Manning, K. et al. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat. Genet. 38, 948–952 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Pal-Bhadra, M. et al. Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science 303, 669–672 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Morgan, H. D., Sutherland, H. G., Martin, D. I. & Whitelaw, E. Epigenetic inheritance at the agouti locus in the mouse. Nat. Genet. 23, 314–318 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Rakyan, V. K. et al. Transgenerational inheritance of epigenetic states at the murine AxinFu allele occurs after maternal and paternal transmission. Proc. Natl Acad. Sci. USA 100, 2538–2543 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Feng, S., Jacobsen, S. E. & Reik, W. Epigenetic reprogramming in plant and animal development. Science 330, 622–627 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Heijmans, B. T. et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl Acad. Sci. USA 105, 17046–17049 (2008).

    Article  PubMed  Google Scholar 

  99. DeBaun, M. R., Niemitz, E. L. & Feinberg, A. P. Association of in vitro fertilization with Beckwith–Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am. J. Hum. Genet. 72, 156–160 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Hiura, H. et al. Characterization of DNA methylation errors in patients with imprinting disorders conceived by assisted reproduction technologies. Hum. Reprod. 27, 2541–2548 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Casati, L., Sendra, R., Sibilia, V. & Celotti, F. Endocrine disrupters: the new players able to affect the epigenome. Front. Cell Dev. Biol. http:/dx.doi.org/10.3389/fcell.2015.00037, (2015).

  102. Xin, F., Susiarjo, M. & Bartolomei, M. S. Multigenerational and transgenerational effects of endocrine disrupting chemicals: a role for altered epigenetic regulation? Semin. Cell Dev. Biol. http:/dx.doi.org/10.1016/j.semcdb.2015.05.008, (2015).

  103. Manikkam, M., Tracey, R., Guerrero-Bosagna, C. & Skinner, M. K. Dioxin (TCDD) induces epigenetic transgenerational inheritance of adult onset disease and sperm epimutations. PLoS ONE 7, e46249 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Manikkam, M., Haque, M. M., Guerrero-Bosagna, C., Nilsson, E. E. & Skinner, M. K. Pesticide methoxychlor promotes the epigenetic transgenerational inheritance of adult-onset disease through the female germline. PLoS ONE 9, e102091 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Iqbal, K. et al. Deleterious effects of endocrine disruptors are corrected in the mammalian germline by epigenome reprogramming. Genome Biol. 16, 59 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bygren, L. O., Kaati, G. & Edvinsson, S. Longevity determined by paternal ancestors' nutrition during their slow growth period. Acta Biotheor 49, 53–59 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Kaati, G., Bygren, L. O. & Edvinsson, S. Cardiovascular and diabetes mortality determined by nutrition during parents' and grandparents' slow growth period. Eur. J. Hum. Genet. 10, 682–688 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Chen, T. H., Chiu, Y. H. & Boucher, B. J. Transgenerational effects of betel-quid chewing on the development of the metabolic syndrome in the Keelung Community-based Integrated Screening Program. Am. J. Clin. Nutr. 83, 688–692 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Kaati, G., Bygren, L. O., Pembrey, M. & Sjostrom, M. Transgenerational response to nutrition, early life circumstances and longevity. Eur. J. Hum. Genet. 15, 784–790 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Grossniklaus, U., Kelly, W. G., Ferguson-Smith, A. C., Pembrey, M. & Lindquist, S. Transgenerational epigenetic inheritance: how important is it? Nat. Rev. Genet. 14, 228–235 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Stoger, R., Kajimura, T. M., Brown, W. T. & Laird, C. D. Epigenetic variation illustrated by DNA methylation patterns of the fragile-X gene FMR1. Hum. Mol. Genet. 6, 1791–1801 (1997).

    Article  CAS  PubMed  Google Scholar 

  112. Hitchins, M. P. & Ward, R. L. Erasure of MLH1 methylation in spermatozoa-implications for epigenetic inheritance. Nat. Genet. 39, 1289 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Slatkin, M. Epigenetic inheritance and the missing heritability problem. Genetics 182, 845–850 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Furrow, R. E., Christiansen, F. B. & Feldman, M. W. Environment-sensitive epigenetics and the heritability of complex diseases. Genetics 189, 1377–1387 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Heyn, H. et al. DNA methylation contributes to natural human variation. Genome Res. 23, 1363–1372 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Smallwood, S. A. et al. Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat. Genet. 43, 811–814 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Santos, F., Hendrich, B., Reik, W. & Dean, W. Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev. Biol. 241, 172–182 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megan P. Hitchins.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Glossary

Cancer heritability

There are various measures of the heritability of cancer phenotypes. In general, it is measured as the relative risk ratio of disease in the relatives of affected patients versus the general population, or the concordance rates between monozygotic and dizygotic twins.

Constitutional epimutations

Aberrant changes in gene expression owing to altered epigenotypes that are widespread in normal somatic tissues due to their origins in the gamete or early embryo.

Constitutional epivariants

Epigenetic differences between members of the general population that may contribute to natural phenotypic variation among humans.

Epigenetic marks

Refers to the molecular modifications to the primary DNA sequence. These include, but are not limited to, covalent modifications to cytosine, histone occupancy and variants, and histone tail moieties. This Opinion article primarily refers to 5-methylcytosine, which occurs mostly at CpG dinucleotides in mammals. Although RNA molecules are not considered epigenetic marks, they interact with epigenetic processes to bring about epigenetic change.

Epigenotype

The mitotically stable pattern or type of DNA modification or modifications to the primary DNA sequence; for example, the presence or absence of CpG methylation and other accompanying modifications that regulate transcriptional activity. It may refer to the epigenetic state at a particular genetic locus or more generally across the genome.

Epimutation

An aberrant change in gene expression owing to an altered epigenotype.

Index cases

The first case of a disease in a group (for example, a family or population) to be brought to clinical attention: that is, the first case to be identified with a novel causative defect.

Intergenerational inheritance of epigenetic effects

The non-genetic transmission of a phenotypic trait from one generation to another due to a shared environmental, lifestyle or nutritional exposure. If the exposure occurs systemically in a pregnant female (F0), the fetus (F1) is also exposed, as are the gamete precursors (primordial germ cells) of the next generation of progeny (F2). To definitively distinguish transgenerational epigenetic inheritance from the intergenerational inheritance of epigenetic effects, the trait would need to be observed in the F3 generation.

Proband

The cancer-affected member of a family who first sought medical attention and via whom the family was ascertained for genetic or epigenetic study.

Somatic epitypes

Types of epigenotypes that are acquired in somatic cells during the lifetime of an individual in response to environmental influences.

Transgenerational epigenetic inheritance

The transmission of an epigenetic state (a particular epigenotype) from parent to offspring via the gametes, independently of genetics. Transgenerational epigenetic inheritance does not necessitate that the epigenotype is conveyed through the gamete with its somatic epigenetic modifications intact (for example, in a hypermethylated state). This definition has been extended to include alternative forms of epigenetic signals (other than methylation) that convey a memory of the former parental somatic state via the gamete to become fully reinstated in the progeny. The molecular basis for transgenerational epigenetic inheritance remains unknown, although the transfer of epigenetic modifying RNA species via the gametes provides one possible unifying mechanism across species.

Vertical inheritance

Transmission of a trait (genetic, epigenetic or phenotypic) from parent to offspring.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hitchins, M. Constitutional epimutation as a mechanism for cancer causality and heritability?. Nat Rev Cancer 15, 625–634 (2015). https://doi.org/10.1038/nrc4001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc4001

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing