Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

MicroRNA biogenesis pathways in cancer

Key Points

  • MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate target gene expression through mRNA degradation or translational inhibition.

  • The miRNA biogenesis pathway is a multi-step process that has a crucial role in regulating miRNA maturation.

  • miRNAs can be oncogenes or tumour suppressors and are globally repressed in cancers.

  • Mutations in or dysregulation of components of the miRNA biogenesis pathway are frequently found in cancers and have important functions in oncogenesis.

  • Important oncogenic signalling proteins — such as LIN28A, LIN28B, epidermal growth factor receptor (EGFR) and Hippo — target miRNA biogenesis in cancers.

  • The targeting of abnormal miRNA biogenesis pathways is a novel, promising therapeutic strategy for cancers.

Abstract

MicroRNAs (miRNAs) are critical regulators of gene expression. Amplification and overexpression of individual 'oncomiRs' or genetic loss of tumour suppressor miRNAs are associated with human cancer and are sufficient to drive tumorigenesis in mouse models. Furthermore, global miRNA depletion caused by genetic and epigenetic alterations in components of the miRNA biogenesis machinery is oncogenic. This, together with the recent identification of novel miRNA regulatory factors and pathways, highlights the importance of miRNA dysregulation in cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of miRNA biogenesis pathway.
Figure 2: Mutation of the miRNA biogenesis pathway in cancer.
Figure 3: Dysregulated miRNA biogenesis in cancer.

Similar content being viewed by others

References

  1. Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Calin, G. A. & Croce, C. M. MicroRNA signatures in human cancers. Nature Rev. Cancer 6, 857–866 (2006).

    Article  CAS  Google Scholar 

  3. Calin, G. A. et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA 99, 15524–15529 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Di Leva, G. & Croce, C. M. Roles of small RNAs in tumor formation. Trends Mol. Med. 16, 257–267 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mendell, J. T. & Olson, E. N. MicroRNAs in stress signaling and human disease. Cell 148, 1172–1187 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. He, L. et al. A microRNA polycistron as a potential human oncogene. Nature 435, 828–833 (2005). This paper was the first to revealthat genes in the miR-1792 cluster function as potential human oncogenes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim, H. H. et al. HuR recruits let-7/RISC to repress c-Myc expression. Genes Dev. 23, 1743–1748 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Johnson, S. M. et al. RAS is regulated by the let-7 microRNA family. Cell 120, 635–647 (2005). This paper was the first to show that members of the let-7 family of miRNAs function as tumour suppressors by targeting RAS.

    Article  CAS  PubMed  Google Scholar 

  9. Kumar, M. S. et al. Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc. Natl Acad. Sci. USA 105, 3903–3908 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature 435, 834–838 (2005). This paper was the first to report that miRNAs are globally downregulated in cancers.

    Article  CAS  PubMed  Google Scholar 

  11. Thomson, J. M. et al. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev. 20, 2202–2207 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Karube, Y. et al. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci. 96, 111–115 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Lin, R. J. et al. microRNA signature and expression of Dicer and Drosha can predict prognosis and delineate risk groups in neuroblastoma. Cancer Res. 70, 7841–7850 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Merritt, W. M. et al. Dicer, Drosha, and outcomes in patients with ovarian cancer. N. Engl. J. Med. 359, 2641–2650 (2008). This paper reveals that the expression levels of DICER1 and DROSHA are associated with clinical outcomes in patients with ovarian cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kumar, M. S., Lu, J., Mercer, K. L., Golub, T. R. & Jacks, T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nature Genet. 39, 673–677 (2007). This paper shows that impaired miRNA biogenesis promotes oncogenesis.

    Article  CAS  PubMed  Google Scholar 

  16. Hill, D. A. et al. DICER1 mutations in familial pleuropulmonary blastoma. Science 325, 965 (2009). This study was the first to identify the germline mutations of DICER1 in patients with familial PPB.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Anglesio, M. S. et al. Cancer-associated somatic DICER1 hotspot mutations cause defective miRNA processing and reverse-strand expression bias to predominantly mature 3p strands through loss of 5p strand cleavage. J. Pathol. 229, 400–409 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Heravi-Moussavi, A. et al. Recurrent somatic DICER1 mutations in nonepithelial ovarian cancers. N. Engl. J. Med. 366, 234–242 (2012). This study identified the recurrent somatic mutations encoding the RNase IIIb catalytic domain of DICER1 that affect the processing of 5′ derived miRNAs.

    Article  CAS  PubMed  Google Scholar 

  19. Foulkes, W. D., Priest, J. R. & Duchaine, T. F. DICER1: mutations, microRNAs and mechanisms. Nature Rev. Cancer 14, 662–672 (2014).

    Article  CAS  Google Scholar 

  20. Slade, I. et al. DICER1 syndrome: clarifying the diagnosis, clinical features and management implications of a pleiotropic tumour predisposition syndrome. J. Med. Genet. 48, 273–278 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Rakheja, D. et al. Somatic mutations in DROSHA and DICER1 impair microRNA biogenesis through distinct mechanisms in Wilms tumours. Nature Commun. 2, 4802 (2014).

    Article  CAS  Google Scholar 

  22. Torrezan, G. T. et al. Recurrent somatic mutation in DROSHA induces microRNA profile changes in Wilms tumour. Nature Commun. 5, 4039 (2014).

    Article  CAS  Google Scholar 

  23. Wegert, J. et al. Mutations in the SIX1/2 pathway and the DROSHA/DGCR8 miRNA microprocessor complex underlie high-risk blastemal type Wilms tumors. Cancer Cell 27, 298–311 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Walz, A. L. et al. Recurrent DGCR8, DROSHA, and SIX homeodomain mutations in favorable histology Wilms tumors. Cancer Cell 27, 286–297 (2015). References 21–24 identified the recurrent somatic mutation of DROSHA and DGCR8 in Wilms tumours.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993). This study was the first to identify miRNA.

    Article  CAS  PubMed  Google Scholar 

  26. Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 294, 853–858 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Lau, N. C., Lim, L. P., Weinstein, E. G. & Bartel, D. P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–862 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Lee, R. C. & Ambros, V. An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862–864 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Kozomara, A. & Griffiths-Jones, S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 39, D152–D157 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Filipowicz, W., Bhattacharyya, S. N. & Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature Rev. Genet. 9, 102–114 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Lee, Y. et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051–4060 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gregory, R. I. et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 432, 235–240 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F. & Hannon, G. J. Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231–235 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Han, J. et al. The Drosha–DGCR8 complex in primary microRNA processing. Genes Dev. 18, 3016–3027 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Han, J. et al. Molecular basis for the recognition of primary microRNAs by the Drosha–DGCR8 complex. Cell 125, 887–901 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Zeng, Y., Yi, R. & Cullen, B. R. Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J. 24, 138–148 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Burke, J. M., Kelenis, D. P., Kincaid, R. P. & Sullivan, C. S. A central role for the primary microRNA stem in guiding the position and efficiency of Drosha processing of a viral pri-miRNA. RNA 20, 1068–1077 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Heo, I. et al. Mono-uridylation of pre-microRNA as a key step in the biogenesis of group II let-7 microRNAs. Cell 151, 521–532 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Yi, R., Qin, Y., Macara, I. G. & Cullen, B. R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 17, 3011–3016 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lund, E., Guttinger, S., Calado, A., Dahlberg, J. E. & Kutay, U. Nuclear export of microRNA precursors. Science 303, 95–98 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Bohnsack, M. T., Czaplinski, K. & Gorlich, D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10, 185–191 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Park, J. E. et al. Dicer recognizes the 5′ end of RNA for efficient and accurate processing. Nature 475, 201–205 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Chendrimada, T. P. et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740–744 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee, H. Y. & Doudna, J. A. TRBP alters human precursor microRNA processing in vitro. RNA 18, 2012–2019 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim, Y. et al. Deletion of human tarbp2 reveals cellular microRNA targets and cell-cycle function of TRBP. Cell Rep. 9, 1061–1074 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Gregory, R. I., Chendrimada, T. P., Cooch, N. & Shiekhattar, R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123, 631–640 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Liu, J., Valencia-Sanchez, M. A., Hannon, G. J. & Parker, R. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nature Cell Biol. 7, 719–723 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Eulalio, A., Behm-Ansmant, I., Schweizer, D. & Izaurralde, E. P-body formation is a consequence, not the cause, of RNA-mediated gene silencing. Mol. Cell. Biol. 27, 3970–3981 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Calin, G. A. et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl Acad. Sci. USA 101, 2999–3004 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang, L. et al. microRNAs exhibit high frequency genomic alterations in human cancer. Proc. Natl Acad. Sci. USA 103, 9136–9141 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cimmino, A. et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl Acad. Sci. USA 102, 13944–13949 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kotani, A. et al. A novel mutation in the miR-128b gene reduces miRNA processing and leads to glucocorticoid resistance of MLL–AF4 acute lymphocytic leukemia cells. Cell Cycle 9, 1037–1042 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. He, L. et al. A microRNA component of the p53 tumour suppressor network. Nature 447, 1130–1134 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Raver-Shapira, N. et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol. Cell 26, 731–743 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Chang, T. C. et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol. Cell 26, 745–752 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bommer, G. T. et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr. Biol. 17, 1298–1307 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Tarasov, V. et al. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 6, 1586–1593 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. O'Donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V. & Mendell, J. T. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435, 839–843 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Dews, M. et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nature Genet. 38, 1060–1065 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Chang, T. C. et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nature Genet. 40, 43–50 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Gregory, P. A. et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biol. 10, 593–601 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Bracken, C. P. et al. A double-negative feedback loop between ZEB1–SIP1 and the microRNA-200 family regulates epithelial–mesenchymal transition. Cancer Res. 68, 7846–7854 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Lujambio, A. et al. A microRNA DNA methylation signature for human cancer metastasis. Proc. Natl Acad. Sci. USA 105, 13556–13561 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Guil, S. & Esteller, M. DNA methylomes, histone codes and miRNAs: tying it all together. Int. J. Biochem. Cell Biol. 41, 87–95 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Han, J. et al. Posttranscriptional crossregulation between Drosha and DGCR8. Cell 136, 75–84 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Triboulet, R., Chang, H. M., Lapierre, R. J. & Gregory, R. I. Post-transcriptional control of DGCR8 expression by the Microprocessor. RNA 15, 1005–1011 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kadener, S. et al. Genome-wide identification of targets of the Drosha–Pasha/DGCR8 complex. RNA 15, 537–545 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Muralidhar, B. et al. Functional evidence that Drosha overexpression in cervical squamous cell carcinoma affects cell phenotype and microRNA profiles. J. Pathol. 224, 496–507 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Sugito, N. et al. RNASEN regulates cell proliferation and affects survival in esophageal cancer patients. Clin. Cancer Res. 12, 7322–7328 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Shu, G. S., Yang, Z. L. & Liu, D. C. Immunohistochemical study of Dicer and Drosha expression in the benign and malignant lesions of gallbladder and their clinicopathological significances. Pathol. Res. Pract. 208, 392–397 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Guo, X. et al. The microRNA-processing enzymes: Drosha and Dicer can predict prognosis of nasopharyngeal carcinoma. J. Cancer Res. Clin. Oncol. 138, 49–56 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Jafarnejad, S. M., Sjoestroem, C., Martinka, M. & Li, G. Expression of the RNase III enzyme DROSHA is reduced during progression of human cutaneous melanoma. Mod. Pathol. 26, 902–910 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Grund, S. E., Polycarpou-Schwarz, M., Luo, C., Eichmuller, S. B. & Diederichs, S. Rare Drosha splice variants are deficient in microRNA processing but do not affect general microRNA expression in cancer cells. Neoplasia 14, 238–248 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Melo, S. A. et al. A genetic defect in exportin-5 traps precursor microRNAs in the nucleus of cancer cells. Cancer Cell 18, 303–315 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Leaderer, D. et al. Genetic and epigenetic association studies suggest a role of microRNA biogenesis gene exportin-5 (XPO5) in breast tumorigenesis. Int. J. Mol. Epidemiol. Genet. 2, 9–18 (2011).

    CAS  PubMed  Google Scholar 

  78. Hutvagner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Kumar, M. S. et al. Dicer1 functions as a haploinsufficient tumor suppressor. Genes Dev. 23, 2700–2704 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pugh, T. J. et al. Exome sequencing of pleuropulmonary blastoma reveals frequent biallelic loss of TP53 and two hits in DICER1 resulting in retention of 5p-derived miRNA hairpin loop sequences. Oncogene 33, 5295–5302 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wagh, P. K. et al. Cell- and developmental stage-specific Dicer1 ablation in the lung epithelium models cystic pleuropulmonary blastoma. J. Pathol. 236, 41–52 (2014).

    Article  CAS  Google Scholar 

  82. de Kock, L. et al. Germ-line and somatic DICER1 mutations in a pleuropulmonary blastoma. Pediatr. Blood Cancer 60, 2091–2092 (2013).

    Article  PubMed  Google Scholar 

  83. Seki, M. et al. Biallelic DICER1 mutations in sporadic pleuropulmonary blastoma. Cancer Res. 74, 2742–2749 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Schultz, K. A. et al. Ovarian sex cord-stromal tumors, pleuropulmonary blastoma and DICER1 mutations: a report from the International Pleuropulmonary Blastoma Registry. Gynecol. Oncol. 122, 246–250 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Witkowski, L. et al. DICER1 hotspot mutations in non-epithelial gonadal tumours. Br. J. Cancer 109, 2744–2750 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Foulkes, W. D. et al. Extending the phenotypes associated with DICER1 mutations. Hum. Mutat. 32, 1381–1384 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Wu, M. K. et al. Biallelic DICER1 mutations occur in Wilms tumours. J. Pathol. 230, 154–164 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. de Kock, L. et al. Pituitary blastoma: a pathognomonic feature of germ-line DICER1 mutations. Acta Neuropathol. 128, 111–122 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Doros, L. A. et al. DICER1 mutations in childhood cystic nephroma and its relationship to DICER1-renal sarcoma. Mod. Pathol. 27, 1267–1280 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Doros, L. et al. DICER1 mutations in embryonal rhabdomyosarcomas from children with and without familial PPB-tumor predisposition syndrome. Pediatr. Blood Cancer 59, 558–560 (2012).

    Article  PubMed  Google Scholar 

  91. Schultze-Florey, R. E. et al. DICER1 syndrome: a new cancer syndrome. Klin. Padiatr. 225, 177–178 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Su, X. et al. TAp63 suppresses metastasis through coordinate regulation of Dicer and miRNAs. Nature 467, 986–990 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Melo, S. A. et al. A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nature Genet. 41, 365–370 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Garre, P., Perez-Segura, P., Diaz-Rubio, E., Caldes, T. & de la Hoya, M. Reassessing the TARBP2 mutation rate in hereditary nonpolyposis colorectal cancer. Nature Genet. 42, 817–818 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. De Vito, C. et al. A TARBP2-dependent miRNA expression profile underlies cancer stem cell properties and provides candidate therapeutic reagents in Ewing sarcoma. Cancer Cell 21, 807–821 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. van Kouwenhove, M., Kedde, M. & Agami, R. MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nature Rev. Cancer 11, 644–656 (2011).

    Article  CAS  Google Scholar 

  97. Kawai, S. & Amano, A. BRCA1 regulates microRNA biogenesis via the DROSHA microprocessor complex. J. Cell Biol. 197, 201–208 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Trabucchi, M. et al. The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature 459, 1010–1014 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wu, H. et al. A splicing-independent function of SF2/ASF in microRNA processing. Mol. Cell 38, 67–77 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Guil, S. & Caceres, J. F. The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a. Nature Struct. Mol. Biol. 14, 591–596 (2007).

    Article  CAS  Google Scholar 

  101. Michlewski, G., Guil, S., Semple, C. A. & Caceres, J. F. Posttranscriptional regulation of miRNAs harboring conserved terminal loops. Mol. Cell 32, 383–393 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Morlando, M. et al. FUS stimulates microRNA biogenesis by facilitating co-transcriptional Drosha recruitment. EMBO J. 31, 4502–4510 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Suzuki, H. I. et al. Modulation of microRNA processing by p53. Nature 460, 529–533 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Davis, B. N., Hilyard, A. C., Lagna, G. & Hata, A. SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454, 56–61 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Davis, B. N., Hilyard, A. C., Nguyen, P. H., Lagna, G. & Hata, A. Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. Mol. Cell 39, 373–384 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ha, M. & Kim, V. N. Regulation of microRNA biogenesis. Nature Rev. Mol. Cell Biol. 15, 509–524 (2014).

    Article  CAS  Google Scholar 

  107. Drake, M. et al. A requirement for ERK-dependent dicer phosphorylation in coordinating oocyte-to-embryo transition in C. elegans. Dev. Cell 31, 614–628 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mori, M. et al. Hippo signaling regulates Microprocessor and links cell-density-dependent miRNA biogenesis to cancer. Cell 156, 893–906 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Harvey, K. F., Zhang, X. & Thomas, D. M. The Hippo pathway and human cancer. Nature Rev. Cancer 13, 246–257 (2013).

    Article  CAS  Google Scholar 

  110. Hwang, H. W., Wentzel, E. A. & Mendell, J. T. Cell–cell contact globally activates microRNA biogenesis. Proc. Natl Acad. Sci. USA 106, 7016–7021 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Leung, A. K. & Sharp, P. A. MicroRNA functions in stress responses. Mol. Cell 40, 205–215 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Franovic, A. et al. Translational up-regulation of the EGFR by tumor hypoxia provides a nonmutational explanation for its overexpression in human cancer. Proc. Natl Acad. Sci. USA 104, 13092–13097 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Shen, J. et al. EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2. Nature 497, 383–387 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Rupaimoole, R. et al. Hypoxia-mediated downregulation of miRNA biogenesis promotes tumour progression. Nature Commun. 5, 5202 (2014).

    Article  CAS  Google Scholar 

  115. van den Beucken, T. et al. Hypoxia promotes stem cell phenotypes and poor prognosis through epigenetic regulation of DICER. Nature Commun. 5, 5203 (2014).

    Article  CAS  Google Scholar 

  116. Peter, M. E. Let-7 and miR-200 microRNAs: guardians against pluripotency and cancer progression. Cell Cycle 8, 843–852 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Barh, D., Malhotra, R., Ravi, B. & Sindhurani, P. MicroRNA let-7: an emerging next-generation cancer therapeutic. Curr. Oncol. 17, 70–80 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Mayr, C., Hemann, M. T. & Bartel, D. P. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 315, 1576–1579 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Akao, Y. Nakagawa, Y. & Naoe, T. let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol. Pharm. Bull. 29, 903–906 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Boyerinas, B., Park, S. M., Hau, A., Murmann, A. E. & Peter, M. E. The role of let-7 in cell differentiation and cancer. Endocr. Relat. Cancer 17, F19–F36 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Bussing, I., Slack, F. J. & Grosshans, H. let-7 microRNAs in development, stem cells and cancer. Trends Mol. Med. 14, 400–409 (2008).

    Article  PubMed  CAS  Google Scholar 

  122. Droge, P. & Davey, C. A. Do cells let-7 determine stemness? Cell Stem Cell 2, 8–9 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Rybak, A. et al. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nature Cell Biol. 10, 987–993 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Viswanathan, S. R., Daley, G. Q. & Gregory, R. I. Selective blockade of microRNA processing by Lin28. Science 320, 97–100 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Heo, I. et al. Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol. Cell 32, 276–284 (2008). References 124–126 reveal that LIN28A and LIN28B selectively inhibit let-7 miRNA biogenesis.

    Article  CAS  PubMed  Google Scholar 

  126. Newman, M. A., Thomson, J. M. & Hammond, S. M. Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 14, 1539–1549 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Madison, B. B. et al. LIN28B promotes growth and tumorigenesis of the intestinal epithelium via Let-7. Genes Dev. 27, 2233–2245 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Urbach, A. et al. Lin28 sustains early renal progenitors and induces Wilms tumor. Genes Dev. 28, 971–982 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Viswanathan, S. R. et al. Lin28 promotes transformation and is associated with advanced human malignancies. Nature Genet. 41, 843–848 (2009). This paper reveals the roles of the LIN28–let-7 pathway in the regulation of oncogenesis.

    Article  CAS  PubMed  Google Scholar 

  130. Nguyen, L. H. et al. Lin28b is sufficient to drive liver cancer and necessary for its maintenance in murine models. Cancer Cell 26, 248–261 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Molenaar, J. J. et al. LIN28B induces neuroblastoma and enhances MYCN levels via let-7 suppression. Nature Genet. 44, 1199–1206 (2012).

    Article  CAS  PubMed  Google Scholar 

  132. Beachy, S. H. et al. Enforced expression of Lin28b leads to impaired T-cell development, release of inflammatory cytokines, and peripheral T-cell lymphoma. Blood 120, 1048–1059 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. King, C. E. et al. LIN28B fosters colon cancer migration, invasion and transformation through let-7-dependent and -independent mechanisms. Oncogene 30, 4185–4193 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Thornton, J. E. & Gregory, R. I. How does Lin28 let-7 control development and disease? Trends Cell Biol. 22, 474–482 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhu, H. et al. The Lin28/let-7 axis regulates glucose metabolism. Cell 147, 81–94 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Iliopoulos, D., Hirsch, H. A. & Struhl, K. An epigenetic switch involving NF-κB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 139, 693–706 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hamano, R. et al. High expression of Lin28 is associated with tumour aggressiveness and poor prognosis of patients in oesophagus cancer. Br. J. Cancer 106, 1415–1423 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Picard, D. et al. Markers of survival and metastatic potential in childhood CNS primitive neuro-ectodermal brain tumours: an integrative genomic analysis. Lancet Oncol. 13, 838–848 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Diskin, S. J. et al. Common variation at 6q16 within HACE1 and LIN28B influences susceptibility to neuroblastoma. Nature Genet. 44, 1126–1130 (2012).

    Article  CAS  PubMed  Google Scholar 

  140. Hovestadt, V. et al. Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing. Nature 510, 537–541 (2014).

    Article  CAS  PubMed  Google Scholar 

  141. Zhang, W. C. et al. Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell 148, 259–272 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Piskounova, E. et al. Determinants of microRNA processing inhibition by the developmentally regulated RNA-binding protein Lin28. J. Biol. Chem. 283, 21310–21314 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Nam, Y., Chen, C., Gregory, R. I., Chou, J. J. & Sliz, P. Molecular basis for interaction of let-7 microRNAs with Lin28. Cell 147, 1080–1091 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hagan, J. P., Piskounova, E. & Gregory, R. I. Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nature Struct. Mol. Biol. 16, 1021–1025 (2009).

    Article  CAS  Google Scholar 

  145. Heo, I. et al. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 138, 696–708 (2009).

    Article  CAS  PubMed  Google Scholar 

  146. Thornton, J. E., Chang, H. M., Piskounova, E. & Gregory, R. I. Lin28-mediated control of let-7 microRNA expression by alternative TUTases Zcchc11 (TUT4) and Zcchc6 (TUT7). RNA 18, 1875–1885 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Chang, H. M., Triboulet, R., Thornton, J. E. & Gregory, R. I. A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28–let-7 pathway. Nature 497, 244–248 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Faehnle, C. R., Walleshauser, J. & Joshua-Tor, L. Mechanism of Dis3l2 substrate recognition in the Lin28–let-7 pathway. Nature 514, 252–256 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ustianenko, D. et al. Mammalian DIS3L2 exoribonuclease targets the uridylated precursors of let-7 miRNAs. RNA 19, 1632–1638 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Astuti, D. et al. Germline mutations in DIS3L2 cause the Perlman syndrome of overgrowth and Wilms tumor susceptibility. Nature Genet. 44, 277–284 (2012).

    Article  CAS  PubMed  Google Scholar 

  151. Kumar, M. S. et al. HMGA2 functions as a competing endogenous RNA to promote lung cancer progression. Nature 505, 212–217 (2014).

    Article  CAS  PubMed  Google Scholar 

  152. Chin, L. J. et al. A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non-small cell lung cancer risk. Cancer Res. 68, 8535–8540 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kanellopoulou, C. et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev. 19, 489–501 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wang, Y., Medvid, R., Melton, C., Jaenisch, R. & Blelloch, R. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nature Genet. 39, 380–385 (2007).

    Article  CAS  PubMed  Google Scholar 

  155. Chakravarti, D. et al. Induced multipotency in adult keratinocytes through down-regulation of ΔNp63 or DGCR8. Proc. Natl Acad. Sci. USA 111, E572–E581 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  157. Gurtan, A. M. et al. Let-7 represses Nr6a1 and a mid-gestation developmental program in adult fibroblasts. Genes Dev. 27, 941–954 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Melton, C., Judson, R. L. & Blelloch, R. Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 463, 621–626 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Trang, P. et al. Regression of murine lung tumors by the let-7 microRNA. Oncogene 29, 1580–1587 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Yu, F. et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131, 1109–1123 (2007).

    Article  CAS  PubMed  Google Scholar 

  161. Li, X. et al. Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture. Nature Med. 20, 769–777 (2014).

    Article  CAS  PubMed  Google Scholar 

  162. Muralidhar, B. et al. Global microRNA profiles in cervical squamous cell carcinoma depend on Drosha expression levels. J. Pathol. 212, 368–377 (2007).

    Article  CAS  PubMed  Google Scholar 

  163. Sand, M. et al. Expression levels of the microRNA processing enzymes Drosha and dicer in epithelial skin cancer. Cancer Invest. 28, 649–653 (2010).

    Article  CAS  PubMed  Google Scholar 

  164. Passon, N. et al. Expression of Dicer and Drosha in triple-negative breast cancer. J. Clin. Pathol. 65, 320–326 (2012).

    Article  CAS  PubMed  Google Scholar 

  165. Avery-Kiejda, K. A., Braye, S. G., Forbes, J. F. & Scott, R. J. The expression of Dicer and Drosha in matched normal tissues, tumours and lymph node metastases in triple negative breast cancer. BMC Cancer 14, 253 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Papachristou, D. J. et al. Immunohistochemical analysis of the endoribonucleases Drosha, Dicer and Ago2 in smooth muscle tumours of soft tissues. Histopathology 60, E28–E36 (2012).

    Article  PubMed  Google Scholar 

  167. Tchernitsa, O. et al. Systematic evaluation of the miRNA-ome and its downstream effects on mRNA expression identifies gastric cancer progression. J. Pathol. 222, 310–319 (2010).

    Article  PubMed  CAS  Google Scholar 

  168. Vaksman, O., Hetland, T. E., Trope, C. G., Reich, R. & Davidson, B. Argonaute, Dicer, and Drosha are up-regulated along tumor progression in serous ovarian carcinoma. Hum. Pathol. 43, 2062–2069 (2012).

    Article  CAS  PubMed  Google Scholar 

  169. Diaz-Garcia, C. V. et al. DICER1, DROSHA and miRNAs in patients with non-small cell lung cancer: implications for outcomes and histologic classification. Carcinogenesis 34, 1031–1038 (2013).

    Article  CAS  PubMed  Google Scholar 

  170. Catto, J. W. et al. Distinct microRNA alterations characterize high- and low-grade bladder cancer. Cancer Res. 69, 8472–8481 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Torres, A. et al. Major regulators of microRNAs biogenesis Dicer and Drosha are down-regulated in endometrial cancer. Tumour Biol. 32, 769–776 (2011).

    Article  CAS  PubMed  Google Scholar 

  172. Yan, M. et al. Dysregulated expression of dicer and drosha in breast cancer. Pathol. Oncol. Res. 18, 343–348 (2012).

    Article  CAS  PubMed  Google Scholar 

  173. Sand, M. et al. Expression levels of the microRNA maturing microprocessor complex component DGCR8 and the RNA-induced silencing complex (RISC) components argonaute-1, argonaute-2, PACT, TARBP1, and TARBP2 in epithelial skin cancer. Mol. Carcinog. 51, 916–922 (2011).

    Article  PubMed  CAS  Google Scholar 

  174. Ambs, S. et al. Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res. 68, 6162–6170 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Kim, B. et al. An essential microRNA maturing microprocessor complex component DGCR8 is up-regulated in colorectal carcinomas. Clin. Exp. Med. 14, 331–336 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Guo, Y. et al. Silencing the double-stranded RNA binding protein DGCR8 inhibits ovarian cancer cell proliferation, migration, and invasion. Pharm. Res. 32, 769–778 (2013).

    Article  CAS  Google Scholar 

  177. Chiosea, S. et al. Up-regulation of dicer, a component of the microRNA machinery, in prostate adenocarcinoma. Am. J. Pathol. 169, 1812–1820 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Jakymiw, A. et al. Overexpression of dicer as a result of reduced let-7 microRNA levels contributes to increased cell proliferation of oral cancer cells. Genes Chromosomes Cancer 49, 549–559 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Faber, C., Horst, D., Hlubek, F. & Kirchner, T. Overexpression of Dicer predicts poor survival in colorectal cancer. Eur. J. Cancer 47, 1414–1419 (2011).

    Article  CAS  PubMed  Google Scholar 

  180. Stratmann, J. et al. Dicer and miRNA in relation to clinicopathological variables in colorectal cancer patients. BMC Cancer 11, 345 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Papachristou, D. J. et al. Expression of the ribonucleases Drosha, Dicer, and Ago2 in colorectal carcinomas. Virchows Arch. 459, 431–440 (2011).

    Article  CAS  PubMed  Google Scholar 

  182. Chiosea, S. et al. Overexpression of Dicer in precursor lesions of lung adenocarcinoma. Cancer Res. 67, 2345–2350 (2007).

    Article  CAS  PubMed  Google Scholar 

  183. Ma, Z. et al. Up-regulated Dicer expression in patients with cutaneous melanoma. PLoS ONE 6, e20494 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Dedes, K. J. et al. Down-regulation of the miRNA master regulators Drosha and Dicer is associated with specific subgroups of breast cancer. Eur. J. Cancer 47, 138–150 (2011).

    Article  CAS  PubMed  Google Scholar 

  185. Wu, D. et al. Downregulation of Dicer, a component of the microRNA machinery, in bladder cancer. Mol. Med. Rep. 5, 695–699 (2012).

    CAS  PubMed  Google Scholar 

  186. Pampalakis, G., Diamandis, E. P., Katsaros, D. & Sotiropoulou, G. Down-regulation of dicer expression in ovarian cancer tissues. Clin. Biochem. 43, 324–327 (2010).

    Article  CAS  PubMed  Google Scholar 

  187. Faggad, A. et al. Prognostic significance of Dicer expression in ovarian cancer — link to global microRNA changes and oestrogen receptor expression. J. Pathol. 220, 382–391 (2010).

    Article  CAS  PubMed  Google Scholar 

  188. Khoshnaw, S. M. et al. Loss of Dicer expression is associated with breast cancer progression and recurrence. Breast Cancer Res. Treat. 135, 403–413 (2012).

    Article  CAS  PubMed  Google Scholar 

  189. Wu, J. F. et al. Down-regulation of Dicer in hepatocellular carcinoma. Med. Oncol. 28, 804–809 (2011).

    Article  CAS  PubMed  Google Scholar 

  190. Zhu, D. X. et al. Downregulated Dicer expression predicts poor prognosis in chronic lymphocytic leukemia. Cancer Sci. 103, 875–881 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Faggad, A. et al. Down-regulation of the microRNA processing enzyme Dicer is a prognostic factor in human colorectal cancer. Histopathology 61, 552–561 (2012).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

S.L. is a Damon Runyon-Sohn Pediatric Cancer Research Fellow supported by the Damon Runyon Cancer Research Foundation (DRSG-7-13). R.I.G. is supported by grants from the US National Cancer Institute (NCI) (R01CA163467) and the American Cancer Society (121635-RSG-11-175-01-RMC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard I. Gregory.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

OMIM

#601200

PowerPoint slides

Supplementary information

Glossary

3′ untranslated region

(3′ UTR). The non-coding region of mRNA between the translation termination codon and the poly(A) tail. The 3′ UTR often contains regulatory elements, such as miRNA binding sites, for post-transcriptional regulation of gene expression.

Ribonuclease III

(RNase III). Enzymes that can specifically recognize and cleave double-stranded RNA with their ribonuclease III domains.

Germline mutations

Heritable gene mutations that occur in germline tissues.

Somatic mutations

Gene mutations that occur in non-germline tissues that are not inherited.

Post-transcriptional gene silencing

A gene-silencing effect that controls gene expression after transcription, often mediated by small non-coding RNAs such as small interfering RNAs (siRNAs) and microRNAs (miRNAs).

Epithelial–mesenchymal transition

(EMT). A process that occurs during development or cancer progression in which the epithelial cells lose their cell polarity and cell–cell adhesion to become mesenchymal cells with migratory and invasive characteristics.

CpG islands

Genetic regions with high CpG content, often located at the gene promoter, that have important functions in regulating gene expression.

Microsatellite

Short (2–5 bp) tandem repeat of DNA that can be used as a genetic marker.

Loss of heterozygosity

(LOH). Deletion or mutation of the normal allele of a gene, of which the other allele is already deleted or inactivated, resulting in loss of both alleles of the gene.

Cold-shock domain

A protein domain of 70 amino acids that is often found in DNA- or RNA-binding proteins and that functions to protect cells during cold temperatures.

Cys-Cys-His-Cys (CCHC)-type zinc-fingers

Protein domains that are found in RNA-binding proteins or single-stranded DNA-binding proteins.

Terminal uridylyltransferases

(TUTases). Enzymes that catalyse the addition of one or more uridine monophosphate (UMP) molecules to the 3′ end of RNA.

Oncofetal genes

Genes that are typically highly expressed during fetal development and repressed in adult life, and reactivated in cancers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, S., Gregory, R. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 15, 321–333 (2015). https://doi.org/10.1038/nrc3932

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3932

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer