Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hijacked in cancer: the KMT2 (MLL) family of methyltransferases

Key Points

  • The histone–lysine N-methyltransferase (KMT2) family comprises a set of lysine methyltransferases that methylate the lysine 4 residue on histone H3 (H3K4). KMT2 family members demonstrate different substrate specificity in vitro and their methyltransferase activities are dependent, to varying degrees, on association with three core subunits (WD repeat protein 5, retinoblastoma binding protein 5 and ASH2L).

  • KMT2 family members have intrinsically different biochemical properties and are recruited to different genomic regions owing to their distinct domain structures and distinct interacting proteins.

  • KMT2 family members have important roles in transcription regulation. Among them, KMT2C and KMT2D are crucial for monomethylation of H3K4 at distal regulatory enhancers, whereas KMT2F and KMT2G are responsible for the majority of H3K4 trimethylation at transcription start sites.

  • There is extensive interplay between KMT2-dependent H3K4 methylation and DNA methylation, underlying the potential epigenetic stability of this histone methylation.

  • Mutations in the KMT2 family are among the most common genetic aberrations in human cancer — including haematological malignancies as well as solid tumours, such as large intestine, lung, endometrial, breast, bladder and brain cancers.

  • Mutations in the KMT2 family frequently involve the SET domain and the plant homeotic domains. Of somatic mutations in cancers with known zygosity, heterozygous mutations predominate. These features suggest that the wild-type KMT2 allele may be required for tumour survival, similar to KMT2A-rearranged mixed lineage leukaemia.

  • KMT2 family members may have distinct roles in cancer. Although it remains unclear whether cancer-derived KMT2 mutations are 'drivers' or 'passengers', mechanistic studies in animal models suggest that KMT2C may be a tumour suppressor and KMT2A and KMT2D may be proteins derived from proto-oncogenes.

  • The targeting of the fusion protein and wild-type KMT2A, as well as their interacting proteins, has emerged as a promising strategy to treat mixed lineage leukaemia, and may apply more broadly to a variety of cancers.

Abstract

Histone–lysine N-methyltransferase 2 (KMT2) family proteins methylate lysine 4 on the histone H3 tail at important regulatory regions in the genome and thereby impart crucial functions through modulating chromatin structures and DNA accessibility. Although the human KMT2 family was initially named the mixed-lineage leukaemia (MLL) family, owing to the role of the first-found member KMT2A in this disease, recent exome-sequencing studies revealed KMT2 genes to be among the most frequently mutated genes in many types of human cancers. Efforts to integrate the molecular mechanisms of KMT2 with its roles in tumorigenesis have led to the development of first-generation inhibitors of KMT2 function, which could become novel cancer therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Metazoan KMT2 family histone methyltransferases.
Figure 2: Distinct distributions of KMT2 enzymes at transcription regulatory regions.
Figure 3: Schematic for the pathogenesis of MLL.

Similar content being viewed by others

References

  1. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Shilatifard, A. Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu. Rev. Biochem. 75, 243–269 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Schuettengruber, B., Martinez, A. M., Iovino, N. & Cavalli, G. Trithorax group proteins: switching genes on and keeping them active. Nature Rev. Mol. Cell Biol. 12, 799–814 (2011).

    Article  CAS  Google Scholar 

  5. Feinberg, A. P., Ohlsson, R. & Henikoff, S. The epigenetic progenitor origin of human cancer. Nature Rev. Genet. 7, 21–33 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Rodriguez-Paredes, M. & Esteller, M. Cancer epigenetics reaches mainstream oncology. Nature Med. 17, 330–339 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Krivtsov, A. V. & Armstrong, S. A. MLL translocations, histone modifications and leukaemia stem-cell development. Nature Rev. Cancer 7, 823–833 (2007).

    Article  CAS  Google Scholar 

  8. Liedtke, M. & Cleary, M. L. Therapeutic targeting of MLL. Blood 113, 6061–6068 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McCabe, N. R. et al. Cloning of cDNAs of the MLL gene that detect DNA rearrangements and altered RNA transcripts in human leukemic cells with 11q23 translocations. Proc. Natl Acad. Sci. USA 89, 11794–11798 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tkachuk, D. C., Kohler, S. & Cleary, M. L. Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias. Cell 71, 691–700 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Cimino, G. et al. Cloning of ALL-1, the locus involved in leukemias with the t(4;11)(q21;q23),t(9;11)(p22;q23), and t(11;19)(q23;p13) chromosome translocations. Cancer Res. 51, 6712–6714 (1991).

    CAS  PubMed  Google Scholar 

  12. Djabali, M. et al. A trithorax-like gene is interrupted by chromosome 11q23 translocations in acute leukemias. Nature Genet. 2, 113–118 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Milne, T. A. et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol. Cell 10, 1107–1117 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Nakamura, T. et al. ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol. Cell 10, 1119–1128 (2002). References 13 and 14 were two of the first papers to show that KMT2A — the first-found member of the mammalian KMT2 family — has H3K4 methyltransferase activity.

    Article  CAS  PubMed  Google Scholar 

  15. Ding, L. et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455, 1069–1075 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. The Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).

  17. Kandoth, C. et al. Mutational landscape and significance across 12 major cancer types. Nature 502, 333–339 (2013). This paper uses next-generation sequencing techniques to study 3,281 tumours across 12 tumour types and reveals that genes in the KMT2 family are among the most frequently mutated genes in human cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. FitzGerald, K. T. & Diaz, M. O. MLL2: a new mammalian member of the trx/MLL family of genes. Genomics 59, 187–192 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Pijnappel, W. W. et al. The S. cerevisiae SET3 complex includes two histone deacetylases, Hos2 and Hst1, and is a meiotic-specific repressor of the sporulation gene program. Genes Dev. 15, 2991–3004 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Goo, Y. H. et al. Activating signal cointegrator 2 belongs to a novel steady-state complex that contains a subset of trithorax group proteins. Mol. Cell. Biol. 23, 140–149 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hughes, C. M. et al. Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. Mol. Cell 13, 587–597 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Cho, Y. W. et al. PTIP associates with MLL3- and MLL4-containing histone H3 lysine 4 methyltransferase complex. J. Biol. Chem. 282, 20395–20406 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Lee, J. H. & Skalnik, D. G. CpG-binding protein (CXXC finger protein 1) is a component of the mammalian Set1 histone H3-Lys4 methyltransferase complex, the analogue of the yeast Set1/COMPASS complex. J. Biol. Chem. 280, 41725–41731 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Lee, J. H., Tate, C. M., You, J. S. & Skalnik, D. G. Identification and characterization of the human Set1B histone H3-Lys4 methyltransferase complex. J. Biol. Chem. 282, 13419–13428 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Dou, Y. et al. Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell 121, 873–885 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Dou, Y. et al. Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nature Struct. Mol. Biol. 13, 713–719 (2006). This paper was the first to use in vitro biochemical reconstitution to define the minimal required components in the KMT2A complex. It shows that a conserved four-protein complex is able to recapitulate the methyltransferase activity of the holocomplex.

    Article  CAS  Google Scholar 

  27. Patel, A., Dharmarajan, V., Vought, V. E. & Cosgrove, M. S. On the mechanism of multiple lysine methylation by the human mixed lineage leukemia protein-1 (MLL1) core complex. J. Biol. Chem. 284, 24242–24256 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Takahashi, Y. H. et al. Structural analysis of the core COMPASS family of histone H3K4 methylases from yeast to human. Proc. Natl Acad. Sci. USA 108, 20526–20531 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Patel, A., Dharmarajan, V. & Cosgrove, M. S. Structure of WDR5 bound to mixed lineage leukemia protein-1 peptide. J. Biol. Chem. 283, 32158–32161 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Chen, Y., Cao, F., Wan, B., Dou, Y. & Lei, M. Structure of the SPRY domain of human Ash2L and its interactions with RbBP5 and DPY30. Cell Res. 22, 598–602 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen, Y. et al. Crystal structure of the N-terminal region of human Ash2L shows a winged-helix motif involved in DNA binding. EMBO Rep. 12, 797–803 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schuetz, A. et al. Structural basis for molecular recognition and presentation of histone H3 by WDR5. EMBO J. 25, 4245–4252 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Couture, J. F., Collazo, E. & Trievel, R. C. Molecular recognition of histone H3 by the WD40 protein WDR5. Nature Struct. Mol. Biol. 13, 698–703 (2006).

    Article  CAS  Google Scholar 

  34. Sarvan, S. et al. Crystal structure of the trithorax group protein ASH2L reveals a forkhead-like DNA binding domain. Nature Struct. Mol. Biol. 18, 857–859 (2011).

    Article  CAS  Google Scholar 

  35. Ruthenburg, A. J. et al. Histone H3 recognition and presentation by the WDR5 module of the MLL1 complex. Nature Struct. Mol. Biol. 13, 704–712 (2006).

    Article  CAS  Google Scholar 

  36. Southall, S. M., Wong, P. S., Odho, Z., Roe, S. M. & Wilson, J. R. Structural basis for the requirement of additional factors for MLL1 SET domain activity and recognition of epigenetic marks. Mol. Cell 33, 181–191 (2009). This paper shows the crystal structure of the KMT2A SET domain, which is distinct from other SET domain structures. It reveals the molecular basis for KMT2A regulation by other interacting proteins.

    Article  CAS  PubMed  Google Scholar 

  37. Steward, M. M. et al. Molecular regulation of H3K4 trimethylation by ASH2L, a shared subunit of MLL complexes. Nature Struct. Mol. Biol. 13, 852–854 (2006).

    Article  CAS  Google Scholar 

  38. Cao, F. et al. An Ash2L/RbBP5 heterodimer stimulates the MLL1 methyltransferase activity through coordinated substrate interactions with the MLL1 SET domain. PLoS ONE 5, e14102 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Patel, A. et al. Automethylation activities within the mixed lineage leukemia-1 (MLL1) core complex reveal evidence supporting a “two-active site” model for multiple histone H3 lysine 4 methylation. J. Biol. Chem. 289, 868–884 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Song, J. J. & Kingston, R. E. WDR5 interacts with mixed lineage leukemia (MLL) protein via the histone H3-binding pocket. J. Biol. Chem. 283, 35258–35264 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Avdic, V. et al. Structural and biochemical insights into MLL1 core complex assembly. Structure 19, 101–108 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Patel, A., Vought, V. E., Dharmarajan, V. & Cosgrove, M. S. A conserved arginine-containing motif crucial for the assembly and enzymatic activity of the mixed lineage leukemia protein-1 core complex. J. Biol. Chem. 283, 32162–32175 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Dharmarajan, V., Lee, J. H., Patel, A., Skalnik, D. G. & Cosgrove, M. S. Structural basis for WDR5 interaction (Win) motif recognition in human SET1 family histone methyltransferases. J. Biol. Chem. 287, 27275–27289 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Karatas, H., Townsend, E. C., Bernard, D., Dou, Y. & Wang, S. Analysis of the binding of mixed lineage leukemia 1 (MLL1) and histone 3 peptides to WD repeat domain 5 (WDR5) for the design of inhibitors of the MLL1–WDR5 interaction. J. Med. Chem. 53, 5179–5185 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cao, F. et al. Targeting MLL1 H3K4 methyltransferase activity in mixed-lineage leukemia. Mol. Cell 53, 247–261 (2014). This paper describes the development of the first KMT2A-specific small-molecule inhibitor and the validation of therapeutic targeting of KMT2A activity in MLL.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Karatas, H. et al. High-affinity, small-molecule peptidomimetic inhibitors of MLL1/WDR5 protein–protein interaction. J. Am. Chem. Soc. 135, 669–682 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Senisterra, G. et al. Small-molecule inhibition of MLL activity by disruption of its interaction with WDR5. Biochem. J. 449, 151–159 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Hsieh, J. J., Cheng, E. H. & Korsmeyer, S. J. Taspase1: a threonine aspartase required for cleavage of MLL and proper HOX gene expression. Cell 115, 293–303 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Yokoyama, A., Kitabayashi, I., Ayton, P. M., Cleary, M. L. & Ohki, M. Leukemia proto-oncoprotein MLL is proteolytically processed into 2 fragments with opposite transcriptional properties. Blood 100, 3710–3718 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Yokoyama, A. et al. MLL becomes functional through intra-molecular interaction not by proteolytic processing. PLoS ONE 8, e73649 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wu, L. et al. ASH2L regulates ubiquitylation signaling to MLL: trans-regulation of H3 K4 methylation in higher eukaryotes. Mol. Cell 49, 1108–1120 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee, J. E. et al. H3K4 mono- and di-methyltransferase MLL4 is required for enhancer activation during cell differentiation. eLife 2, e01503 (2013). This paper uses a genetic approach to reveal that KMT2D is one of the KMT2s regulating H3K4me at gene enhancers, and that KMT2D has important roles in cell differentiation.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Dhar, S. S. et al. Trans-tail regulation of MLL4-catalyzed H3K4 methylation by H4R3 symmetric dimethylation is mediated by a tandem PHD of MLL4. Genes Dev. 26, 2749–2762 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tang, Z. et al. SET1 and p300 act synergistically, through coupled histone modifications, in transcriptional activation by p53. Cell 154, 297–310 (2013). This paper demonstrates the transcription factor-dependent recruitment of KMT2F, and the function of KMT2F in transcription activation, by using a fully reconstituted in vitro transcription system. The results support the evidence that suggests KMT2F is the cause rather than a consequence of transcription activation, distinct from the yeast Set1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nayak, A., Viale-Bouroncle, S., Morsczeck, C. & Muller, S. The SUMO-specific isopeptidase SENP3 regulates MLL1/MLL2 methyltransferase complexes and controls osteogenic differentiation. Mol. Cell 55, 47–58 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. van Nuland, R. et al. Quantitative dissection and stoichiometry determination of the human SET1/MLL histone methyltransferase complexes. Mol. Cell. Biol. 33, 2067–2077 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yokoyama, A. & Cleary, M. L. Menin critically links MLL proteins with LEDGF on cancer-associated target genes. Cancer Cell 14, 36–46 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Murai, M. J. et al. The same site on the integrase-binding domain of lens epithelium-derived growth factor is a therapeutic target for MLL leukemia and HIV. Blood 124, 3730–3737 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mo, R., Rao, S. M. & Zhu, Y. J. Identification of the MLL2 complex as a coactivator for estrogen receptor α. J. Biol. Chem. 281, 15714–15720 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Patel, S. R., Kim, D., Levitan, I. & Dressler, G. R. The BRCT-domain containing protein PTIP links PAX2 to a histone H3, lysine 4 methyltransferase complex. Dev. Cell 13, 580–592 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tyagi, S., Chabes, A. L., Wysocka, J. & Herr, W. E2F activation of S phase promoters via association with HCF-1 and the MLL family of histone H3K4 methyltransferases. Mol. Cell 27, 107–119 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Takeda, S. et al. Proteolysis of MLL family proteins is essential for taspase1-orchestrated cell cycle progression. Genes Dev. 20, 2397–2409 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lee, J. et al. A tumor suppressive coactivator complex of p53 containing ASC-2 and histone H3-lysine-4 methyltransferase MLL3 or its paralogue MLL4. Proc. Natl Acad. Sci. USA 106, 8513–8518 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Aziz, A., Liu, Q. C. & Dilworth, F. J. Regulating a master regulator: establishing tissue-specific gene expression in skeletal muscle. Epigenetics 5, 691–695 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kawabe, Y., Wang, Y. X., McKinnell, I. W., Bedford, M. T. & Rudnicki, M. A. Carm1 regulates Pax7 transcriptional activity through MLL1/2 recruitment during asymmetric satellite stem cell divisions. Cell Stem Cell 11, 333–345 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Demers, C. et al. Activator-mediated recruitment of the MLL2 methyltransferase complex to the β-globin locus. Mol. Cell 27, 573–584 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tan, C. C. et al. Transcription factor Ap2δ associates with Ash2l and ALR, a trithorax family histone methyltransferase, to activate Hoxc8 transcription. Proc. Natl Acad. Sci. USA 105, 7472–7477 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fossati, A., Dolfini, D., Donati, G. & Mantovani, R. NF-Y recruits Ash2L to impart H3K4 trimethylation on CCAAT promoters. PLoS ONE 6, e17220 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Deng, C. et al. USF1 and hSET1A mediated epigenetic modifications regulate lineage differentiation and HoxB4 transcription. PLoS Genet. 9, e1003524 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ang, Y. S. et al. Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 145, 183–197 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kaikkonen, M. U. et al. Remodeling of the enhancer landscape during macrophage activation is coupled to enhancer transcription. Mol. Cell 51, 310–325 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Guenther, M. G. et al. Global and Hox-specific roles for the MLL1 methyltransferase. Proc. Natl Acad. Sci. USA 102, 8603–8608 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Allen, M. D. et al. Solution structure of the nonmethyl-CpG-binding CXXC domain of the leukaemia-associated MLL histone methyltransferase. EMBO J. 25, 4503–4512 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Saxonov, S., Berg, P. & Brutlag, D. L. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc. Natl Acad. Sci. USA 103, 1412–1417 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang, Z. et al. Pro isomerization in MLL1 PHD3-bromo cassette connects H3K4me readout to CyP33 and HDAC-mediated repression. Cell 141, 1183–1194 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Plevin, M. J., Mills, M. M. & Ikura, M. The LxxLL motif: a multifunctional binding sequence in transcriptional regulation. Trends Biochem. Sci. 30, 66–69 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Bustin, M. Regulation of DNA-dependent activities by the functional motifs of the high-mobility-group chromosomal proteins. Mol. Cell. Biol. 19, 5237–5246 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yang, Y. W. et al. Essential role of lncRNA binding for WDR5 maintenance of active chromatin and embryonic stem cell pluripotency. eLife 3, e02046 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, K. C. et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472, 120–124 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bach, C., Mueller, D., Buhl, S., Garcia-Cuellar, M. P. & Slany, R. K. Alterations of the CxxC domain preclude oncogenic activation of mixed-lineage leukemia 2. Oncogene 28, 815–823 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Wang, P. et al. Global analysis of H3K4 methylation defines MLL family member targets and points to a role for MLL1-mediated H3K4 methylation in the regulation of transcriptional initiation by RNA polymerase II. Mol. Cell. Biol. 29, 6074–6085 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Austenaa, L. et al. The histone methyltransferase Wbp7 controls macrophage function through GPI glycolipid anchor synthesis. Immunity 36, 572–585 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Guo, C. et al. Global identification of MLL2-targeted loci reveals MLL2's role in diverse signaling pathways. Proc. Natl Acad. Sci. USA 109, 17603–17608 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jiang, H. et al. Regulation of transcription by the MLL2 complex and MLL complex-associated AKAP95. Nature Struct. Mol. Biol. 20, 1156–1163 (2013).

    Article  CAS  Google Scholar 

  85. Ruthenburg, A. J., Allis, C. D. & Wysocka, J. Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol. Cell 25, 15–30 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Vermeulen, M. & Timmers, H. T. Grasping trimethylation of histone H3 at lysine 4. Epigenomics 2, 395–406 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Ruthenburg, A. J., Li, H., Patel, D. J. & Allis, C. D. Multivalent engagement of chromatin modifications by linked binding modules. Nature Rev. Mol. Cell Biol. 8, 983–994 (2007).

    Article  CAS  Google Scholar 

  88. Taverna, S. D., Li, H., Ruthenburg, A. J., Allis, C. D. & Patel, D. J. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nature Struct. Mol. Biol. 14, 1025–1040 (2007).

    Article  CAS  Google Scholar 

  89. Leung, A. et al. Histone H2B ubiquitylation and H3 lysine 4 methylation prevent ectopic silencing of euchromatic loci important for the cellular response to heat. Mol. Biol. Cell 22, 2741–2753 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Auriemma, L. B., Shah, S., Linden, L. M. & Henriksen, M. A. Knockdown of menin affects pre-mRNA processing and promoter fidelity at the interferon-γ inducible IRF1 gene. Epigenetics Chromatin 5, 2 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. van Dijk, E. L. et al. XUTs are a class of Xrn1-sensitive antisense regulatory non-coding RNA in yeast. Nature 475, 114–117 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Calo, E. & Wysocka, J. Modification of enhancer chromatin: what, how, and why? Mol. Cell 49, 825–837 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Buecker, C. & Wysocka, J. Enhancers as information integration hubs in development: lessons from genomics. Trends Genet. 28, 276–284 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lara-Astiaso, D. et al. Immunogenetics. Chromatin state dynamics during blood formation. Science 345, 943–949 (2014). This paper uses a novel indexing-first chromatin immunoprecipitation (iChIP) protocol to define genome-wide distribution patterns of H3K4me1 and H3K27 acetylation in all haematopoietic lineages, and it creates a comprehensive enhancer catalogue for each cell lineage based on its epigenetic landscape.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Heintzman, N. D. et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459, 108–112 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Akhtar-Zaidi, B. et al. Epigenomic enhancer profiling defines a signature of colon cancer. Science 336, 736–739 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Herz, H. M., Hu, D. & Shilatifard, A. Enhancer malfunction in cancer. Mol. Cell 53, 859–866 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Blobel, G. A. et al. A reconfigured pattern of MLL occupancy within mitotic chromatin promotes rapid transcriptional reactivation following mitotic exit. Mol. Cell 36, 970–983 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ooi, S. K. et al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448, 714–717 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhang, Y. et al. Chromatin methylation activity of Dnmt3a and Dnmt3a/3L is guided by interaction of the ADD domain with the histone H3 tail. Nucleic Acids Res. 38, 4246–4253 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Thomson, J. P. et al. CpG islands influence chromatin structure via the CpG-binding protein Cfp1. Nature 464, 1082–1086 (2010). This paper describes the interplay between DNA methylation and H3K4me at CpG islands. It shows the importance of unmethylated CpG for proper localization of KMT2F and KMT2G in cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Deaton, A. M. & Bird, A. CpG islands and the regulation of transcription. Genes Dev. 25, 1010–1022 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Erfurth, F. E. et al. MLL protects CpG clusters from methylation within the Hoxa9 gene, maintaining transcript expression. Proc. Natl Acad. Sci. USA 105, 7517–7522 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Risner, L. E. et al. Functional specificity of CpG DNA-binding CXXC domains in mixed lineage leukemia. J. Biol. Chem. 288, 29901–29910 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cierpicki, T. et al. Structure of the MLL CXXC domain–DNA complex and its functional role in MLL–AF9 leukemia. Nature Struct. Mol. Biol. 17, 62–68 (2010).

    Article  CAS  Google Scholar 

  106. Clouaire, T. et al. Cfp1 integrates both CpG content and gene activity for accurate H3K4me3 deposition in embryonic stem cells. Genes Dev. 26, 1714–1728 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Deplus, R. et al. TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS. EMBO J. 32, 645–655 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Petruk, S. et al. TrxG and PcG proteins but not methylated histones remain associated with DNA through replication. Cell 150, 922–933 (2012). This paper shows that D. melanogaster Trx-group protein (KMT2A orthologue) remains associated with chromatin during DNA replication and thus re-establishes H3 methylation patterns after DNA replication. This work points to the potential role of KMT2 enzymes in establishing epigenetic inheritance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wang, J., Muntean, A. G., Wu, L. & Hess, J. L. A subset of mixed lineage leukemia proteins has plant homeodomain (PHD)-mediated E3 ligase activity. J. Biol. Chem. 287, 43410–43416 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wang, J., Muntean, A. G. & Hess, J. L. ECSASB2 mediates MLL degradation during hematopoietic differentiation. Blood 119, 1151–1161 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Liu, H., Cheng, E. H. & Hsieh, J. J. Bimodal degradation of MLL by SCFSkp2 and APCCdc20 assures cell cycle execution: a critical regulatory circuit lost in leukemogenic MLL fusions. Genes Dev. 21, 2385–2398 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Liu, H. et al. Phosphorylation of MLL by ATR is required for execution of mammalian S-phase checkpoint. Nature 467, 343–346 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Soares, L. M., Radman-Livaja, M., Lin, S. G., Rando, O. J. & Buratowski, S. Feedback control of Set1 protein levels is important for proper H3K4 methylation patterns. Cell Rep. 6, 961–972 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ayton, P. M. & Cleary, M. L. Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene 20, 5695–5707 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Wood, L. D. et al. The genomic landscapes of human breast and colorectal cancers. Science 318, 1108–1113 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Gui, Y. et al. Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nature Genet. 43, 875–878 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Kandoth, C. et al. Integrated genomic characterization of endometrial carcinoma. Nature 497, 67–73 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Jones, W. D. et al. De novo mutations in MLL cause Wiedemann-Steiner syndrome. Am. J. Hum. Genet. 91, 358–364 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ansari, K. I., Kasiri, S. & Mandal, S. S. Histone methylase MLL1 has critical roles in tumor growth and angiogenesis and its knockdown suppresses tumor growth in vivo. Oncogene 32, 3359–3370 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. Takeda, S. et al. HGF-MET signals via the MLL–ETS2 complex in hepatocellular carcinoma. J. Clin. Invest. 123, 3154–3165 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Thiel, A. T. et al. MLL–AF9-induced leukemogenesis requires coexpression of the wild-type Mll allele. Cancer Cell 17, 148–159 (2010). This paper uses a genetic approach to establish the importance of wild-type KMT2A in MLL leukaemogenesis in vivo . It shows that despite gain-of-function KMT2A fusions, KMT2A is required to maintain the viability of leukaemia cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sierra, J., Yoshida, T., Joazeiro, C. A. & Jones, K. A. The APC tumor suppressor counteracts β-catenin activation and H3K4 methylation at Wnt target genes. Genes Dev. 20, 586–600 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Milne, T. A. et al. Menin and MLL cooperatively regulate expression of cyclin-dependent kinase inhibitors. Proc. Natl Acad. Sci. USA 102, 749–754 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Xia, Z. B. et al. The MLL fusion gene, MLL–AF4, regulates cyclin-dependent kinase inhibitor CDKN1B (p27kip1) expression. Proc. Natl Acad. Sci. USA 102, 14028–14033 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Glaser, S. et al. Multiple epigenetic maintenance factors implicated by the loss of Mll2 in mouse development. Development 133, 1423–1432 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Glaser, S. et al. The histone 3 lysine 4 methyltransferase, Mll2, is only required briefly in development and spermatogenesis. Epigenetics Chromatin 2, 5 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Andreu-Vieyra, C. V. et al. MLL2 is required in oocytes for bulk histone 3 lysine 4 trimethylation and transcriptional silencing. PLoS Biol. 8, e1000453 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kerimoglu, C. et al. Histone-methyltransferase MLL2 (KMT2B) is required for memory formation in mice. J. Neurosci. 33, 3452–3464 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lubitz, S., Glaser, S., Schaft, J., Stewart, A. F. & Anastassiadis, K. Increased apoptosis and skewed differentiation in mouse embryonic stem cells lacking the histone methyltransferase Mll2. Mol. Biol. Cell 18, 2356–2366 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Peifer, M. et al. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nature Genet. 44, 1104–1110 (2012).

    Article  CAS  PubMed  Google Scholar 

  132. Sjoblom, T. et al. The consensus coding sequences of human breast and colorectal cancers. Science 314, 268–274 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Morin, R. D. et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476, 298–303 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Parsons, D. W. et al. The genetic landscape of the childhood cancer medulloblastoma. Science 331, 435–439 (2011).

    Article  CAS  PubMed  Google Scholar 

  135. Kanda, H., Nguyen, A., Chen, L., Okano, H. & Hariharan, I. K. The Drosophila ortholog of MLL3 and MLL4, trithorax related, functions as a negative regulator of tissue growth. Mol. Cell. Biol. 33, 1702–1710 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Chen, C. et al. MLL3 is a haploinsufficient 7q tumor suppressor in acute myeloid leukemia. Cancer Cell 25, 652–665 (2014). This was the first paper to show that Kmt2c is a haploinsufficient tumour suppressor in mouse leukaemia models. This model recapitulates the heterozygous loss-of-function mutation for KMT2C in human cancers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Santos, M. A. et al. DNA-damage-induced differentiation of leukaemic cells as an anti-cancer barrier. Nature 514, 107–111 (2014). This paper describes the essential role of KMT2D in promoting MLL, both by regulating transcriptional programmes associated with the antioxidant response and by protecting genome integrity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505, 495–501 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ansari, K. I., Hussain, I., Kasiri, S. & Mandal, S. S. HOXC10 is overexpressed in breast cancer and transcriptionally regulated by estrogen via involvement of histone methylases MLL3 and MLL4. J. Mol. Endocrinol. 48, 61–75 (2012).

    Article  CAS  PubMed  Google Scholar 

  140. Kim, J. H. et al. UTX and MLL4 coordinately regulate transcriptional programs for cell proliferation and invasiveness in breast cancer cells. Cancer Res. 74, 1705–1717 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Guo, C. et al. KMT2D maintains neoplastic cell proliferation and global histone H3 lysine 4 monomethylation. Oncotarget 4, 2144–2153 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Corradin, O. et al. Combinatorial effects of multiple enhancer variants in linkage disequilibrium dictate levels of gene expression to confer susceptibility to common traits. Genome Res. 24, 1–13 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hippisley-Cox, J., Vinogradova, Y., Coupland, C. & Parker, C. Risk of malignancy in patients with schizophrenia or bipolar disorder: nested case-control study. Arch. Gen. Psychiatry 64, 1368–1376 (2007).

    Article  PubMed  Google Scholar 

  144. Takata, A. et al. Loss-of-function variants in schizophrenia risk and SETD1A as a candidate susceptibility gene. Neuron 82, 773–780 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Bernt, K. M. et al. MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell 20, 66–78 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Daigle, S. R. et al. Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 20, 53–65 (2011). This paper describes the development of small-molecule inhibitors for histone methyltransferase DOT1L and points to the potential therapeutic value of this targeting strategy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Deshpande, A. J. et al. AF10 regulates progressive H3K79 methylation and HOX gene expression in diverse AML subtypes. Cancer Cell 26, 896–908 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lin, C. et al. AFF4, a component of the ELL/P-TEFb elongation complex and a shared subunit of MLL chimeras, can link transcription elongation to leukemia. Mol. Cell 37, 429–437 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Yokoyama, A., Lin, M., Naresh, A., Kitabayashi, I. & Cleary, M. L. A higher-order complex containing AF4 and ENL family proteins with P-TEFb facilitates oncogenic and physiologic MLL-dependent transcription. Cancer Cell 17, 198–212 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Yang, Z. et al. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol. Cell 19, 535–545 (2005).

    Article  CAS  PubMed  Google Scholar 

  151. Jang, M. K. et al. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol. Cell 19, 523–534 (2005).

    Article  CAS  PubMed  Google Scholar 

  152. Zuber, J. et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478, 524–528 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Loven, J. et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153, 320–334 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Mueller, D. et al. Misguided transcriptional elongation causes mixed lineage leukemia. PLoS Biol. 7, e1000249 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Dawson, M. A. et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 478, 529–533 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Liu, H. et al. Proteasome inhibitors evoke latent tumor suppression programs in pro-B MLL leukemias through MLL–AF4. Cancer Cell 25, 530–542 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Yokoyama, A. et al. The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. Cell 123, 207–218 (2005).

    Article  CAS  PubMed  Google Scholar 

  158. Grembecka, J. et al. Menin–MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia. Nature Chem. Biol. 8, 277–284 (2012). This paper describes the first small-molecule inhibitor for targeting menin–KMT2A interaction and its potential application in MLL.

    Article  CAS  Google Scholar 

  159. Scacheri, P. C. et al. Genome-wide analysis of menin binding provides insights into MEN1 tumorigenesis. PLoS Genet. 2, e51 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Mishra, B. P. et al. The histone methyltransferase activity of MLL1 is dispensable for hematopoiesis and leukemogenesis. Cell Rep. 7, 1239–1247 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. So, C. W., Karsunky, H., Wong, P., Weissman, I. L. & Cleary, M. L. Leukemic transformation of hematopoietic progenitors by MLL–GAS7 in the absence of Hoxa7 or Hoxa9. Blood 103, 3192–3199 (2004).

    Article  CAS  PubMed  Google Scholar 

  162. Kumar, A. R. et al. Hoxa9 influences the phenotype but not the incidence of Mll–AF9 fusion gene leukemia. Blood 103, 1823–1828 (2004).

    Article  CAS  PubMed  Google Scholar 

  163. Ohyashiki, K., Kocova, M., Ryan, D. H., Rowe, J. M. & Sandberg, A. A. Secondary acute myeloblastic leukemia with a Ph translocation in a treated Wegener's granulomatosis. Cancer Genet. Cytogenet. 19, 331–333 (1986).

    Article  CAS  PubMed  Google Scholar 

  164. Bledau, A. S. et al. The H3K4 methyltransferase Setd1a is first required at the epiblast stage, whereas Setd1b becomes essential after gastrulation. Development 141, 1022–1035 (2014).

    Article  CAS  PubMed  Google Scholar 

  165. Yu, B. D., Hess, J. L., Horning, S. E., Brown, G. A. & Korsmeyer, S. J. Altered Hox expression and segmental identity in Mll-mutant mice. Nature 378, 505–508 (1995).

    Article  CAS  PubMed  Google Scholar 

  166. Hess, J. L., Yu, B. D., Li, B., Hanson, R. & Korsmeyer, S. J. Defects in yolk sac hematopoiesis in Mll-null embryos. Blood 90, 1799–1806 (1997).

    CAS  PubMed  Google Scholar 

  167. McMahon, K. A. et al. Mll has a critical role in fetal and adult hematopoietic stem cell self-renewal. Cell Stem Cell 1, 338–345 (2007).

    Article  CAS  PubMed  Google Scholar 

  168. Lee, J. et al. Targeted inactivation of MLL3 histone H3-Lys-4 methyltransferase activity in the mouse reveals vital roles for MLL3 in adipogenesis. Proc. Natl Acad. Sci. USA 105, 19229–19234 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Terranova, R., Agherbi, H., Boned, A., Meresse, S. & Djabali, M. Histone and DNA methylation defects at Hox genes in mice expressing a SET domain-truncated form of Mll. Proc. Natl Acad. Sci. USA 103, 6629–6634 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Lee, S. et al. Coactivator as a target gene specificity determinant for histone H3 lysine 4 methyltransferases. Proc. Natl Acad. Sci. USA 103, 15392–15397 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Goldsworthy, M. et al. Mutations in Mll2, an H3K4 methyltransferase, result in insulin resistance and impaired glucose tolerance in mice. PLoS ONE 8, e61870 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Jude, C. D. et al. Unique and independent roles for MLL in adult hematopoietic stem cells and progenitors. Cell Stem Cell 1, 324–337 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Mueller, D. et al. A role for the MLL fusion partner ENL in transcriptional elongation and chromatin modification. Blood 110, 4445–4454 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Milne, T. A. et al. Multiple interactions recruit MLL1 and MLL1 fusion proteins to the HOXA9 locus in leukemogenesis. Mol. Cell 38, 853–863 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Muntean, A. G. et al. The PAF complex synergizes with MLL fusion proteins at HOX loci to promote leukemogenesis. Cancer Cell 17, 609–621 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Krivtsov, A. V. et al. Global increase in H3K79 dimethylation in murine and human MLL–AF4 lymphoblastic leukemias. Blood 110, abstr. 344 (2007).

  177. Jo, S. Y., Granowicz, E. M., Maillard, I., Thomas, D. & Hess, J. L. Requirement for Dot1l in murine postnatal hematopoiesis and leukemogenesis by MLL translocation. Blood 117, 4759–4768 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Okada, Y. et al. hDOT1L links histone methylation to leukemogenesis. Cell 121, 167–178 (2005). This paper describes the interaction of DOT1L with the KMT2A fusion protein MLL–AF10. It is the first study that links H3K79me by DOT1L to KMT2A-rearranged leukaemia, and highlights alteration of epigenetic identity (that is, the switch of H3K79me and H3K4me activities) as the cause of MLL.

    Article  CAS  PubMed  Google Scholar 

  179. Tan, J. et al. CBX8, a polycomb group protein, is essential for MLL–AF9-induced leukemogenesis. Cancer Cell 20, 563–575 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Bursen, A. et al. The AF4.MLL fusion protein is capable of inducing ALL in mice without requirement of MLL.AF4. Blood 115, 3570–3579 (2010).

    Article  CAS  PubMed  Google Scholar 

  181. Benedikt, A. et al. The leukemogenic AF4–MLL fusion protein causes P-TEFb kinase activation and altered epigenetic signatures. Leukemia 25, 135–144 (2011).

    Article  CAS  PubMed  Google Scholar 

  182. Chen, W. et al. Malignant transformation initiated by Mll–AF9: gene dosage and critical target cells. Cancer Cell 13, 432–440 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Krivtsov, A. V. et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL–AF9. Nature 442, 818–822 (2006).

    Article  CAS  PubMed  Google Scholar 

  184. Corral, J. et al. An Mll–AF9 fusion gene made by homologous recombination causes acute leukemia in chimeric mice: a method to create fusion oncogenes. Cell 85, 853–861 (1996).

    Article  CAS  PubMed  Google Scholar 

  185. Collins, E. C., Pannell, R., Simpson, E. M., Forster, A. & Rabbitts, T. H. Inter-chromosomal recombination of Mll and Af9 genes mediated by Cre–loxP in mouse development. EMBO Rep. 1, 127–132 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Ng, S. B. et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nature Genet. 42, 790–793 (2010).

    Article  CAS  PubMed  Google Scholar 

  187. Bjornsson, H. T. et al. Histone deacetylase inhibition rescues structural and functional brain deficits in a mouse model of Kabuki syndrome. Sci. Transl. Med. 6, 256ra135 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Huang, P. H. et al. Histone deacetylase inhibitors stimulate histone H3 lysine 4 methylation in part via transcriptional repression of histone H3 lysine 4 demethylases. Mol. Pharmacol. 79, 197–206 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Berdasco, M. & Esteller, M. Genetic syndromes caused by mutations in epigenetic genes. Hum. Genet. 132, 359–383 (2013).

    Article  CAS  PubMed  Google Scholar 

  190. Shinsky, S. A. et al. A non-active-site SET domain surface crucial for the interaction of MLL1 and the RbBP5/Ash2L heterodimer within MLL family core complexes. J. Mol. Biol. 426, 2283–2299 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Kleefstra, T. et al. Disruption of an EHMT1-associated chromatin-modification module causes intellectual disability. Am. J. Hum. Genet. 91, 73–82 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. De Rubeis, S. et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515, 209–215. (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. van Os, J. & Kapur, S. Schizophrenia. Lancet 374, 635–645 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank G. Dresslor and K. Ge for critical reading of the manuscript. The authors recognize that they were unable to cover some important aspects of KMT2 biology, especially discoveries carried out in model organisms and KMT2A aberration in MLL, in this Review. The authors apologize to those that they have not been able to reference owing to space constraints. The funding is provided by the US National Institutes of Health (GM082856 to Y.D. and EY022299 to R.C.R.), the Leukemia and Lymphoma Society (LLS), American Cancer Society (ACS) and Stand Up to Cancer to Y.D.; Research to Prevent Blindness, and Knights Templar Eye Foundation to R.C.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yali Dou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

AT-rich sequence

A DNA sequence with a higher frequency of adenosine and thymidine that can be found in specific genomic regions such as transcription start sites (TATA boxes) or replication initiation sites in bacteria. It can be specifically bound by several protein motifs such as AT-hook, HMG motif and B-box zinc finger.

CpG dinucleotides

A cytosine and a guanine nucleotide separated by one phosphate. The frequency of CpG dinucleotides in human genomes is extremely low (1%), and most are methylated to form 5-methylcytosine. A relatively high level of unmethylated CpG dinucleotides is usually associated with promoters of actively transcribed genes.

H3K79me

Histone H3 lysine 79 methylation is deposited by histone methyltransferase DOT1L. H3K79me is commonly found in the transcribed gene-coding regions and is considered a histone mark for transcription elongation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, R., Dou, Y. Hijacked in cancer: the KMT2 (MLL) family of methyltransferases. Nat Rev Cancer 15, 334–346 (2015). https://doi.org/10.1038/nrc3929

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3929

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer