Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Unravelling mechanisms of p53-mediated tumour suppression

Abstract

p53 is a crucial tumour suppressor that responds to diverse stress signals by orchestrating specific cellular responses, including transient cell cycle arrest, cellular senescence and apoptosis, which are all processes associated with tumour suppression. However, recent studies have challenged the relative importance of these canonical cellular responses for p53-mediated tumour suppression and have highlighted roles for p53 in modulating other cellular processes, including metabolism, stem cell maintenance, invasion and metastasis, as well as communication within the tumour microenvironment. In this Opinion article, we discuss the roles of classical p53 functions, as well as emerging p53-regulated processes, in tumour suppression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The classical view of p53 activation and response.
Figure 2: A revised view of p53-activating signals and responses that are important for tumour suppression.
Figure 3: p53 suppresses cancer through transcriptional activation, by regulating diverse biological processes through transactivation of target genes.

Similar content being viewed by others

References

  1. Vousden, K. H. & Prives, C. Blinded by the light: the growing complexity of p53. Cell 137, 413–431 (2009).

    CAS  PubMed  Google Scholar 

  2. Brady, C. A. & Attardi, L. D. p53 at a glance. J. Cell Sci. 123, 2527–2532 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lang, G. A. et al. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 119, 861–872 (2004).

    CAS  PubMed  Google Scholar 

  4. Song, H. Hollstein, M. & Xu, Y. p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM. Nature Cell Biol. 9, 573–580 (2007).

    CAS  PubMed  Google Scholar 

  5. Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    CAS  PubMed  Google Scholar 

  6. Malkin, D. et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250, 1233–1238 (1990).

    CAS  PubMed  Google Scholar 

  7. Miller, L. D. et al. An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc. Natl Acad. Sci. USA 102, 13550–13555 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Olivier, M. & Taniere, P. Somatic mutations in cancer prognosis and prediction: lessons from TP53 and EGFR genes. Curr. Opin. Oncol. 23, 88–92 (2011).

    CAS  PubMed  Google Scholar 

  9. Mizuno, H., Spike, B. T., Wahl, G. M. & Levine, A. J. Inactivation of p53 in breast cancers correlates with stem cell transcriptional signatures. Proc. Natl Acad. Sci. USA 107, 22745–22750 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Rivlin, N., Brosh, R., Oren, M. & Rotter, V. Mutations in the p53 tumor suppressor gene: important milestones at the various steps of tumorigenesis. Genes Cancer 2, 466–474 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Giaccia, A. J. & Kastan, M. B. The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev. 12, 2973–2983 (1998).

    CAS  PubMed  Google Scholar 

  12. Hu, W., Feng, Z. & Levine, A. J. The regulation of multiple p53 stress responses is mediated through MDM2. Genes Cancer 3, 199–208 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Brady, C. A. et al. Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell 145, 571–583 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, T. et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell 149, 1269–1283 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Valente, L. J. et al. p53 efficiently suppresses tumor development in the complete absence of its cell-cycle inhibitory and proapoptotic effectors p21, Puma, and Noxa. Cell Rep. 3, 1339–1345 (2013).

    CAS  PubMed  Google Scholar 

  16. Riley, T., Sontag, E., Chen, P. & Levine, A. Transcriptional control of human p53-regulated genes. Nat. Rev. Mol. Cell Biol. 9, 402–412 (2008).

    CAS  PubMed  Google Scholar 

  17. Donehower, L. A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    CAS  PubMed  Google Scholar 

  18. Jacks, T. et al. Tumor spectrum analysis in p53-mutant mice. Curr. Biol. 4, 1–7 (1994).

    CAS  PubMed  Google Scholar 

  19. Purdie, C. A. et al. Tumour incidence, spectrum and ploidy in mice with a large deletion in the p53 gene. Oncogene 9, 603–609 (1994).

    CAS  PubMed  Google Scholar 

  20. Harvey, M. et al. Genetic background alters the spectrum of tumors that develop in p53-deficient mice. FASEB J. 7, 938–943 (1993).

    CAS  PubMed  Google Scholar 

  21. Attardi, L. D. & Donehower, L. A. Probing p53 biological functions through the use of genetically engineered mouse models. Mutat. Res. 576, 4–21 (2005).

    CAS  PubMed  Google Scholar 

  22. Beckerman, R. & Prives, C. Transcriptional regulation by p53. Cold Spring Harb. Perspect Biol. 2, a000935 (2010).

    PubMed  PubMed Central  Google Scholar 

  23. Olivier, M., Hollstein, M. & Hainaut, P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb. Perspect Biol. 2, a001008 (2010).

    PubMed  PubMed Central  Google Scholar 

  24. Friedman, P. N., Chen, X., Bargonetti, J. & Prives, C. The p53 protein is an unusually shaped tetramer that binds directly to DNA. Proc. Natl Acad. Sci. USA 90, 3319–3323 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bieging, K. T. & Attardi, L. D. Deconstructing p53 transcriptional networks in tumor suppression. Trends Cell Biol. 22, 97–106 (2012).

    CAS  PubMed  Google Scholar 

  26. Smeenk, L. et al. Role of p53 serine 46 in p53 target gene regulation. PLoS ONE 6, e17574 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kenzelmann Broz, D. et al. Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes Dev. 27, 1016–1031 (2013).

    PubMed  PubMed Central  Google Scholar 

  28. Nikulenkov, F. et al. Insights into p53 transcriptional function via genome-wide chromatin occupancy and gene expression analysis. Cell Death Differ. 19, 1992–2002 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Johnson, T. M., Hammond, E. M., Giaccia, A. & Attardi, L. D. The p53QS transactivation-deficient mutant shows stress-specific apoptotic activity and induces embryonic lethality. Nature Genet. 37, 145–152 (2005).

    CAS  PubMed  Google Scholar 

  30. Jiang, D. et al. Full p53 transcriptional activation potential is dispensable for tumor suppression in diverse lineages. Proc. Natl Acad. Sci. USA 108, 17123–17128 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lane, D. P. Cancer. p53, guardian of the genome. Nature 358, 15–16 (1992).

    CAS  PubMed  Google Scholar 

  32. el-Deiry, W. S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993).

    CAS  PubMed  Google Scholar 

  33. Deng, C., Zhang, P., Harper, J. W., Elledge, S. J. & Leder, P. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82, 675–684 (1995).

    CAS  PubMed  Google Scholar 

  34. Brugarolas, J. et al. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 377, 552–557 (1995).

    CAS  PubMed  Google Scholar 

  35. Martin-Caballero, J., Flores, J. M., Garcia-Palencia, P. & Serrano, M. Tumor susceptibility of p21(Waf1/Cip1)-deficient mice. Cancer Res. 61, 6234–6238 (2001).

    CAS  PubMed  Google Scholar 

  36. Hollander, M. C. et al. Genomic instability in Gadd45a-deficient mice. Nature Genet. 23, 176–184 (1999).

    CAS  PubMed  Google Scholar 

  37. Doumont, G. et al. G1 checkpoint failure and increased tumor susceptibility in mice lacking the novel p53 target Ptprv. EMBO J. 24, 3093–3103 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, Z. G. et al. Role of PML in cell growth and the retinoic acid pathway. Science 279, 1547–1551 (1998).

    CAS  PubMed  Google Scholar 

  39. Rego, E. M. et al. Role of promyelocytic leukemia (PML) protein in tumor suppression. J. Exp. Med. 193, 521–529 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tront, J. S., Hoffman, B. & Liebermann, D. A. Gadd45a suppresses Ras-driven mammary tumorigenesis by activation of c-Jun NH2-terminal kinase and p38 stress signaling resulting in apoptosis and senescence. Cancer Res. 66, 8448–8454 (2006).

    CAS  PubMed  Google Scholar 

  41. Tront, J. S. et al. Gadd45a functions as a promoter or suppressor of breast cancer dependent on the oncogenic stress. Cancer Res. 70, 9671–9681 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hildesheim, J. et al. Gadd45a protects against UV irradiation-induced skin tumors, and promotes apoptosis and stress signaling via MAPK and p53. Cancer Res. 62, 7305–7315 (2002).

    CAS  PubMed  Google Scholar 

  43. Liu, G. et al. Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice. Nature Genet. 36, 63–68 (2004).

    CAS  PubMed  Google Scholar 

  44. Ludwig, R. L., Bates, S. & Vousden, K. H. Differential activation of target cellular promoters by p53 mutants with impaired apoptotic function. Mol. Cell. Biol. 16, 4952–4960 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Rowan, S. et al. Specific loss of apoptotic but not cell-cycle arrest function in a human tumor derived p53 mutant. EMBO J. 15, 827–838 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Brosh, R. & Rotter, V. Transcriptional control of the proliferation cluster by the tumor suppressor p53. Mol. Biosyst. 6, 17–29 (2010).

    CAS  PubMed  Google Scholar 

  47. Barboza, J. A., Liu, G., Ju, Z., El-Naggar, A. K. & Lozano, G. p21 delays tumor onset by preservation of chromosomal stability. Proc. Natl Acad. Sci. USA 103, 19842–19847 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Timofeev, O. et al. p53 DNA binding cooperativity is essential for apoptosis and tumor suppression in vivo. Cell Rep. 3, 1512–1525 (2013).

    CAS  PubMed  Google Scholar 

  49. Schlereth, K. et al. DNA binding cooperativity of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol. Cell 38, 356–368 (2010).

    CAS  PubMed  Google Scholar 

  50. Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Tron, V. A., Trotter, M. J., Ishikawa, T., Ho, V. C. & Li, G. p53-dependent regulation of nucleotide excision repair in murine epidermis in vivo. J. Cutan. Med. Surg. 3, 16–20 (1998).

    CAS  PubMed  Google Scholar 

  52. Tang, W., Willers, H. & Powell, S. N. p53 directly enhances rejoining of DNA double-strand breaks with cohesive ends in gamma-irradiated mouse fibroblasts. Cancer Res. 59, 2562–2565 (1999).

    CAS  PubMed  Google Scholar 

  53. Seo, Y. R., Fishel, M. L., Amundson, S., Kelley, M. R. & Smith, M. L. Implication of p53 in base excision DNA repair: in vivo evidence. Oncogene 21, 731–737 (2002).

    CAS  PubMed  Google Scholar 

  54. Hollander, M. C. et al. Deletion of XPC leads to lung tumors in mice and is associated with early events in human lung carcinogenesis. Proc. Natl Acad. Sci. USA 102, 13200–13205 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Melis, J. P. et al. Mouse models for xeroderma pigmentosum group A and group C show divergent cancer phenotypes. Cancer Res. 68, 1347–1353 (2008).

    CAS  PubMed  Google Scholar 

  56. Friedberg, E. C. et al. Defective nucleotide excision repair in xpc mutant mice and its association with cancer predisposition. Mutat. Res. 459, 99–108 (2000).

    CAS  PubMed  Google Scholar 

  57. Yoon, T. et al. Tumor-prone phenotype of the DDB2-deficient mice. Oncogene 24, 469–478 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Cosme-Blanco, W. et al. Telomere dysfunction suppresses spontaneous tumorigenesis in vivo by initiating p53-dependent cellular senescence. EMBO Rep. 8, 497–503 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Dankort, D. et al. A new mouse model to explore the initiation, progression, and therapy of BRAFV600E-induced lung tumors. Genes Dev. 21, 379–384 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Collado, M. et al. Tumour biology: senescence in premalignant tumours. Nature 436, 642 (2005).

    CAS  PubMed  Google Scholar 

  61. Chen, Z. et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436, 725–730 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ventura, A. et al. Restoration of p53 function leads to tumour regression in vivo. Nature 445, 661–665 (2007).

    CAS  PubMed  Google Scholar 

  63. Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Feldser, D. M. et al. Stage-specific sensitivity to p53 restoration during lung cancer progression. Nature 468, 572–575 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Symonds, H. et al. p53-dependent apoptosis suppresses tumor growth and progression in vivo. Cell 78, 703–711 (1994).

    CAS  PubMed  Google Scholar 

  66. Yin, C., Knudson, C. M., Korsmeyer, S. J. & Van Dyke, T. Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature 385, 637–640 (1997).

    CAS  PubMed  Google Scholar 

  67. Schmitt, C. A., McCurrach, M. E., de Stanchina, E., Wallace-Brodeur, R. R. & Lowe, S. W. INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes Dev. 13, 2670–2677 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Eischen, C. M., Weber, J. D., Roussel, M. F., Sherr, C. J. & Cleveland, J. L. Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev. 13, 2658–2669 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Schmitt, C. A. et al. Dissecting p53 tumor suppressor functions in vivo. Cancer Cell 1, 289–298 (2002).

    CAS  PubMed  Google Scholar 

  70. Jeffers, J. R. et al. Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell 4, 321–328 (2003).

    CAS  PubMed  Google Scholar 

  71. Knudson, C. M., Johnson, G. M., Lin, Y. & Korsmeyer, S. J. Bax accelerates tumorigenesis in p53-deficient mice. Cancer Res. 61, 659–665 (2001).

    CAS  PubMed  Google Scholar 

  72. Villunger, A. et al. p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 302, 1036–1038 (2003).

    CAS  PubMed  Google Scholar 

  73. Ihrie, R. A., Bronson, R. T. & Attardi, L. D. Adult mice lacking the p53/p63 target gene Perp are not predisposed to spontaneous tumorigenesis but display features of ectodermal dysplasia syndromes. Cell Death Differ. 13, 1614–1618 (2006).

    CAS  PubMed  Google Scholar 

  74. Eischen, C. M., Roussel, M. F., Korsmeyer, S. J. & Cleveland, J. L. Bax loss impairs Myc-induced apoptosis and circumvents the selection of p53 mutations during Myc-mediated lymphomagenesis. Mol. Cell. Biol. 21, 7653–7662 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Michalak, E. M. et al. Puma and to a lesser extent Noxa are suppressors of Myc-induced lymphomagenesis. Cell Death Differ. 16, 684–696 (2009).

    CAS  PubMed  Google Scholar 

  76. Dansen, T. B., Whitfield, J., Rostker, F., Brown-Swigart, L. & Evan, G. I. Specific requirement for Bax, not Bak, in Myc-induced apoptosis and tumor suppression in vivo. J. Biol. Chem. 281, 10890–10895 (2006).

    CAS  PubMed  Google Scholar 

  77. Hemann, M. T. et al. Suppression of tumorigenesis by the p53 target PUMA. Proc. Natl Acad. Sci. USA 101, 9333–9338 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Beaudry, V. G. et al. Loss of the p53/p63 regulated desmosomal protein Perp promotes tumorigenesis. PLoS Genet. 6, e1001168 (2010).

    PubMed  PubMed Central  Google Scholar 

  79. Halazonetis, T. D., Gorgoulis, V. G. & Bartek, J. An oncogene-induced DNA damage model for cancer development. Science 319, 1352–1355 (2008).

    CAS  PubMed  Google Scholar 

  80. Bartkova, J. et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864–870 (2005).

    CAS  PubMed  Google Scholar 

  81. Gorgoulis, V. G. et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434, 907–913 (2005).

    CAS  PubMed  Google Scholar 

  82. Christophorou, M. A., Ringshausen, I., Finch, A. J., Swigart, L. B. & Evan, G. I. The pathological response to DNA damage does not contribute to p53-mediated tumour suppression. Nature 443, 214–217 (2006).

    CAS  PubMed  Google Scholar 

  83. Efeyan, A., Garcia-Cao, I., Herranz, D., Velasco-Miguel, S. & Serrano, M. Tumour biology: policing of oncogene activity by p53. Nature 443, 159 (2006).

    CAS  PubMed  Google Scholar 

  84. Hinkal, G., Parikh, N. & Donehower, L. A. Timed somatic deletion of p53 in mice reveals age-associated differences in tumor progression. PLoS ONE 4, e6654 (2009).

    PubMed  PubMed Central  Google Scholar 

  85. Christophorou, M. A. et al. Temporal dissection of p53 function in vitro and in vivo. Nature Genet. 37, 718–726 (2005).

    CAS  PubMed  Google Scholar 

  86. Junttila, M. R. et al. Selective activation of p53-mediated tumour suppression in high-grade tumours. Nature 468, 567–571 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Hammond, E. M. et al. Genome-wide analysis of p53 under hypoxic conditions. Mol. Cell. Biol. 26, 3492–3504 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Sablina, A. A. et al. The antioxidant function of the p53 tumor suppressor. Nature Med. 11, 1306–1313 (2005).

    CAS  PubMed  Google Scholar 

  89. Ward, P. S. & Thompson, C. B. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 21, 297–308 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Maddocks, O. D. & Vousden, K. H. Metabolic regulation by p53. J. Mol. Med. 89, 237–245 (2011).

    CAS  PubMed  Google Scholar 

  91. Kawauchi, K. Araki, K., Tobiume, K. & Tanaka, N. p53 regulates glucose metabolism through an IKK-NF-κB pathway and inhibits cell transformation. Nature Cell Biol. 10, 611–618 (2008).

    CAS  PubMed  Google Scholar 

  92. Schwartzenberg-Bar-Yoseph, F., Armoni, M. & Karnieli, E. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res. 64, 2627–2633 (2004).

    CAS  PubMed  Google Scholar 

  93. Matoba, S. et al. p53 regulates mitochondrial respiration. Science 312, 1650–1653 (2006).

    CAS  PubMed  Google Scholar 

  94. Bensaad, K. et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126, 107–120 (2006).

    CAS  PubMed  Google Scholar 

  95. Budanov, A. V., Sablina, A. A., Feinstein, E., Koonin, E. V. & Chumakov, P. M. Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science 304, 596–600 (2004).

    CAS  PubMed  Google Scholar 

  96. Hu, W. et al. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc. Natl Acad. Sci. USA 107, 7455–7460 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Budanov, A. V. Stress-responsive sestrins link p53 with redox regulation and mammalian target of rapamycin signaling. Antioxid. Redox Signal 15, 1679–1690 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Gottlieb, E. & Vousden, K. H. p53 regulation of metabolic pathways. Cold Spring Harb. Perspect Biol. 2, a001040 (2010).

    PubMed  PubMed Central  Google Scholar 

  99. Yang, Z. & Klionsky, D. J. An overview of the molecular mechanism of autophagy. Curr. Top. Microbiol. Immunol. 335, 1–32 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Mathew, R. & White, E. Autophagy, stress, and cancer metabolism: what doesn't kill you makes you stronger. Cold Spring Harb. Symp. Quant. Biol. 76, 389–396 (2011).

    CAS  PubMed  Google Scholar 

  101. Crighton, D. et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126, 121–134 (2006).

    CAS  PubMed  Google Scholar 

  102. Gao, W., Shen, Z., Shang, L. & Wang, X. Upregulation of human autophagy-initiation kinase ULK1 by tumor suppressor p53 contributes to DNA-damage-induced cell death. Cell Death Differ. 18, 1598–1607 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Long, J. S. et al. Extracellular adenosine sensing-a metabolic cell death priming mechanism downstream of p53. Mol. Cell 50, 394–406 (2013).

    CAS  PubMed  Google Scholar 

  104. Hanna, J. et al. Direct cell reprogramming is a stochastic process amenable to acceleration. Nature 462, 595–601 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Li, H. et al. The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 460, 1136–1139 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Marion, R. M. et al. A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 460, 1149–1153 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Utikal, J. et al. Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature 460, 1145–1148 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Hong, H. et al. Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 460, 1132–1135 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Kawamura, T. et al. Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460, 1140–1144 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Sarig, R. et al. Mutant p53 facilitates somatic cell reprogramming and augments the malignant potential of reprogrammed cells. J. Exp. Med. 207, 2127–2140 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Yi, L., Lu, C., Hu, W., Sun, Y. & Levine, A. J. Multiple roles of p53-related pathways in somatic cell reprogramming and stem cell differentiation. Cancer Res. 72, 5635–5645 (2012).

    CAS  PubMed  Google Scholar 

  112. Choi, Y. J. et al. miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nature Cell Biol. 13, 1353–1360 (2011).

    CAS  PubMed  Google Scholar 

  113. Lin, C. P., Choi, Y. J., Hicks, G. G. & He, L. The emerging functions of the p53-miRNA network in stem cell biology. Cell Cycle 11, 2063–2072 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Pant, V., Quintás-Cardama, A. & Lozano, G. The p53 pathway in hematopoiesis: lessons from mouse models, implications for humans. Blood 120, 5118–5127 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhao, Z. et al. p53 loss promotes acute myeloid leukemia by enabling aberrant self-renewal. Genes Dev. 24, 1389–1402 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Zheng, H. et al. p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature 455, 1129–1133 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Lu, X. et al. Selective inactivation of p53 facilitates mouse epithelial tumor progression without chromosomal instability. Mol. Cell. Biol. 21, 6017–6030 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Elyada, E. et al. CKIα ablation highlights a critical role for p53 in invasiveness control. Nature 470, 409–413 (2011).

    CAS  PubMed  Google Scholar 

  119. Alexandrova, A., Ivanov, A., Chumakov, P., Kopnin, B. & Vasiliev, J. Changes in p53 expression in mouse fibroblasts can modify motility and extracellular matrix organization. Oncogene 19, 5826–5830 (2000).

    CAS  PubMed  Google Scholar 

  120. Guo, F. Gao, Y., Wang, L. & Zheng, Y. p19Arf-p53 tumor suppressor pathway regulates cell motility by suppression of phosphoinositide 3-kinase and Rac1 GTPase activities. J. Biol. Chem. 278, 14414–14419 (2003).

    CAS  PubMed  Google Scholar 

  121. Guo, F. & Zheng, Y. Rho family GTPases cooperate with p53 deletion to promote primary mouse embryonic fibroblast cell invasion. Oncogene 23, 5577–5585 (2004).

    CAS  PubMed  Google Scholar 

  122. Gadea, G., Lapasset, L., Gauthier-Rouviere, C. & Roux, P. Regulation of Cdc42-mediated morphological effects: a novel function for p53. EMBO J. 21, 2373–2382 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Gadea, G., de Toledo, M., Anguille, C. & Roux, P. Loss of p53 promotes RhoA-ROCK-dependent cell migration and invasion in 3D matrices. J. Cell Biol. 178, 23–30 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Sleeman, J. P. & Thiery, J. P. SnapShot: The epithelial-mesenchymal transition. Cell 145, 162 (2011).

    CAS  PubMed  Google Scholar 

  125. Kim, N. H. et al. A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial-mesenchymal transition. J. Cell Biol. 195, 417–433 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Chang, C. J. et al. p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nature Cell Biol. 13, 317–323 (2011).

    CAS  PubMed  Google Scholar 

  127. Kim, T. et al. p53 regulates epithelial-mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J. Exp. Med. 208, 875–883 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Jiang, Z. et al. Rb deletion in mouse mammary progenitors induces luminal-B or basal-like/EMT tumor subtypes depending on p53 status. J. Clin. Invest. 120, 3296–3309 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Schwitalla, S. et al. Loss of p53 in enterocytes generates an inflammatory microenvironment enabling invasion and lymph node metastasis of carcinogen-induced colorectal tumors. Cancer Cell 23, 93–106 (2013).

    CAS  PubMed  Google Scholar 

  130. Bornachea, O. et al. EMT and induction of miR-21 mediate metastasis development in Trp53-deficient tumours. Sci. Rep. 2, 434 (2012).

    PubMed  PubMed Central  Google Scholar 

  131. Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322 (2012).

    CAS  PubMed  Google Scholar 

  132. Dameron, K. M., Volpert, O. V., Tainsky, M. A. & Bouck, N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265, 1582–1584 (1994).

    CAS  PubMed  Google Scholar 

  133. Menendez, D., Shatz, M. & Resnick, M. A. Interactions between the tumor suppressor p53 and immune responses. Curr. Opin. Oncol. 25, 85–92 (2013).

    CAS  PubMed  Google Scholar 

  134. Lujambio, A. et al. Non-cell-autonomous tumor suppression by p53. Cell 153, 449–460 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Coppe, J. P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, 2853–2868 (2008).

    CAS  PubMed  Google Scholar 

  136. Hill, R., Song, Y., Cardiff, R. D. & Van Dyke, T. Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis. Cell 123, 1001–1011 (2005).

    CAS  PubMed  Google Scholar 

  137. Kurose, K. et al. Frequent somatic mutations in PTEN and TP53 are mutually exclusive in the stroma of breast carcinomas. Nature Genet. 32, 355–357 (2002).

    CAS  PubMed  Google Scholar 

  138. Matsumoto, N., Yoshida, T., Yamashita, K., Numata, Y. & Okayasu, I. Possible alternative carcinogenesis pathway featuring microsatellite instability in colorectal cancer stroma. Br. J. Cancer 89, 707–712 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Paterson, R. F. et al. Molecular genetic alterations in the laser-capture-microdissected stroma adjacent to bladder carcinoma. Cancer 98, 1830–1836 (2003).

    CAS  PubMed  Google Scholar 

  140. Tuhkanen, H. et al. Genetic alterations in the peritumoral stromal cells of malignant and borderline epithelial ovarian tumors as indicated by allelic imbalance on chromosome 3p. Int. J. Cancer 109, 247–252 (2004).

    CAS  PubMed  Google Scholar 

  141. Kiaris, H. et al. Evidence for nonautonomous effect of p53 tumor suppressor in carcinogenesis. Cancer Res. 65, 1627–1630 (2005).

    CAS  PubMed  Google Scholar 

  142. Vousden, K. H. & Lu, X. Live or let die: the cell's response to p53. Nature Rev. Cancer 2, 594–604 (2002).

    CAS  Google Scholar 

  143. Cho, Y., Gorina, S., Jeffrey, P. D. & Pavletich, N. P. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265, 346–355 (1994).

    CAS  PubMed  Google Scholar 

  144. Dittmer, D. et al. Gain of function mutations in p53. Nature Genet. 4, 42–46 (1993).

    CAS  PubMed  Google Scholar 

  145. Brosh, R. & Rotter, V. When mutants gain new powers: news from the mutant p53 field. Nature Rev. Cancer 9, 701–713 (2009).

    CAS  Google Scholar 

  146. Liu, D. P., Song, H. & Xu, Y. A common gain of function of p53 cancer mutants in inducing genetic instability. Oncogene 29, 949–956 (2010).

    CAS  PubMed  Google Scholar 

  147. Hanel, W. et al. Two hot spot mutant p53 mouse models display differential gain of function in tumorigenesis. Cell Death Differ. 20, 898–909 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Olive, K. P. et al. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119, 847–860 (2004).

    CAS  PubMed  Google Scholar 

  149. Heinlein, C. et al. Mutant p53(R270H) gain of function phenotype in a mouse model for oncogene-induced mammary carcinogenesis. Int. J. Cancer 122, 1701–1709 (2008).

    CAS  PubMed  Google Scholar 

  150. Muller, P. A. & Vousden, K. H. p53 mutations in cancer. Nature Cell Biol. 15, 2–8 (2013).

    CAS  PubMed  Google Scholar 

  151. Di Agostino, S. et al. Gain of function of mutant p53: the mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell 10, 191–202 (2006).

    CAS  PubMed  Google Scholar 

  152. Liu, K., Ling, S. & Lin, W. C. TopBP1 mediates mutant p53 gain of function through NF-Y and p63/p73. Mol. Cell. Biol. 31, 4464–4481 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Stambolsky, P. et al. Modulation of the vitamin D3 response by cancer-associated mutant p53. Cancer Cell 17, 273–285 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Strano, S. et al. Physical interaction with human tumor-derived p53 mutants inhibits p63 activities. J. Biol. Chem. 277, 18817–18826 (2002).

    CAS  PubMed  Google Scholar 

  155. Gaiddon, C., Lokshin, M., Ahn, J., Zhang, T. & Prives, C. A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol. Cell. Biol. 21, 1874–1887 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Martynova, E. et al. Gain-of-function p53 mutants have widespread genomic locations partially overlapping with p63. Oncotarget 3, 132–143 (2012).

    PubMed  PubMed Central  Google Scholar 

  157. Kastan, M. B. & Bartek, J. Cell-cycle checkpoints and cancer. Nature 432, 316–323 (2004).

    CAS  PubMed  Google Scholar 

  158. Meek, D. W. & Anderson, C. W. Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harb. Perspect Biol. 1, a000950 (2009).

    PubMed  PubMed Central  Google Scholar 

  159. Shieh, S. Y., Ikeda, M., Taya, Y. & Prives, C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91, 325–334 (1997).

    CAS  PubMed  Google Scholar 

  160. Chehab, N. H., Malikzay, A., Stavridi, E. S. & Halazonetis, T. D. Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. Proc. Natl Acad. Sci. USA 96, 13777–13782 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Wade, M., Wang, Y. V. & Wahl, G. M. The p53 orchestra: Mdm2 and Mdmx set the tone. Trends Cell Biol. 20, 299–309 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Montes de Oca Luna, R., Wagner, D. S. & Lozano, G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378, 203–206 (1995).

    CAS  PubMed  Google Scholar 

  163. Parant, J. et al. Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nature Genet. 29, 92–95 (2001).

    CAS  PubMed  Google Scholar 

  164. Oliner, J. D. et al. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 362, 857–860 (1993).

    CAS  PubMed  Google Scholar 

  165. Momand, J., Zambetti, G. P., Olson, D. C., George, D. & Levine, A. J. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69, 1237–1245 (1992).

    CAS  PubMed  Google Scholar 

  166. Danovi, D. et al. Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity. Mol. Cell. Biol. 24, 5835–5843 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Kubbutat, M. H., Jones, S. N. & Vousden, K. H. Regulation of p53 stability by Mdm2. Nature 387, 299–303 (1997).

    CAS  PubMed  Google Scholar 

  168. Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. Nature 387, 296–299 (1997).

    CAS  PubMed  Google Scholar 

  169. Jenkins, L. M., Durell, S. R., Mazur, S. J. & Appella, E. p53 N-terminal phosphorylation: a defining layer of complex regulation. Carcinogenesis 33, 1441–1449 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Bates, S. et al. p14ARF links the tumour suppressors RB and p53. Nature 395, 124–125 (1998).

    CAS  PubMed  Google Scholar 

  171. DeGregori, J., Leone, G., Miron, A., Jakoi, L. & Nevins, J. R. Distinct roles for E2F proteins in cell growth control and apoptosis. Proc. Natl. Acad. Sci. USA 94, 7245–7250 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Honda, R. & Yasuda, H. Association of p19ARF with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. EMBO J. 18, 22–27 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Zhang, Y. & Xiong, Y. Control of p53 ubiquitination and nuclear export by MDM2 and ARF. Cell Growth Differ. 12, 175–186 (2001).

    CAS  PubMed  Google Scholar 

  174. Zhang, Y. & Xiong, Y. Mutations in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53. Mol. Cell 3, 579–591 (1999).

    CAS  PubMed  Google Scholar 

  175. Weber, J. D., Taylor, L. J., Roussel, M. F., Sherr, C. J. & Bar-Sagi, D. Nucleolar Arf sequesters Mdm2 and activates p53. Nature Cell Biol. 1, 20–26 (1999).

    CAS  PubMed  Google Scholar 

  176. Lowe, S. W. & Sherr, C. J. Tumor suppression by Ink4a-Arf: progress and puzzles. Curr. Opin. Genet. Dev. 13, 77–83 (2003).

    CAS  PubMed  Google Scholar 

  177. Hacke, K. et al. Regulation of MCP-1 chemokine transcription by p53. Mol. Cancer 9, 82 (2010).

    PubMed  PubMed Central  Google Scholar 

  178. Gorgoulis, V. G. et al. p53 activates ICAM-1 (CD54) expression in an NF-κB-independent manner. EMBO J. 22, 1567–1578 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Italiano, D., Lena, A. M., Melino, G. & Candi, E. Identification of NCF2/p67phox as a novel p53 target gene. Cell Cycle 11, 4589–4596 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Lefort, K. et al. Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCKα kinases. Genes Dev. 21, 562–577 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Feng, Z. & Levine, A. J. The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein. Trends Cell Biol. 20, 427–434 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Berkers, C. R., Maddocks, O. D. K., Cheung, E. C., Mor, I. & Vousden, K. H. Metabolic regulation by p53 family members. Cell. Metab. 18, 617–633 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Braastad, C. D., Leguia, M. & Hendrickson, E. A. Ku86 autoantigen related protein-1 transcription initiates from a CpG island and is induced by p53 through a nearby p53 response element. Nucleic Acids Res. 30, 1713–1724 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Liang, Y., Liu, J. & Feng, Z. The regulation of cellular metabolism by tumor suppressor p53. Cell Biosci. 3, 9 (2013).

    PubMed  PubMed Central  Google Scholar 

  185. Shiraishi, K. et al. Identification of fractalkine, a CX3C-type chemokine, as a direct target of p53. Cancer Res. 60, 3722–3726 (2000).

    CAS  PubMed  Google Scholar 

  186. Post, S. M. et al. p53-dependent senescence delays Eμ-myc-induced B-cell lymphomagenesis. Oncogene 29, 1260–1269 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank P. Garcia, N. Raj, and D. Jiang for critical reading of the manuscript. The authors apologize to those whose work was not cited owing to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura D. Attardi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bieging, K., Mello, S. & Attardi, L. Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer 14, 359–370 (2014). https://doi.org/10.1038/nrc3711

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3711

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer