Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity

Abstract

Tumours often engage the lymphatic system in order to invade and metastasize. The tumour-draining lymph node may be an immune-privileged site that protects the tumour from host immunity, and lymph flow that drains tumours is often increased, enhancing communication between the tumour and the sentinel node. In addition to increasing the transport of tumour antigens and regulatory cytokines to the lymph node, increased lymph flow in the tumour margin causes mechanical stress-induced changes in stromal cells that stiffen the matrix and alter the immune microenvironment of the tumour. We propose that synergies between lymphatic drainage and flow-induced mechanotransduction in the stroma promote tumour immune escape by appropriating lymphatic mechanisms of peripheral tolerance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Linking mechanobiology, lymphangiogenesis and anti-tumour immunity.
Figure 2: Modelling the biomechanical aspects of the tumour microenvironment in vitro.
Figure 3: Interstitial flow and matrix mechanics manipulate the tumour stroma to promote invasion.
Figure 4: Interstitial flow influences the immune microenvironment in cancer.
Figure 5: Patterns of lymph flow and antigen delivery in the lymph node.

Similar content being viewed by others

References

  1. Dafni, H., Israely, T., Bhujwalla, Z. M., Benjamin, L. E. & Neeman, M. Overexpression of vascular endothelial growth factor 165 drives peritumor interstitial convection and induces lymphatic drain: magnetic resonance imaging, confocal microscopy, and histological tracking of triple-labeled albumin. Cancer Res. 62, 6731–6739 (2002).

    CAS  PubMed  Google Scholar 

  2. Harrell, M. I., Iritani, B. M. & Ruddell, A. Tumor-induced sentinel lymph node lymphangiogenesis and increased lymph flow precede melanoma metastasis. Am. J. Pathol. 170, 774–786 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ruddell, A., Harrell, M. I. & Furuya, M. Sentinel lymph node lymphangiogenesis and increased lymph flow in murine tumor metastasis. Clin. Exp. Metast. 26, 883–884 (2009).

    Google Scholar 

  4. Pathak, A. P., Artemov, D., Neeman, M. & Bhujwalla, Z. M. Lymph node metastasis in breast cancer xenografts is associated with increased regions of extravascular drain, lymphatic vessel area, and invasive phenotype. Cancer Res. 66, 5151–5158 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Wiig, H., Tveit, E., Hultborn, R., Reed, R. K. & Weiss, L. Interstitial fluid pressure in DMBA-induced rat mammary tumours. Scand. J. Clin. Lab. Invest. 42, 159–164 (1982).

    Article  CAS  PubMed  Google Scholar 

  6. Flessner, M. F., Choi, J., Credit, K., Deverkadra, R. & Henderson, K. Resistance of tumor interstitial pressure to the penetration of intraperitoneally delivered antibodies into metastatic ovarian tumors. Clin. Cancer Res. 11, 3117–3125 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Pedersen, J. A., Boschetti, F. & Swartz, M. A. Effects of extracellular fiber architecture on cell membrane shear stress in a 3D fibrous matrix. J. Biomech. 40, 1484–1492 (2007).

    Article  PubMed  Google Scholar 

  8. Lammermann, T. & Sixt, M. The microanatomy of T-cell responses. Immunol. Rev. 221, 26–43 (2008).

    Article  PubMed  Google Scholar 

  9. Gretz, J. E., Norbury, C. C., Anderson, A. O., Proudfoot, A. E. & Shaw, S. Lymph-borne chemokines and other low molecular weight molecules reach high endothelial venules via specialized conduits while a functional barrier limits access to the lymphocyte microenvironments in lymph node cortex. J. Exp. Med. 192, 1425–1440 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Butler, T. P., Grantham, F. H. & Gullino, P. M. Bulk transfer of fluid in interstitial compartment of mammary tumors. Cancer Res. 35, 3084–3088 (1975).

    CAS  PubMed  Google Scholar 

  11. Fukumura, D. & Jain, R. K. Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize. J. Cell. Biochem. 101, 937–949 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Dufort, C. C., Paszek, M. J. & Weaver, V. M. Balancing forces: architectural control of mechanotransduction. Nature Rev. Mol. Cell Biol. 12, 308–319 (2011).

    Article  CAS  Google Scholar 

  14. Xu, R., Boudreau, A. & Bissell, M. Tissue architecture and function: dynamic reciprocity via extra- and intra-cellular matrices. Cancer Metastasis Rev. 28, 167–176 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Heldin, C. H., Rubin, K., Pietras, K. & Ostman, A. High interstitial fluid pressure - an obstacle in cancer therapy. Nature Rev. Cancer 4, 806–813 (2004).

    Article  CAS  Google Scholar 

  16. Wiig, H. Evaluation of methodologies for measurement of interstitial fluid pressure (Pi): physiological implications of recent Pi data. Crit. Rev. Biomed. Eng. 18, 27–54 (1990).

    CAS  PubMed  Google Scholar 

  17. Boucher, Y., Leunig, M. & Jain, R. K. Tumor angiogenesis and interstitial hypertension. Cancer Res. 56, 4264–4266 (1996).

    CAS  PubMed  Google Scholar 

  18. Jain, R. K. Lessons from multidisciplinary translational trials on anti-angiogenic therapy of cancer. Nature Rev. Cancer 8, 309–316 (2008).

    Article  CAS  Google Scholar 

  19. Proulx, S. T. et al. Quantitative imaging of lymphatic function with liposomal indocyanine green. Cancer Res. 70, 7053–7062 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim, K. E. et al. Role of CD11b+ macrophages in intraperitoneal lipopolysaccharide-induced aberrant lymphangiogenesis and lymphatic function in the diaphragm. Am. J. Pathol. 175, 1733–1745 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kataru, R. P. et al. Critical role of CD11b+ macrophages and VEGF in inflammatory lymphangiogenesis, antigen clearance, and inflammation resolution. Blood 113, 5650–5659 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Flister, M. J. et al. Inflammation induces lymphangiogenesis through up-regulation of VEGFR-3 mediated by NF-κB and Prox1. Blood 115, 418–429 (2009).

    Article  PubMed  CAS  Google Scholar 

  23. Xing, L. P. & Ji, R. C. Lymphangiogenesis, myeloid cells and inflammation. Exp. Rev. Clin. Immunol. 4, 599–613 (2008).

    Article  Google Scholar 

  24. Halin, C., Tobler, N. E., Vigl, B., Brown, L. F. & Detmar, M. VEGF-A produced by chronically inflamed tissue induces lymphangiogenesis in draining lymph nodes. Blood 110, 3158–3167 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tammela, T. & Alitalo, K. Lymphangiogenesis: molecular mechanisms and future promise. Cell 140, 460–476 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Paupert, J., Sounni, N. E. & Noel, A. Lymphangiogenesis in post-natal tissue remodeling: lymphatic endothelial cell connection with its environment. Mol. Aspects Med. 32, 146–158 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Avraamides, C. J., Garmy-Susini, B. & Varner, J. A. Integrins in angiogenesis and lymphangiogenesis. Nature Rev. Cancer 8, 604–617 (2008).

    Article  CAS  Google Scholar 

  28. Skobe, M. et al. Concurrent induction of lymphangiogenesis, angiogenesis, and macrophage recruitment by vascular endothelial growth factor-C in melanoma. Am. J. Pathol. 159, 893–903 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mumprecht, V. & Detmar, M. Lymphangiogenesis and cancer metastasis. J. Cell. Mol. Med. 13, 1405–1416 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ruddell, A. et al. Dynamic contrast-enhanced magnetic resonance imaging of tumor-induced lymph flow. Neoplasia 10, 706–713 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kozlowski, H. & Hrabowska, M. Types of reaction in the regional lymph nodes in non-metastatic and minute-metastatic carcinoma of the uterine cervix. Arch. Geschwulstforsch. 45, 658–659 (1975).

    CAS  PubMed  Google Scholar 

  32. Boardman, K. C. & Swartz, M. A. Interstitial flow as a guide for lymphangiogenesis. Circ. Res. 92, 801–808 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Ng, C. P., Helm, C. L. & Swartz, M. A. Interstitial flow differentially stimulates blood and lymphatic endothelial cell morphogenesis in vitro. Microvasc. Res. 68, 258–264 (2004).

    Article  PubMed  Google Scholar 

  34. Helm, C. E., Fleury, M. E., Zisch, A. H., Boschetti, F. & Swartz, M. A. Synergy between 3D flow and VEGF directs capillary morphogenesis in vitro: experiments and theoretical mechanisms. Proc. Natl Acad. Sci. USA 44, 15779–15784 (2005).

    Article  CAS  Google Scholar 

  35. Wiig, H., Keskin, D. & Kalluri, R. Interaction between the extracellular matrix and lymphatics: consequences for lymphangiogenesis and lymphatic function. Matrix Biol. 29, 645–656 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schoppmann, S. F. et al. Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am. J. Pathol. 161, 947–956 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Raju, B., Haug, S. R., Ibrahim, S. O. & Heyeraas, K. J. High interstitial fluid pressure in rat tongue cancer is related to increased lymph vessel area, tumor size, invasiveness and decreased body weight. J. Oral Pathol. Med. 37, 137–144 (2008).

    Article  PubMed  Google Scholar 

  38. Shieh, A., Rozansky, H., Hinz, B. & Swartz, M. A. Tumor cell invasion is promoted by interstitial flow-induced matrix priming by stromal fibroblasts. Cancer Res. 71, 790–800 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Shields, J. D. et al. Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. Cancer Cell 11, 526–538 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Ng, C. P., Hinz, B. & Swartz, M. A. Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. J. Cell Sci. 118, 4731–4739 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Polacheck, W. J., Charest, J. L. & Kamm, R. D. Interstitial flow influences direction of tumor cell migration through competing mechanisms. Proc. Natl Acad. Sci. USA 108, 11115–11120 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chary, S. R. & Jain, R. K. Direct measurement of interstitial convection and diffusion of albumin in normal and neoplastic tissues by fluorescence photobleaching. Proc. Natl Acad. Sci. USA 86, 5385–5389 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Winer, J. P., Oake, S. & Janmey, P. A. Non-linear elasticity of extracellular matrices enables contractile cells to communicate local position and orientation. PLoS ONE 4, e6382 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Wipff, P. J., Rifkin, D. B., Meister, J. J. & Hinz, B. Myofibroblast contraction activates latent TGF-β1 from the extracellular matrix. J. Cell Biol. 179, 1311–1323 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ahamed, J. et al. In vitro and in vivo evidence for shear-induced activation of latent transforming growth factor-β1. Blood 112, 3650–3660 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yu, H. M., Mouw, J. K. & Weaver, V. M. Forcing form and function: biomechanical regulation of tumor evolution. Trends Cell Biol. 21, 47–56 (2011).

    Article  PubMed  Google Scholar 

  47. Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241–254 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Provenzano, P. P. et al. Collagen density promotes mammary tumor initiation and progression. BMC Med. 6, 11 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Ronnov-Jessen, L. & Bissell, M. J. Breast cancer by proxy: can the microenvironment be both the cause and consequence? Trends Mol. Med. 15, 5–13 (2009).

    Article  PubMed  CAS  Google Scholar 

  50. Conklin, M. W. et al. Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am. J. Pathol. 178, 1221–1232 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Finger, E. C. & Giaccia, A. J. Hypoxia, inflammation, and the tumor microenvironment in metastatic disease. Cancer Met. Rev. 29, 285–293 (2010).

    Article  CAS  Google Scholar 

  52. Guadall, A. et al. Hypoxia-induced ROS signaling is required for LOX up-regulation in endothelial cells. Frontiers Biosci. 3, 955–967 (2011).

    Google Scholar 

  53. Alcudia, J. F. et al. Lysyl oxidase and endothelial dysfunction: mechanisms of lysyl oxidase down-regulation by pro-inflammatory cytokines. Frontiers Biosci. 13, 2721–2727 (2008).

    Article  CAS  Google Scholar 

  54. Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kalluri, R. & Zeisberg, M. Fibroblasts in cancer. Nature Rev. Cancer 6, 392–401 (2006).

    Article  CAS  Google Scholar 

  56. Goetz, J. G. et al. Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell 146, 148–163 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gaggioli, C. et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nature Cell Biol. 9, 1392–1400 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Khalil, A. A. & Friedl, P. Determinants of leader cells in collective cell migration. Integr. Biol. 2, 568–574 (2010).

    Article  Google Scholar 

  59. Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Provenzano, P. P. et al. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 4, 38 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Friedl, P. & Gilmour, D. Collective cell migration in morphogenesis, regeneration and cancer. Nature Rev. Mol. Cell Biol. 10, 445–457 (2009).

    Article  CAS  Google Scholar 

  62. Provenzano, P. P., Inman, D. R., Eliceiri, K. W., Trier, S. M. & Keely, P. J. Contact guidance mediated three-dimensional cell migration is regulated by Rho/ROCK-dependent matrix reorganization. Biophys. J. 95, 5374–5384 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Haessler, U., Teo, J. C., Foretay, D., Renaud, P. & Swartz, M. A. Migration dynamics of breast cancer cells in a tunable 3D interstitial flow chamber. Integr. Biol. 5 Dec 2011 (doi:10.1039/C1IB00128K).

  64. Qazi, H., Shi, Z. D. & Tarbell, J. M. Fluid shear stress regulates the invasive potential of glioma cells via modulation of migratory activity and matrix metalloproteinase expression. PLoS ONE 6, e20348 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shi, Z. D., Ji, X. Y., Qazi, H. & Tarbell, J. M. Interstitial flow promotes vascular fibroblast, myofibroblast, and smooth muscle cell motility in 3D collagen I via upregulation of MMP-1. Am. J. Physiol. Heart Circ. Physiol. 297, H1225–H1234 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Denardo, D., Andreu, P. & Coussens, L. M. Interactions between lymphocytes and myeloid cells regulate pro- versus anti-tumor immunity. Cancer Metast. Rev. 29, 309–316 (2010).

    Article  Google Scholar 

  67. Munn, D. H. & Mellor, A. L. The tumor-draining lymph node as an immune-privileged site. Immunol. Rev. 213, 146–158 (2006).

    Article  PubMed  Google Scholar 

  68. Baitsch, L. et al. Exhaustion of tumor-specific CD8+ T cells in metastases from melanoma patients. J. Clin. Invest. 121, 2350–2360 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Facciabene, A. et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg cells. Nature 475, 226–230 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Shields, J. D., Kourtis, I. C., Tomei, A. A., Roberts, J. M. & Swartz, M. A. Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21. Science 328, 749–752 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Contassot, E., Preynat-Seauve, O., French, L. & Huard, B. Lymph node tumor metastases: more susceptible than primary tumors to CD8+ T-cell immune destruction. Trends Immunol. 30, 569–573 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Preynat-Seauve, O. et al. Extralymphatic tumors prepare draining lymph nodes to invasion via a T-cell cross-tolerance process. Cancer Res. 67, 5009–5016 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Gerlini, G. et al. Plasmacytoid dendritic cells represent a major dendritic cell subset in sentinel lymph nodes of melanoma patients and accumulate in metastatic nodes. Clin. Immunol. 125, 184–193 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Battaglia, A. et al. Metastatic tumour cells favour the generation of a tolerogenic milieu in tumour draining lymph node in patients with early cervical cancer. Cancer Immunol. Immunother. 58, 1363–1373 (2009).

    Article  PubMed  Google Scholar 

  75. Mantovani, A., Romero, P., Palucka, A. & Marincola, F. Tumour immunity: effector response to tumour and role of the microenvironment. Lancet 371, 771–783 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Bierie, B. & Moses, H. L. Transforming growth factor β (TGF-β) and inflammation in cancer. Cytokine Growth Factor Rev. 21, 49–59 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Flavell, R. A., Sanjabi, S., Wrzesinski, S. H. & Licona-Limon, P. The polarization of immune cells in the tumour environment by TGFβ. Nature Rev. Immunol. 10, 554–567 (2010).

    Article  CAS  Google Scholar 

  78. Padua, D. & Massague, J. Roles of TGFβ in metastasis. Cell Res. 19, 89–102 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Wei, S. A. et al. Tumor-induced immune suppression of in vivo effector T-cell priming is mediated by the B7-H1/PD-1 axis and transforming growth factor β. Cancer Res. 68, 5432–5438 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gabrilovich, D. I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nature Rev. Immunol. 9, 162–174 (2009).

    Article  CAS  Google Scholar 

  81. Yang, L. et al. Abrogation of TGF β signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell 13, 23–35 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ghiringhelli, F. et al. Tumor cells convert immature myeloid dendritic cells into TGF-β-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J. Exp. Med. 202, 919–929 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tan, W. et al. Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL-RANK signalling. Nature 470, 548–553 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Forster, R., Davalos-Misslitz, A. C. & Rot, A. CCR7 and its ligands: balancing immunity and tolerance. Nature Rev. Immunol. 8, 362–371 (2008).

    Article  CAS  Google Scholar 

  85. Miteva, D. O. et al. Transmural flow modulates cell and fluid transport functions of lymphatic endothelium. Circ. Res. 106, 920–931 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Tomei, A. A., Siegert, S., Britschgi, M. R., Luther, S. A. & Swartz, M. A. Fluid flow regulates stromal cell organization and CCL21 expression in a tissue-engineered lymph node microenvironment. J. Immunol. 183, 4273–4283 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Issa, A., Le, T. X., Shoushtari, A. N., Shields, J. D. & Swartz, M. A. Vascular endothelial growth factor-C and C-C chemokine receptor 7 in tumor cell-lymphatic cross-talk promote invasive phenotype. Cancer Res. 69, 349–357 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Zhai, H. Y., Heppner, F. L. & Tsirka, S. E. Microglia/macrophages promote glioma progression. Glia 59, 472–485 (2011).

    Article  PubMed  Google Scholar 

  89. Machado, L. et al. Expression and function of T cell homing molecules in Hodgkin's lymphoma. Cancer Immunol. Immunother. 58, 85–94 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Raica, M., Cimpean, A. M. & Ribatti, D. The role of podoplanin in tumor progression and metastasis. Anticancer Res. 28, 2997–3006 (2008).

    PubMed  Google Scholar 

  91. Kitano, H. et al. Podoplanin expression in cancerous stroma induces lymphangiogenesis and predicts lymphatic spread and patient survival. Arch. Pathol. Lab. Med. 134, 1520–1527 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Cueni, L. N. et al. Tumor lymphangiogenesis and metastasis to lymph nodes induced by cancer cell expression of podoplanin. Am. J. Pathol. 177, 1004–1016 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kawase, A. et al. Podoplanin expression by cancer associated fibroblasts predicts poor prognosis of lung adenocarcinoma. Int. J. Cancer 123, 1053–1059 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Peduto, L. et al. Inflammation recapitulates the ontogeny of lymphoid stromal cells. J. Immunol. 182, 5789–5799 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Ahrendt, M., Hammerschmidt, S. I., Pabst, O., Pabst, R. & Bode, U. Stromal cells confer lymph node-specific properties by shaping a unique microenvironment influencing local immune responses. J. Immunol. 181, 1898–1907 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Schneider, M., Meingassner, J., Lipp, M., Moore, H. & Rot, A. CCR7 is required for the in vivo function of CD4+ CD25+ regulatory T cells. J. Exp. Med. 204, 735–745 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yasuda, T. et al. Chemokines CCL19 and CCL21 promote activation-induced cell death of antigen-responding T cells. Blood 109, 449–456 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Davalos-Misslitz, A. C. et al. Generalized multi-organ autoimmunity in CCR7-deficient mice. Eur. J. Immunol. 37, 613–622 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Hirakawa, S. et al. VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood 109, 1010–1017 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Huggenberger, R. et al. An important role of lymphatic vessel activation in limiting acute inflammation. Blood 117, 4667–4678 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Von Der Weid, P. Y., Rehal, S. & Ferraz, J. G. P. Role of the lymphatic system in the pathogenesis of Crohn's disease. Curr. Opin. Gastroenterol. 27, 335–341 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Yin, N. et al. Targeting lymphangiogenesis after islet transplantation prolongs islet allograft survival. Transplantation 92, 25–30 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kerjaschki, D. et al. Lymphatic neoangiogenesis in human kidney transplants is associated with immunologically active lymphocytic infiltrates. J. Am. Soc. Nephrol. 15, 603–612 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Ling, S., Qi, C., Li, W., Xu, J. & Kuang, W. Crucial role of corneal lymphangiogenesis for allograft rejection in alkali-burned cornea bed. Clin. Exp. Ophthalmol. 37, 874–883 (2009).

    Article  PubMed  Google Scholar 

  105. Stuht, S. et al. Lymphatic neoangiogenesis in human renal allografts: results from sequential protocol biopsies. Am. J. Transplant. 7, 377–384 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Angeli, V. et al. B cell-driven lymphangiogenesis in inflamed lymph nodes enhances dendritic cell mobilization. Immunity 24, 203–215 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Shrestha, B. et al. B cell-derived vascular endothelial growth factor a promotes lymphangiogenesis and high endothelial venule expansion in lymph nodes. J. Immunol. 184, 4819–4826 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Kataru, R. P. et al. T lymphocytes negatively regulate lymph node lymphatic vessel formation. Immunity 34, 96–107 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Heller, F. et al. The contribution of B cells to renal interstitial inflammation. Am. J. Pathol. 170, 457–468 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lee, Y. et al. Recruitment and activation of naive T cells in the islets by lymphotoxin β receptor-dependent tertiary lymphoid structure. Immunity 25, 499–509 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Thaunat, O., Kerjaschki, D. & Nicoletti, A. Is defective lymphatic drainage a trigger for lymphoid neogenesis? Trends Immunol. 27, 441–445 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Podgrabinska, S. et al. Inflamed lymphatic endothelium suppresses dendritic cell maturation and function via Mac-1/ICAM-1-dependent mechanism. J. Immunol. 183, 1767–1779 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Cohen, J. N. et al. Lymph node-resident lymphatic endothelial cells mediate peripheral tolerance via Aire-independent direct antigen presentation. J. Exp. Med. 207, 681–688 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sixt, M. et al. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 22, 19–29 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Junt, T. et al. Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature 450, 110–114 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Clement, C. C. et al. An expanded self-antigen peptidome is carried by the human lymph as compared to the plasma. PLoS ONE 5, e9863 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Batista, F. D. & Harwood, N. E. The who, how and where of antigen presentation to B cells. Nature Rev. Immunol. 9, 15–27 (2009).

    Article  CAS  Google Scholar 

  118. Itano, A. A. & Jenkins, M. K. Antigen presentation to naive CD4 T cells in the lymph node. Nature Immunol. 4, 733–739 (2003).

    Article  CAS  Google Scholar 

  119. Scheinecker, C., Mchugh, R., Shevach, E. M. & Germain, R. N. Constitutive presentation of a natural tissue autoantigen exclusively by dendritic cells in the draining lymph node. J. Exp. Med. 196, 1079–1090 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Friedlaender, M. H., Baer, H. Immunologic Tolerance: role of the regional lymph node. Science 176, 312–314 (1972).

    Article  CAS  PubMed  Google Scholar 

  121. Munn, D. & Mellor, A. Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J. Clin. Invest. 117, 1147–1154 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hood, J. L., San, R. S. & Wickline, S. A. Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res. 71, 3792–3801 (2011).

    Article  CAS  PubMed  Google Scholar 

  123. Peinado, H., Lavotshkin, S. & Lyden, D. The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin. Cancer Biol. 21, 139–146 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Chaitanya, G. V. et al. Differential cytokine responses in human and mouse lymphatic endothelial cells to cytokines in vitro. Lymphat. Res. Biol. 8, 155–164 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Liao, S. et al. Impaired lymphatic contraction associated with immunosuppression. Proc. Natl Acad. Sci. USA 108, 18784–18789 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Fletcher, A. L., Malhotra, D. & Turley, S. J. Lymph node stroma broaden the peripheral tolerance paradigm. Trends Immunol. 32, 12–18 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Fletcher, A. L. et al. Lymph node fibroblastic reticular cells directly present peripheral tissue antigen under steady-state and inflammatory conditions. J. Exp. Med. 207, 689–697 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lund, A. W. et al. VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics. Cell Rep. 23 Feb 2012 (doi:10.1016/j.celrep.2012.01.005).

  129. Ng, C. P. & Swartz, M. A. Fibroblast alignment under interstitial fluid flow using a novel 3D tissue culture model. Am. J. Physiol. Heart Circ. Physiol. 284, H1771–H1777 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Roozendaal, R., Mebius, R. E. & Kraal, G. The conduit system of the lymph node. Int. Immunol. 20, 1483–1487 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Mebius, R. E., Streeter, P. R., Breve, J., Duijvestijn, A. M. & Kraal, G. The influence of afferent lymphatic vessel interruption on vascular addressin expression. J. Cell Biol. 115, 85–95 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors apologize to the many researchers whose work could not be included owing to space constraints. They are grateful to the Swiss National Science Foundation, Swiss Cancer League, European Research Council and the Swiss NCCR in Molecular Oncology for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melody A. Swartz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

Melody A. Swartz's homepage

Glossary

Cancer-associated fibroblasts

(CAFs). Heterogeneous population of fibroblasts found in the tumour stroma that often exhibit myofibroblast features. They are responsible for stromal stiffening and can lead collective tumour cell invasion.

Dendritic cells

(DCs). The most potent antigen-presenting cells that can activate T cells and thereby induce antigen-specific immune responses.

Fibroblastic reticular cells

(FRCs). Lymph node stromal cells of the paracortical reticular meshwork, a specialized structure that directs the interactions between dendritic cells and T lymphocytes. FRCs express podoplanin (GP38), which is a key component of the reticular meshwork, and secrete cytokines such as CCL21 and CCL19 to attract lymphocytes and maintain their homeostasis. Importantly, FRC features can be exhibited by CAFs, and such lymphoid-like stromal components have been correlated with tumour invasion and metastasis.

Interstitial flow

Fluid flow within the interstitium, driven by pressure gradients between the blood, interstitial and lymphatic compartments. Elevated tumour interstitial fluid pressure or increased lymphatic drainage can cause increased interstitial flow in the tumour stroma.

Interstitial fluid pressure

(IFP). Hydrostatic pressure in the interstitium; it is usually subatmospheric, meaning that excised tissue imbibes water when placed in saline. IFP in solid tumours is often elevated owing to leaky tumour vessels.

Mechanical stress

An applied force per unit area. In tumours, stresses include IFP gradients, shear stresses owing to fluid flow, matrix tension caused by fluid flow or matrix contraction by CAFs, and compressive stresses from a growing tumour pushing on surrounding tissue. Mechanical stress in the extracellular matrix induces mechanical strain according to stiffness.

Myofibroblast

A fibroblast subtype expressing α-smooth muscle actin that displays a contractile, synthetic and pro-fibrotic phenotype. Transforming growth factor-β (TGFβ) both activates, and is activated by, myofibroblasts.

Regulatory T (TReg) cells

FoxP3+ CD4+ T cells that suppress effector T cells and are important for maintaining peripheral tolerance to autoantigens, thereby preventing autoimmunity. Natural TReg cells are educated in the thymus, and inducible TReg cell activation in the periphery requires TGFβ and interleukin-10.

Stromal stiffening

A material property of the tumour stromal extracellular matrix that describes its resistance to deformation under mechanical stress. It can be altered by matrix protein synthesis, collagen crosslinking, matrix alignment and proteolysis.

Tolerance

The process that ensures that B and T cell repertoires are biased against self-reactivity, reducing the likelihood of autoimmunity.

Tumour-associated macrophages

(TAMs). A heterogeneous population of generally immune suppressive, alternatively activated or M2-type macrophages derived from peripheral blood monocytes that are recruited into the tumour mass and that constitute a major component of the immune infiltrate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swartz, M., Lund, A. Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity. Nat Rev Cancer 12, 210–219 (2012). https://doi.org/10.1038/nrc3186

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3186

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer