Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

BET domain co-regulators in obesity, inflammation and cancer

Key Points

  • Mammalian BET proteins, a class of transcriptional co-regulators that contain dual, mutually related bromodomain motifs and an extraterminal domain, are important in the control of networks of genes; these proteins bind to acetylated lysines in the histones of nucleosomal chromatin, recruit chromatin-modification enzymes to target promoters and function as co-activators or co-repressors of gene expression, depending on the context.

  • New small-molecule inhibitors have recently been developed that disrupt the binding interface between the bromodomain and the acetylated lysine groups; the inhibitors have remarkable potency, selectivity and are well tolerated. They have recently been used as anticancer and anti-inflammatory agents.

  • These developments are important because chromatin was not considered to be a druggable target; as a result of these new drugs, a whole field of new epigenetically targeted therapeutics has become available for investigation.

  • As this field of therapeutics rapidly expands, several features of BET protein function will need to be considered, including possible redundancy among the closely related family members, the selectivity of next-generation agents for specific BET proteins, and possible undesirable consequences of systemic administration without cellular targeting. These side effects might include uncontrolled transcriptional derepression of genes, altered haematopoiesis, immunosuppression or reactivation of latent viruses.

Abstract

The bromodomain is a highly conserved motif of 110 amino acids that is bundled into four anti-parallel α-helices and found in proteins that interact with chromatin, such as transcription factors, histone acetylases and nucleosome remodelling complexes. Bromodomain proteins are chromatin 'readers'; they recruit chromatin-regulating enzymes, including 'writers' and 'erasers' of histone modification, to target promoters and to regulate gene expression. Conventional wisdom held that complexes involved in chromatin dynamics are not 'druggable' targets. However, small molecules that inhibit bromodomain and extraterminal (BET) proteins have been described. We examine these developments and discuss the implications for small molecule epigenetic targeting of chromatin networks in cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and relationships among bromodomain-containing proteins.
Figure 2: Motif alignment of double bromodomain-containing proteins.
Figure 3: Small-molecule inhibitors of BET proteins.
Figure 4: Model for BET protein co-repression of PPARγ-responsive genes.
Figure 5: BET proteins co-regulate transcriptional networks of transcriptional activation and repression.

Similar content being viewed by others

References

  1. Kubonishi, I. et al. Novel t(15;19)(q15;p13) chromosome abnormality in a thymic carcinoma. Cancer Res. 51, 3327–3328 (1991).

    CAS  PubMed  Google Scholar 

  2. French, C. A. et al. BRD4-NUT fusion oncogene: a novel mechanism in aggressive carcinoma. Cancer Res. 63, 304–307 (2003).

    CAS  PubMed  Google Scholar 

  3. French, C. A. et al. BRD-NUT oncoproteins: a family of closely related nuclear proteins that block epithelial differentiation and maintain the growth of carcinoma cells. Oncogene 27, 2237–2242 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Florence, B. & Faller, D. V. You bet-cha: a novel family of transcriptional regulators. Front. Biosci. 6, D1008–D1018 (2001).

    CAS  PubMed  Google Scholar 

  5. Wu, S. Y. & Chiang, C. M. The double bromodomain-containing chromatin adaptor Brd4 and transcriptional regulation. J. Biol. Chem. 282, 13141–13145 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Haynes, S. R. et al. The bromodomain: a conserved sequence found in human, Drosophila and yeast proteins. Nucl. Acids Res. 20, 2603 (1992). This report offered the first suggestion that the bromodomain module is widely conserved and is likely to have a role in chromatin status and transcriptional regulation in diverse organisms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jeanmougin, F., Wurtz, J.-M., Le Douarin, B., Chambon, P. & Losson, R. The bromodomain revisited. Trends Biochem. Sci. 22, 151–153 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Winston, F. & Allis, C. D. The bromodomain: a chromatin-targeting module? Nature Struct. Biol. 6, 601–604 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Horn, P. J. & Peterson, C. L. The bromodomain: a regulator of ATP-dependent chromatin remodeling? Front. Biosci. 6, D1019–1023 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Jiang, Y. W. et al. Mammalian mediator of transcriptional regulation and its possible role as an end-point of signal transduction pathways. Proc. Natl Acad. Sci. USA 95, 8538–8543 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kuras, L., Borggrefe, T. & Kornberg, R. D. Association of the Mediator complex with enhancers of active genes. Proc. Natl Acad. Sci. USA 100, 13887–13891 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kornberg, R. D. Mediator and the mechanism of transcriptional activation. Trends Biochem. Sci. 30, 235–239 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Dhalluin, C. et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature 399, 491–496 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Sanchez, R. & Zhou, M.-M. The role of human bromodomains in chromatin biology and gene transcription. Curr. Opin. Drug Discov. Dev. 12, 659–665 (2009).

    CAS  Google Scholar 

  15. Tamkun, J. W. et al. brahma – a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SWI2/SNF2. Cell 68, 561–572 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Wang, W. et al. Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. EMBO J. 15, 5370–5382 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pazin, M. J. & Kadonaga, J. T. SWI2/SNF2 and related proteins: ATP-driven motors that disrupt protein-DNA interactions? Cell 88, 737–740 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Ogryzko, V. V., Schiltz, O. L., Russanova, V., Howard, B. H. & Nakatani, Y. The transcriptional co-activators p300 and CBP are histone acetyltransferases. Cell 87, 953–959 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Bannister, A. J. & Kouzarides, T. The CBP co-activator is a histone acetyltransferase. Nature 384, 641–643 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Beck, S., Hanson, I., Kelly, A., Pappin, D. J. C. & Trowsdale, J. A homologue of the Drosophila female sterile homeotic (fsh) gene in the class II region of the human MHC. DNA Seq. 2, 203–210 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Matangkasombut, O., Buratowski, R. M., Swilling, N. W. & Buratowski, S. Bromodomain factor 1 corresponds to the missing piece of yeast TFIID. Genes Dev. 14, 951–962 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Thorpe, K. L., Abdulla, S., Kaufman, J., Trowsdale, J. & Beck, S. Phylogeny and structure of the RING3 gene. Immunogenet. 44, 391–396 (1996).

    Article  CAS  Google Scholar 

  23. Salter-Cid, L., Pasquier, L. & Flajnik, M. RING3 is linked to the Xenopus major histocompatibility complex. Immunogenet. 44, 397–399 (1996).

    CAS  Google Scholar 

  24. Takami, K., Zaleska-Rutczynska, Z., Figueroa, F. & Klein, J. Linkage of LMP, TAP, and RING3 with Mhc class I rather than class II genes in the zebrafish. J. Immunol. 159, 6052–6060 (1997).

    CAS  PubMed  Google Scholar 

  25. Deshaies, R. J. & Joazeiro, C. A. P. RING domain E3 ubiquitin ligases. Ann. Rev. Biochem. 78, 399–434 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Ting, J. P. & Trowsdale, J. Genetic control of MHC class II expression. Cell 109, S21–33 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Denis, G. V. & Green, M. R. A novel, mitogen-activated nuclear kinase is related to a Drosophila developmental regulator. Genes Dev. 10, 261–271 (1996). This was the first report of a BET protein phenotype in mammalian cells.

    Article  CAS  PubMed  Google Scholar 

  28. Guo, N., Faller, D. V. & Denis, G. V. Activation-induced nuclear translocation of RING3. J. Cell Sci. 113, 3085–3091 (2000).

    CAS  PubMed  Google Scholar 

  29. Denis, G. V., Vaziri, C., Guo, N. & Faller, D. V. RING3 kinase transactivates promoters of cell cycle regulatory genes through E2F. Cell Growth Diff. 11, 417–424 (2000).

    CAS  PubMed  Google Scholar 

  30. Ostrowski, J., Florio, S. K., Denis, G. V., Suzuki, H. & Bomsztyk, K. Stimulation of p85/RING3 kinase in multiple organs after systemic administration of mitogens into mice. Oncogene 16, 1223–1227 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Crowley, T. E., Kaine, E. M., Yoshida, M., Nandi, A. & Wolgemuth, D. J. Reproductive cycle regulation of nuclear import, euchromatic localization, and association with components of Pol. II mediator of a mammalian double-bromodomain protein. Mol. Endocrinol. 16, 1727–1737 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Kanno, T. et al. Selective recognition of acetylated histones by bromodomain proteins visualized in living cells. Mol. Cell. 13, 33–43 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Nakamura, Y. et al. Crystal structure of the human BRD2 bromodomain: insights into dimerization and recognition of acetylated histone H4. J. Biol. Chem. 282, 4193–4201 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Denis, G. V. et al. Identification of transcription complexes that contain the double bromodomain protein Brd2 and chromatin remodeling machines. J. Proteome Res. 5, 502–511 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. LeRoy, G., Rickards, B. & Flint, S. J. The double bromodomain proteins Brd2 and Brd3 couple histone acetylation to transcription. Mol. Cell. 30, 51–60 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Denis, G. V. Bromodomain motifs and “scaffolding”? Front. Biosci. 6, D1066–D1068 (2001).

    Google Scholar 

  37. Peng, J. et al. Brd2 is a TBP-associated protein and recruits TBP into E2F-1 transcriptional complex in response to serum stimulation. Mol. Cell. Biochem. 294, 45–54 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Sinha, A., Faller, D. V. & Denis, G. V. Bromodomain analysis of Brd2-dependent transcriptional activation of cyclin A. Biochem. J. 387, 257–269 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lin, Y. J. et al. Solution structure of the extraterminal domain of the bromodomain-containing protein BRD4. Protein Sci. 17, 2174–2179 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rahman, S. et al. The Brd4 extraterminal domain confers transcription activation independent of pTEFb by recruiting multiple proteins, including NSD3. Mol. Cell. Biol. 31, 2641–2652 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bartkova, J. et al. Cyclin D1 protein expression and function in human breast cancer. Int. J. Cancer 57, 353–361 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Courjal, F. et al. Mapping of DNA amplifications at 15 chromosomal localizations in 1875 breast tumors: Definition of phenotypic groups. Cancer Res. 57, 4360c4367 (1997).

    Google Scholar 

  43. Ormandy, C. J. et al. Cyclin D1, EMS1 and 11q13 amplification in breast cancer. Breast Cancer Res. Treat. 78, 323–335 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Jang, M. K. et al. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol. Cell. 19, 523–534 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Yang, Z. et al. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol. Cell. 19, 535–545 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Marshall, N. F., Peng, J., Xie, Z. & Price, D. H. Control of RNA polymerase II elongation potential by a novel carboxyl-terminal domain kinase. J. Biol. Chem. 271, 27176–27183 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Yang, Z., He, N. & Zhou, Q. Brd4 recruits P-TEFb to chromosomes at late mitosis to promote G1 gene expression and cell cycle progression. Mol. Cell. Biol. 28, 967–976 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Maruyama, T. et al. A Mammalian bromodomain protein, Brd4, interacts with replication factor C and inhibits progression to S phase. Mol. Cell. Biol. 22, 6509–6520 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dey, A., Chitsaz, F., Abbasi, A., Misteli, T. & Ozato, K. The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis. Proc. Natl Acad. Sci. USA. 100, 8758–8763 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang, L. et al. microRNA-141 is involved in a nasopharyngeal carcinoma-related genes network. Carcinogenesis 31, 559–566 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Dey, A. et al. A bromodomain protein, MCAP, associates with mitotic chromosomes and affects G(2)-to-M transition. Mol. Cell. Biol. 20, 6537–6549 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Umehara, T. et al. Structural basis for acetylated histone H4 recognition by the human BRD2 bromodomain. J. Biol. Chem. 285, 7610–7618 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nishiyama, A., Dey, A., Miyazaki, J. & Ozato, K. Brd4 is required for recovery from antimicrotubule drug-induced mitotic arrest: preservation of acetylated chromatin. Mol. Biol. Cell. 17, 814–823 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Laue, K. et al. The multidomain protein Brpf1 binds histones and is required for Hox gene expression and segmental identity. Development 135, 1935–1946 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Toyama, R., Rebbert, M. L., Dey, A. & Ozato, K. & Dawid, I. B. Brd4 associates with mitotic chromosomes throughout early zebrafish embryogenesis. Dev. Dyn. 237, 1636–1644 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dey, A., Nishiyama, A., Karpova, T., McNally, J. & Ozato, K. Brd4 marks select genes on mitotic chromatin and directs postmitotic transcription. Mol. Biol. Cell 20, 4899–4909 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chua, P. & Roeder, G. S. Bdf1, a yeast chromosomal protein required for sporulation. Mol. Cell. Biol. 15, 3685–3696 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Della Rovere, F. et al. The Arabidopsis BET bromodomain factor GTE4 regulates the mitotic cell cycle. Plant Signal Behav. 5, 677–680 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Airoldi, C. A. et al. The Arabidopsis BET bromodomain factor GTE4 is involved in maintenance of the mitotic cell cycle during plant development. Plant Physiol. 152, 1320–1334 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Shibata, Y., Takeshita, H., Sasakawa, N. & Sawa, H. Double bromodomain protein BET-1 and MYST HATs establish and maintain stable cell fates in C. elegans. Development 137, 1045–1053 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. You, J. et al. Kaposi's Sarcoma-associated herpesvirus latency-associated nuclear antigen interacts with bromodomain protein Brd4 on host mitotic chromosomes. J. Virol. 80, 8909–8919 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhao, R., Nakamura, T., Fu, Y., Lazar, Z. & Spector, D. L. Gene bookmarking accelerates the kinetics of post-mitotic transcriptional re-activation. Nature Cell Biol. 13, 1295–1304 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Gyuris, A. et al. The chromatin-targeting protein Brd2 is required for neural tube closure and embryogenesis. Biochim. Biophys. Acta. 1789, 413–421 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shang, E., Wang, X., Wen, D., Greenberg, D. A. & Wolgemuth, D. J. Double bromodomain-containing gene Brd2 is essential for embryonic development in mouse. Dev. Dyn. 238, 908–917 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang, F. et al. Brd2 disruption in mice causes severe obesity without type 2 diabetes. Biochem. J. 425, 71–83 (2009). References 63–65 established that Brd2 -null mice are not viable. Reference 65 reports the surprising finding of low-inflammatory, metabolically protected obesity in Brd2 -hypomorphic mice.

    Article  PubMed  CAS  Google Scholar 

  66. Houzelstein, D. et al. Growth and early postimplantation defects in mice deficient for the bromodomain-containing protein Brd4. Mol. Cell. Biol. 22, 3794–3802 (2002). Along with references 48 and 49, this report established that Brd4 -null mice are not viable owing to cell cycle defects.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. You, J. et al. Regulation of aurora B expression by the bromodomain protein Brd4. Mol. Cell. Biol. 29, 5094–5103 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lygerou, Z. et al. The yeast BDF1 gene encodes a transcription factor involved in the expression of a broad class of genes including snRNAs. Nucl. Acids Res. 22, 5332–5340 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Matangkasombut, O. & Buratowski, S. Different sensitivities of bromodomain factors 1 and 2 to histone H4 acetylation. Mol. Cell 11, 353–363 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Jacobson, R. H., Ladurner, A. G., King, D. S. & Tjian, R. Structure and function of a human TAFII250 double bromodomain module. Science 288, 1422–1425 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Dunphy, E. L., Johnson, T., Auerbach, S. S. & Wang, E. H. Requirement for TAF(II)250 acetyltransferase activity in cell cycle progression. Mol. Cell. Biol. 20, 1134–1139 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang, E. H., Zou, S. & Tjian, R. TAFII250-dependent transcription of cyclin A is directed by ATF activator proteins. Genes Dev. 11, 2658–2669 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Iacobuzio-Donahue, C. A. Epigenetic changes in cancer. Ann. Rev. Pathol. 4, 229–249 (2009).

    Article  CAS  Google Scholar 

  74. Redner, R. L., Wang, J. & Liu, J. M. Chromatin remodeling and leukaemia: new therapeutic paradigms. Blood 94, 417–428 (1999).

    CAS  PubMed  Google Scholar 

  75. Borrow, J. et al. The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nature Genet. 14, 33–41 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Sobulo, O. M. et al. MLL is fused to CBP, a histone acetyltransferase, in therapy-related acute myeloid leukaemia with a t(11;16)(q23;p13.3). Proc. Natl Acad. Sci. USA 94, 8732–8737 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lavau, C., Du, C., Thirman, M. & Zeleznik-Le, N. Chromatin-related properties of CBP fused to MLL generate a myelodysplastic-like syndrome that evolves into myeloid leukaemia. EMBO J. 19, 4655–4664 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Martens, J. H. et al. PML-RARalpha/RXR alters the epigenetic landscape in Acute Promyelocytic Leukaemia. Cancer Cell 17, 173–185 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010). First report of small-molecule inhibition of bromodomain proteins that demonstrated that epigenetically acting therapeutics that disrupt chromatin–co-activator interactions are feasible and have therapeutic benefit.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Muller, S., Filippakopoulos, P. & Knapp, S. Bromodomains as therapeutic targets. Expert Rev. Mol. Med. 13, e29 (2011).

  81. Mertz, J. A. et al. Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc. Natl Acad. Sci. USA 108, 16669–16674 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Seoane, J., Le, H. V. & Massagué, J. Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419, 729–734 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Boxer, L. M. & Dang, C. V. Translocations involving c-myc and c-myc function. Oncogene 20, 5595–5610 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Zuber, J. et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478, 524–528 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ciro, M. et al. ATAD2 is a novel cofactor for MYC, overexpressed and amplified in aggressive tumors. Cancer Res. 69, 8491–8498 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Caron, C. et al. Functional characterization of ATAD2 as a new cancer/testis factor and a predictor of poor prognosis in breast and lung cancers. Oncogene 29, 5171–5181 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Soucek, L. et al. Modelling Myc inhibition as a cancer therapy. Nature 455, 679–683 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Soucek, L., Nasi, S. & Evan, G. I. Omomyc expression in skin prevents Myc-induced papillomatosis. Cell Death Differ. 11, 1038–1045 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Centeno, F. Ramírez-Salazar, E., García-Villa, E., Gariglio, P. & Garrido, E. TAF1 interacts with and modulates human papillomavirus 16 E2-dependent transcriptional regulation. Intervirology 51, 137–143 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Zhou, M. et al. Bromodomain protein Brd4 regulates human immunodeficiency virus transcription through phosphorylation of CDK9 at threonine 29. J. Virol. 83, 1036–1044 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Mueller, D. et al. A role for the MLL fusion partner ENL in transcriptional elongation and chromatin modification. Blood 110, 4445–4454 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dawson, M. A. et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 478, 529–533 (2011). This article describes BET protein inhibitors in MLL, and confirms a hypothesis first proposed in reference 27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Greenwald, R. J. et al. Eμ-BRD2 transgenic mice develop B cell lymphoma and leukaemia. Blood 103, 1475–1484 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Lenburg, M. E., Sinha, A., Faller, D. V. & Denis, G. V. Tumor-specific and proliferation-specific gene expression typifies murine transgenic B cell lymphomagenesis. J. Biol. Chem. 282, 4803–4811 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. French, C. A. Pathogenesis of NUT midline carcinoma. Ann. Rev. Pathol. Mech. Dis. 7, 247–265 (2012).

    Article  CAS  Google Scholar 

  96. Delmore, J. E. et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146, 904–917 (2011). This article describes MYC as a co-activator of BET proteins in human multiple myeloma and responsiveness to JQ1 therapeutics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nicodeme, E. et al. Suppression of inflammation by a synthetic histone mimic. Nature 468, 1119–1123 (2010). First demonstration that small-molecule BET protein inhibitors have potent and broad-spectrum anti-inflammatory properties.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ouchida, R. et al. Suppression of NF-κB-dependent gene expression by a hexamethylene bisacetamide-inducible protein HEXIM1 in human vascular smooth muscle cells. Genes Cells 8, 95–107 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Hewings, D. S. et al. 3,5-dimethylisoxazoles act as acetyl-lysine-mimetic bromodomain ligands. J. Med. Chem. 54, 6761–6770 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chung, C. W., Dean, A. W., Woolven, J. M. & Bamborough, P. Fragment-based discovery of bromodomain inhibitors part 1: inhibitor binding modes and implications for lead discovery. J. Med. Chem. 55, 576–586 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Bamborough, P. et al. Fragment-based discovery of bromodomain inhibitors part 2: optimization of phenylisoxazole sulfonamides. J. Med. Chem. 55, 587–596 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Belkina, A. C., Blanton, W., Wang, F., Liu, H. & Denis, G. V. Whole body Brd2 deficiency protects obese mice from insulin resistance by creating a low inflammatory environment. Obesity 18, S58 (2010).

    Google Scholar 

  103. Denis, G. V. Bromodomain coactivators in cancer, obesity, type 2 diabetes and inflammation. Discov. Med. 10, 489–499 (2010).

    PubMed  PubMed Central  Google Scholar 

  104. Andres, R. Effect of obesity on total mortality. Int. J. Obes. 4, 381–386 (1980).

    CAS  PubMed  Google Scholar 

  105. Sims, E. A. H. Are there persons who are obese, but metabolically healthy? Metabolism 50, 1499–1504 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Klöting, N. et al. Insulin-sensitive obesity. Am. J. Physiol. Endocrinol. Metab. 299, E506–E515 (2010).

    Article  PubMed  CAS  Google Scholar 

  107. Bonora, E., et al. U-shaped and J-shaped relationships between serum insulin and coronary heart disease in the general population. The Bruneck Study. Diabetes Care 21, 221–230 (1991).

    Article  Google Scholar 

  108. Wildman, R. P. et al. The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population Arch. Intern. Med. 168, 1617–1624 (2008).

    Article  PubMed  Google Scholar 

  109. Karelis, A. D. et al. The metabolically healthy but obese individual presents a favorable inflammation profile. J. Clin. Endocrinol. Metab. 90, 4145–4150 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Succurro, E. et al. Insulin secretion in metabolically obese, but normal weight, and in metabolically healthy but obese individuals. Obesity (Silver Spring) 16, 1881–1886 (2008).

    Article  CAS  Google Scholar 

  111. Calori, G. et al. Prevalence, metabolic features, and prognosis of metabolically healthy obese Italian individuals: the Cremona Study. Diabetes Care 34, 210–215 (2011).

    Article  PubMed  Google Scholar 

  112. Huang, B., Yang, X. D., Zhou, M. M., Ozato, K. & Chen, L. F. Brd4 coactivates transcriptional activation of NF-kappaB via specific binding to acetylated RelA. Mol. Cell. Biol. 29, 1375–1387 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Cullen, S. J., Ponnappan, S. & Ponnappan, U. Catalytic activity of the proteasome finetunes Brg1-mediated chromatin remodeling to regulate the expression of inflammatory genes. Mol. Immunol. 47, 600–605 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Karin, M. NF-κB as a critical link between inflammation and cancer. Cold Spring Harb. Perspect. Biol. 1, a000141 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Virchow, R. Cellular Pathology, as Based on Physiological and Pathological Histology. (ed. Chance, F.) (J. Churchill, 1860).

    Google Scholar 

  116. Goldgraber, M. B., Humphreys, E. M., Kirsner, J. B. & Palmer, W. L. Carcinoma and ulcerative colitis, a clinical-pathologic study. II. Statistical analysis. Gastroenterology 34, 840–846 (1958).

    Article  CAS  PubMed  Google Scholar 

  117. Kraus, S. & Arber, N. Inflammation and colorectal cancer. Curr. Opin. Pharmacol. 9, 405–410 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Denis, G. V., Nikolajczyk, B. N. & Schnitzler, G. R. An emerging role for bromodomain-containing proteins in chromatin regulation and transcriptional control of adipogenesis. FEBS Lett. 584, 3260–3268 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Chung, C. W. et al. Discovery and characterization of small molecule inhibitors of the BET family bromodomains. J. Med. Chem. 54, 3827–3838 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Pamblanco, M. et al. Bromodomain factor 1 (Bdf1) protein interacts with histones. FEBS Lett. 496, 31–35 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Chang, Y. L., King, B., Lin, S. C., Kennison, J. A. & Huang, D. H. A double-bromodomain protein, FSH-S, activates the homeotic gene ultrabithorax through a critical promoter-proximal region. Mol. Cell. Biol. 27, 5486–5498 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Florence, B. L. & Faller, D. V. Drosophila female sterile (1) homeotic is a multifunctional transcriptional regulator that is modulated by Ras signaling. Dev. Dyn. 237, 554–564 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Denis, G. V. Duality in bromodomain-containing protein complexes. Front. Biosci. 6, D849–D852 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Trouche, D., Le Chalony, C., Muchardt, C., Yaniv, M. & Kouzarides, T. RB and hbrm cooperate to repress the activation functions of E2F1. Proc. Natl Acad. Sci. USA 94, 11268–11273 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhang, H. S. et al. Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF. Cell 101, 79–89 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Brehm, A. et al. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391, 597–601 (1998).

    Article  CAS  PubMed  Google Scholar 

  127. Ferreira, R., Magnaghi-Jaulin, L., Robin, P., Harel-Bellan, A. & Trouche, D. The three members of the pocket proteins family share the ability to repress E2F activity through recruitment of a histone deacetylase. Proc. Natl Acad. Sci. USA 95, 10493–10498 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Magnaghi-Jaulin, L. et al. Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature 391, 601–605 (1998).

    Article  CAS  PubMed  Google Scholar 

  129. Stiegler, P., De Luca, A., Bagella, L. & Giordano, A. The COOH-terminal region of pRb2/p130 binds to histone deacetylase 1 (HDAC1), enhancing transcriptional repression of the E2F-dependent cyclin A promoter. Cancer Res. 58, 5049–5052 (1998).

    CAS  PubMed  Google Scholar 

  130. Blobel, G. A., Kalota, A., Sanchez, P. V. & Carroll, M. Short hairpin RNA screen reveals bromodomain proteins as novel targets in acute myeloid leukaemia. Cancer Cell 20, 287–288 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Sachs, L. Control of normal cell differentiation in leukemic cells. Haematologica 61, 93–97 (1976).

    CAS  PubMed  Google Scholar 

  132. Sachs, L. Leukemogenesis and differentiation. Ann. Rev. Med. 36, 177–184 (1985).

    Article  CAS  PubMed  Google Scholar 

  133. Dibenedetto, A. J. et al. Zebrafish brd2a and brd2b are paralogous members of the bromodomain-ET (BET) family of transcriptional coregulators that show structural and expression divergence. BMC Dev. Biol. 8, 39 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Sun, H. et al. Solution structure of BRD7 bromodomain and its interaction with acetylated peptides from histone H3 and H4. Biochem. Biophys. Res. Commun. 358, 435–441 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Tae, S. et al. Bromodomain protein 7 interacts with PRMT5 and PRC2, and is involved in transcriptional repression of their target genes. Nucleic Acids Res. 39, 5424–5438 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ladurner, A. G., Inouye, C., Jain, R. & Tjian, R. Bromodomains mediate an acetyl-histone encoded antisilencing function at heterochromatin boundaries. Mol. Cell. 11, 365–376 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. Hang, M. & Smith, M. M. Genetic analysis implicates the Set3/Hos2 histone deacetylase in the deposition and remodeling of nucleosomes containing H2AZ. Genetics 187, 1053–1066 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Look, A. T. Oncogenic transcription factors in the human acute leukaemias. Science 278, 1059–1064 (1997).

    Article  CAS  PubMed  Google Scholar 

  139. Rowley, J. D. The critical role of chromosome translocations in human leukaemias. Ann. Rev. Genet. 32, 495–519 (1998).

    Article  CAS  PubMed  Google Scholar 

  140. Wilson, B. G. & Roberts, C. W. M. SWI/SNF nucleosome remodelers and cancer. Nature Rev. Cancer 11, 481–492 (2011).

    Article  CAS  Google Scholar 

  141. Cowell, I. G., Papageorgiou, N., Padget, K., Watters, G. P. & Austin, C. A. Histone deacetylase inhibition redistributes topoisomerase IIβ from heterochromatin to euchromatin. Nucleus 2, 61–71 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Gkikopoulos, T. et al. The SWI/SNF complex acts to constrain distribution of the centromeric histone variant Cse4. EMBO J. 30, 1919–1927 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Lamonica, J. M. et al. Bromodomain protein Brd3 associates with acetylated GATA1 to promote its chromatin occupancy at erythroid target genes. Proc. Natl Acad. Sci. USA 108, E159–E168 (2011). This report is one of the few that describes a function for the BET protein BRD3.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Gamsjaeger, R. et al. Structural basis and specificity of acetylated transcription factor GATA1 recognition by BET family bromodomain protein Brd3. Mol. Cell. Biol. 31, 2632–2640 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Haslam, D. W. & James, W. P. Obesity. Lancet 366, 1197–1209 (2009).

    Article  Google Scholar 

  146. Hossain, P., Kawar, B. & El Nahas, M. Obesity and diabetes in the developing world--a growing challenge. N. Engl. J. Med. 356, 213–215 (2007).

    Article  CAS  PubMed  Google Scholar 

  147. Devaiah, B. N. et al. BRD4 is an atypical kinase that phosphorylates serine 2 of the RNA Polymerase II carboxy-terminal domain. Proc. Natl Acad. Sci. USA 109, 6927–6932 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Gans, M., Audit, C. & Masson, M. Isolation and characterization of sex-linked female-sterile mutants in Drosophila melanogaster. Genetics 81, 683–704 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Gans, M., Forquignon, F. & Masson, M. The role of dosage of the region 7D1-7D5-6 of the X chromosome in the production of homeotic transformations in Drosophila melanogaster. Genetics 96, 887–902 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Digan, M. E. et al. Genetic and molecular analysis of fs(1)h, a maternal effect homeotic gene in Drosophila. Dev. Biol. 114, 161–169 (1986).

    Article  CAS  PubMed  Google Scholar 

  151. Mozer, B. A. & Dawid, I. B. Cloning and molecular characterization of the trithorax locus of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 86, 3738–3742 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Mazo, A. M., Huang, D. H., Mozer, B. A. & Dawid, I. B. The trithorax gene, a trans-acting regulator of the bithorax complex in Drosophila, encodes a protein with zinc-binding domains. Proc. Natl Acad. Sci. USA 87, 2112–2116 (1990). This report establishes that D. melanogaster BET proteins are activators of the Trithorax locus, and, with references 6 and 150, was the first described to describe functions for Metazoan bromodomain proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Cimino, G. et al. Cloning of ALL-1, the locus involved in leukemias with the t(4;11)(q21;q23), t(9;11)(p22;q23), and t(11;19)(q23;p13) chromosome translocations. Cancer Res. 51, 6712–6714 (1991).

    CAS  PubMed  Google Scholar 

  154. Djabali, M. et al. A trithorax-like gene is interrupted by chromosome 11q23 translocations in acute leukaemias. Nature Genet. 2, 113–118 (1992).

    Article  CAS  PubMed  Google Scholar 

  155. Gu, Y. et al. The t(4;11) chromosome translocation of human acute leukaemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene. Cell 71, 701–708 (1992).

    Article  CAS  PubMed  Google Scholar 

  156. Tkachuk, D. C., Kohler, S. & Cleary, M. L. Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukaemias. Cell 71, 691–700 (1992).

    Article  CAS  PubMed  Google Scholar 

  157. McPhillips, M. G., Ozato, K. & McBride, A. A. Interaction of bovine papillomavirus E2 protein with Brd4 stabilizes its association with chromatin. J. Virol. 79, 8920–8932 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Hebner, C. M. & Laimins, L. A. Human papillomaviruses: basic mechanisms of pathogenesis and oncogenicity. Rev. Med. Virol. 16, 83–97 (2006).

    Article  CAS  PubMed  Google Scholar 

  159. You, J., Croyle, J. L., Nishimura, A., Ozato, K. & Howley, P. M. Interaction of the bovine papillomavirus E2 protein with Brd4 tethers the viral DNA to host mitotic chromosomes. Cell 117, 349–360 (2004).

    Article  CAS  PubMed  Google Scholar 

  160. Schweiger, M. R., You, J. & Howley, P. M. Bromodomain protein 4 mediates the papillomavirus E2 transcriptional activation function. J. Virol. 80, 4276–4285 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. McPhillips, M. G., Oliveira, J. G., Spindler, J. E., Mitra, R. & McBride, A. A. Brd4 is required for e2-mediated transcriptional activation but not genome partitioning of all papillomaviruses. J. Virol. 80, 9530–9543 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Senechal, H., Poirier, G. G., Coulombe, B., Laimins, L. A. & Archambault, J. Amino acid substitutions that specifically impair the transcriptional activity of papillomavirus E2 affect binding to the long isoform of Brd4. Virology 358, 10–17 (2007).

    Article  CAS  PubMed  Google Scholar 

  163. Wu, S. Y. et al. Brd4 links chromatin targeting to HPV transcriptional silencing. Genes Dev. 20, 2383–2396 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Smith, J. A. et al. Genome-wide siRNA screen identifies SMCX, EP400, and Brd4 as E2-dependent regulators of human papillomavirus oncogene expression. Proc. Natl Acad. Sci. USA 107, 3752–3757 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Ilves, I., Maemets, K., Silla, T., Janikson, K. & Ustav, M. Brd4 is involved in multiple processes of the bovine papillomavirus type 1 life cycle. J. Virol. 80, 3660–3665 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Platt, G. M., Simpson, G. R., Mittnacht, S. & Schulz, T. F. Latent nuclear antigen of Kaposi's sarcoma-associated herpesvirus interacts with RING3, a homolog of the Drosophila female sterile homeotic (fsh) gene. J. Virol. 73, 9789–9795 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Viejo-Borbolla, A. et al. Brd2/RING3 interacts with a chromatin-binding domain in the Kaposi's Sarcoma-associated herpesvirus latency-associated nuclear antigen 1 (LANA-1) that is required for multiple functions of LANA-1. J. Virol. 79, 13618–13629 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ottinger, M. et al. Kaposi's sarcoma-associated herpesvirus LANA-1 interacts with the short variant of BRD4 and releases cells from a BRD4- and BRD2/RING3-induced G1 cell cycle arrest. J. Virol. 80, 10772–10786 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Radkov, S. A., Kellam, P. & Boshoff, C. The latent nuclear antigen of Kaposi sarcoma-associated herpesvirus targets the retinoblastoma-E2F pathway and with the oncogene Hras transforms primary rat cells. Nature Med. 6, 1121–1127 (2000).

    Article  CAS  PubMed  Google Scholar 

  170. Friborg, J. Jr, Kong, W., Hottiger, M. O. & Nabel, G. J. p53 inhibition by the LANA protein of KSHV protects against cell death. Nature 402, 889–894 (1999).

    Article  CAS  PubMed  Google Scholar 

  171. Palermo, R. D., Webb, H. M. & West, M. J. R. N. A. Polymerase II stalling promotes nucleosome occlusion and pTEFb recruitment to drive immortalization by Epstein-Barr Virus. PLoS Pathog. 7, e1002334 (2011). This was the first study to suggest that small-molecule BET protein inhibitors could have value in the treatment of latent virus infections by disrupting transcriptional co-regulator interactions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Nagl, N. G. Jr, Zweitzig, D. R., Thimmapaya, B., Beck, G. R. Jr & Moran, E. The c-myc gene is a direct target of mammalian SWI/SNF-related complexes during differentiation associated cell cycle arrest. Cancer Res. 66, 1289–1293 (2006).

    Article  CAS  PubMed  Google Scholar 

  173. Nagl, N. G. Jr, Wang, X., Patsialou, A., Van Scoy, M. & Moran, E. Distinct mammalian SWI/SNF chromatin remodeling complexes with opposing roles in cell-cycle control. EMBO J. 26, 752–763 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Peterson, C. L. Chromatin remodeling: nucleosomes bulging at the seams. Curr. Biol. 12, R245–R247 (2002).

    Article  CAS  PubMed  Google Scholar 

  175. Sif, S., Saurin, A. J., Imbalzano, A. N. & Kingston, R. E. Purification and characterization of mSin3A-containing Brg1 and hBrm chromatin remodeling complexes. Genes Dev. 15, 603–618 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Olave, I., Wang, W., Xue, Y., Kuo, A. & Crabtree, G. R. Identification of a polymorphic, neuron-specific chromatin remodeling complex. Genes Dev. 16, 2509–2517 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Bultman, S. et al. A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol. Cell 6, 1287–1295 (2000).

    Article  CAS  PubMed  Google Scholar 

  178. Reyes, J. C. et al. Altered control of cellular proliferation in the absence of mammalian brahma (SNF2alpha). EMBO J. 17, 6979–6991 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Burns, L. G. & Peterson, C. L. The yeast SWI-SNF complex facilitates binding of a transcriptional activator to nucleosomal sites in vivo. Mol. Cell. Biol. 17, 4811–4819 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Holstege, F. C. et al. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717–728 (1998). This report reveals an important principle that chromatin regulatory factors such as the Swi/Snf complex usually have dual functions as co-repressors and co-activators, implying that mutation or inhibition of their function will have pleiotropic effects. Combined with references 65 and 123, this principle suggests that JQ1, I-BET and related small-molecule inhibitors should be evaluated for the alleviation of co-repressor functions of BET proteins.

    Article  CAS  PubMed  Google Scholar 

  181. Chua, Y. L., Channeliere, S., Mott, E. & Gray, J. C. The bromodomain protein GTE6 controls leaf development in Arabidopsis by histone acetylation at ASYMMETRIC LEAVES1. Genes Dev. 19, 2245–2254 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Wang, R., Li, Q., Helfer, C. M., Jiao, J. & You, J. Bromodomain protein Brd4 associated with acetylated chromatin is important for maintenance of higher-order chromatin structure. J. Biol. Chem. 287, 10738–10752 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by grants from the American Cancer Society, Leukaemia and Lymphoma Society and National Institutes of Health. The authors thank J. Bradner, B. Corkey, T. Gilmore, B. Nikolajczyk and M. Obin for useful discussions, and they thank their virology colleagues P. Howley, K. Kaye, D. Margolis, M. Montano and G. Viglianti for generously sharing reagents and ideas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald V. Denis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

DATABASES

Mitelman database

FURTHER INFORMATION

Gerald V. Denis's homepage

Glossary

Mediator transcription complex

Mediator is a large (1.2 MDa) multiprotein complex of up to 30 subunits that responds to signal transduction and that regulates transcription from a diverse set of RNA polymerase II-controlled promoters.

Thienodiazepines

A chemical structural class built on a seven-membered 1,4-diazepine ring fused to a thiophene ring that provides a scaffold for derivatives of great current interest to medicinal chemistry because they target several pharmacologically important proteins, such as certain benzodiazepine derivatives that have neurological activity.

Insulin resistance

A complex phenotype arising from reduced insulin responsiveness in tissues that transport glucose in response to insulin action, such as adipose tissue and skeletal muscle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belkina, A., Denis, G. BET domain co-regulators in obesity, inflammation and cancer. Nat Rev Cancer 12, 465–477 (2012). https://doi.org/10.1038/nrc3256

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3256

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing