Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy

Key Points

  • Recently generated germline transgenic and knockout mice have provided a detailed view of the implication of the gain or loss of individual microRNAs (miRNAs), miRNA clusters and the miRNA processing machinery in cancer. These have been classified as oncogenic (such as miR-155, miR-21 and miR-1792), tumour-suppressive (such as miR-1516, LIN28, DICER) or context-dependent (such as miR-146 and miR-29).

  • miRNAs and the miRNA processing machinery are involved in all stages of metastatic disease. Some — such as miR-200, the LIN28–let-7 interaction and DICER — contribute to both metastasis and primary tumour development, whereas others, such as miR-31 and miR-10b, are unique to metastasis.

  • Studies uncovering miRNA function have led to their therapeutic application. Delivering tumour-suppressive miRNAs and silencing oncogenic miRNAs with antagomirs has been successful in various mouse models. Many of these studies began with overexpression and knockdown strategies and have since progressed to delivering miRNA-based molecules intranasally, intratumorally or systemically.

  • Expanding on their therapeutic application, miRNAs are also being evaluated for their ability to sensitize cancers to chemotherapeutics. Much of this work is being accomplished in cell culture, with the hope that it will soon transition into preclinical model systems.

Abstract

In normal cells multiple microRNAs (miRNAs) converge to maintain a proper balance of various processes, including proliferation, differentiation and cell death. miRNA dysregulation can have profound cellular consequences, especially because individual miRNAs can bind to and regulate multiple mRNAs. In cancer, the loss of tumour-suppressive miRNAs enhances the expression of target oncogenes, whereas increased expression of oncogenic miRNAs (known as oncomirs) can repress target tumour suppressor genes. This realization has resulted in a quest to understand the pathways that are regulated by these miRNAs using in vivo model systems, and to comprehend the feasibility of targeting oncogenic miRNAs and restoring tumour-suppressive miRNAs for cancer therapy. Here we discuss progress in using mouse models to understand the roles of miRNAs in cancer and the potential for manipulating miRNAs for cancer therapy as these molecules make their way towards clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Opposing roles of miRNAs in cancer.
Figure 2: RNAs are subject to genomic, transcriptional and post-transcriptional modes of regulation.
Figure 3: RNA expression patterns dictate miRNA repressibility in cells.
Figure 4: miRNAs that contribute to metastasis.

Similar content being viewed by others

References

  1. Chalfie, M., Horvitz, H. R. & Sulston, J. E. Mutations that lead to reiterations in the cell lineages of C. elegans. Cell 24, 59–69 (1981).

    Article  CAS  PubMed  Google Scholar 

  2. Hodgkin, J., Horvitz, H. R. & Brenner, S. Nondisjunction mutants of the nematode Caenorhabditis elegans. Genetics 91, 67–94 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Reinhart, B. J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Slack, F. J. et al. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol. Cell 5, 659–669 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Kozomara, A. & Griffiths-Jones, S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 39, D152–D157 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Calin, G. A. et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl Acad. Sci. USA 101, 2999–3004 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ryan, B. M., Robles, A. I. & Harris, C. C. Genetic variation in microRNA networks: the implications for cancer research. Nature Rev. Cancer 10, 389–402 (2010).

    Article  CAS  Google Scholar 

  9. Calin, G. A. & Croce, C. M. MicroRNA signatures in human cancers. Nature Rev. Cancer 6, 857–866 (2006).

    Article  CAS  Google Scholar 

  10. Esquela-Kerscher, A. & Slack, F. J. Oncomirs — microRNAs with a role in cancer. Nature Rev. Cancer 6, 259–269 (2006).

    Article  CAS  Google Scholar 

  11. Costinean, S. et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in Eμ-miR155 transgenic mice. Proc. Natl Acad. Sci. USA 103, 7024–7029 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. O'Connell, R. M. et al. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 33, 607–619 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rodriguez, A. et al. Requirement of bic/microRNA-155 for normal immune function. Science 316, 608–611 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Thai, T. H. et al. Regulation of the germinal center response by microRNA-155. Science 316, 604–608 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Tili, E. et al. Mutator activity induced by microRNA-155 (miR-155) links inflammation and cancer. Proc. Natl Acad. Sci. USA 108, 4908–4913 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chan, J. A., Krichevsky, A. M. & Kosik, K. S. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 65, 6029–6033 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Landgraf, P. et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401–1414 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Volinia, S. et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl Acad. Sci. USA 103, 2257–2261 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hatley, M. E. et al. Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21. Cancer Cell 18, 282–293 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ma, X. et al. Loss of the miR-21 allele elevates the expression of its target genes and reduces tumorigenesis. Proc. Natl Acad. Sci. USA 108, 10144–10149 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Medina, P. P., Nolde, M. & Slack, F. J. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature 467, 86–90 (2010). In addition to references 19 and 20, this study generated miR-21 transgenic mice. All three studies report miR-21 as an oncogene in different contexts.

    Article  CAS  PubMed  Google Scholar 

  22. Wang, J. et al. MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer Prev. Res. (Phila) 2, 807–813 (2009).

    Article  CAS  Google Scholar 

  23. Ventura, A. et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132, 875–886 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xiao, C. et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nature Immunol. 9, 405–414 (2008).

    Article  CAS  Google Scholar 

  25. Castellano, L. et al. The estrogen receptor-alpha-induced microRNA signature regulates itself and its transcriptional response. Proc. Natl Acad. Sci. USA 106, 15732–15737 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hayashita, Y. et al. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 65, 9628–9632 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. He, L. et al. A microRNA polycistron as a potential human oncogene. Nature 435, 828–833 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lanza, G. et al. mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer. Mol. Cancer 6, 54 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Mestdagh, P. et al. MYCN/c-MYC-induced microRNAs repress coding gene networks associated with poor outcome in MYCN/c-MYC-activated tumors. Oncogene 29, 1394–1404 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. O'Donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V. & Mendell, J. T. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435, 839–843 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Poliseno, L. et al. Identification of the miR-106b25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Sci. Signal 3, ra29 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Mu, P. et al. Genetic dissection of the miR-1792 cluster of microRNAs in Myc-induced B-cell lymphomas. Genes Dev. 23, 2806–2811 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Olive, V. et al. miR-19 is a key oncogenic component of mir-17-92. Genes Dev. 23, 2839–2849 (2009). References 32 and 33 isolated the oncogenic role of miR-19 from the miR-1792 cluster. Both studies confirmed that miR-19 was sufficient to promote MYC-induced lymphomagenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mavrakis, K. J. et al. A cooperative microRNA-tumor suppressor gene network in acute T-cell lymphoblastic leukemia (T-ALL). Nature Genet. 43, 673–678 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Calin, G. A. et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA 99, 15524–15529 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Raveche, E. S. et al. Abnormal microRNA-16 locus with synteny to human 13q14 linked to CLL in NZB mice. Blood 109, 5079–5086 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Salerno, E. et al. Correcting miR-15a/16 genetic defect in New Zealand Black mouse model of CLL enhances drug sensitivity. Mol. Cancer Ther. 8, 2684–2692 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Klein, U. et al. The DLEU2/miR-15a/16–11 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell 17, 28–40 (2010). In this study, the tumour-suppressive contribution of miR-15a16 was teased apart from its host gene, Dleu2 . Overexpression of miR15a16 could reduce cellular proliferation in Dleu2; mir-15a 16 double knockout mice.

    Article  CAS  PubMed  Google Scholar 

  39. Musumeci, M. et al. Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer. Oncogene 30, 4231–4242 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Roccaro, A. M. et al. MicroRNAs 15a and 16 regulate tumor proliferation in multiple myeloma. Blood 113, 6669–6680 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Acevedo, V. D., Ittmann, M. & Spencer, D. M. Paths of FGFR-driven tumorigenesis. Cell Cycle 8, 580–588 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Dahiya, N. et al. MicroRNA expression and identification of putative miRNA targets in ovarian cancer. PLoS ONE 3, e2436 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. He, H. et al. The role of microRNA genes in papillary thyroid carcinoma. Proc. Natl Acad. Sci. USA 102, 19075–19080 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, X. et al. Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS ONE 3, e2557 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Boldin, M. P. et al. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J. Exp. Med. 208, 1189–1201 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Starczynowski, D. T. et al. MicroRNA-146a disrupts hematopoietic differentiation and survival. Exp. Hematol. 39, 167–178 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Zhao, J. L. et al. NF- κB dysregulation in microRNA-146a-deficient mice drives the development of myeloid malignancies. Proc. Natl Acad. Sci. USA 108, 9184–9189 (2011). A careful analysis of mir-146a -knockout mice. Mice developed myeloid sarcomas and lymphomas. A link between miR-146a and NF-κB was also described.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Garcia, A. I. et al. Down-regulation of BRCA1 expression by miR-146a and miR-146b-5p in triple negative sporadic breast cancers. EMBO Mol. Med. 3, 279–290 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Taganov, K. D., Boldin, M. P., Chang, K. J. & Baltimore, D. NF-kB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl Acad. Sci. USA 103, 12481–12486 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dickson, K. M., Bhakar, A. L. & Barker, P. A. TRAF6-dependent NF-kB transcriptional activity during mouse development. Dev. Dyn. 231, 122–127 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Thomas, J. A. et al. Impaired cytokine signaling in mice lacking the IL-1 receptor-associated kinase. J. Immunol. 163, 978–984 (1999).

    CAS  PubMed  Google Scholar 

  52. Fabbri, M. et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc. Natl Acad. Sci. USA 104, 15805–15810 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mott, J. L., Kobayashi, S., Bronk, S. F. & Gores, G. J. mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene 26, 6133–6140 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pekarsky, Y. et al. Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res. 66, 11590–11593 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Zhao, J. J. et al. microRNA expression profile and identification of miR-29 as a prognostic marker and pathogenetic factor by targeting CDK6 in mantle cell lymphoma. Blood 115, 2630–2639 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Garzon, R. et al. MicroRNA 29b functions in acute myeloid leukemia. Blood 114, 5331–5341 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pekarsky, Y. & Croce, C. M. Is miR-29 an oncogene or tumor suppressor in CLL? Oncotarget. 1, 224–227 (2010).

    PubMed  PubMed Central  Google Scholar 

  58. Han, Y. C. et al. microRNA-29a induces aberrant self-renewal capacity in hematopoietic progenitors, biased myeloid development, and acute myeloid leukemia. J. Exp. Med. 207, 475–489 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Santanam, U. et al. Chronic lymphocytic leukemia modeled in mouse by targeted miR-29 expression. Proc. Natl Acad. Sci. USA 107, 12210–12215 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhu, H. et al. Lin28a transgenic mice manifest size and puberty phenotypes identified in human genetic association studies. Nature Genet. 42, 626–630 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Zhu, H. et al. The Lin28/let-7 Axis Regulates Glucose Metabolism. Cell 147, 81–94 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Trang, P. et al. Regression of murine lung tumors by the let-7 microRNA. Oncogene 29, 1580–1587 (2009). This was the first indication that let-7 could be used to reduce preformed lung tumours in mice, in support of its clinical application.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature 435, 834–838 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Kumar, M. S. et al. Dicer1 functions as a haploinsufficient tumor suppressor. Genes Dev. 23, 2700–2704 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lambertz, I. et al. Monoallelic but not biallelic loss of Dicer1 promotes tumorigenesis in vivo. Cell Death Differ. 17, 633–641 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Martello, G. et al. A MicroRNA targeting dicer for metastasis control. Cell 141, 1195–1207 (2010). This paper describes a direct link between high miR-103 and miR-107 expression and low DICER expression in cancer. miR-103 and miR-107 abrogate DICER expression,leading to reduced miRNA biogenesis and acceleratedmetastasis.

    Article  CAS  PubMed  Google Scholar 

  67. Su, X. et al. TAp63 suppresses metastasis through coordinate regulation of Dicer and miRNAs. Nature 467, 986–990 (2010). This paper reports that TAp63 suppresses tumorigenesis and metastasis by transactivating DICER expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nicoloso, M. S., Spizzo, R., Shimizu, M., Rossi, S. & Calin, G. A. MicroRNAs — the micro steering wheel of tumour metastases. Nature Rev. Cancer 9, 293–302 (2009).

    Article  CAS  Google Scholar 

  69. Gregory, P. A. et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 10, 593–601 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Park, S. M., Gaur, A. B., Lengyel, E. & Peter, M. E. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 22, 894–907 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gibbons, D. L. et al. Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes Dev. 23, 2140–2151 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kong, D. et al. Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PLoS ONE 5, e12445 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Wellner, U. et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat. Cell Biol. 11, 1487–1495 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Korpal, M., Lee, E. S., Hu, G. & Kang, Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J. Biol. Chem. 283, 14910–14914 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Viswanathan, S. R., Daley, G. Q. & Gregory, R. I. Selective blockade of microRNA processing by Lin28. Science 320, 97–100 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Viswanathan, S. R. et al. Lin28 promotes transformation and is associated with advanced human malignancies. Nature Genet. 41, 843–848 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Dangi-Garimella, S. et al. Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. EMBO J. 28, 347–358 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Li, X. et al. MicroRNA-107, an oncogene microRNA that regulates tumor invasion and metastasis by targeting DICER1 in gastric cancer: miR-107 promotes gastric cancer invasion and metastasis. J. Cell. Mol. Med. 15, 1887–1895 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tokumaru, S., Suzuki, M., Yamada, H., Nagino, M. & Takahashi, T. let-7 regulates Dicer expression and constitutes a negative feedback loop. Carcinogenesis 29, 2073–2077 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Valastyan, S., Chang, A., Benaich, N., Reinhardt, F. & Weinberg, R. A. Concurrent suppression of integrin α5, radixin, and RhoA phenocopies the effects of miR-31 on metastasis. Cancer Res. 70, 5147–5154 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Valastyan, S., Chang, A., Benaich, N., Reinhardt, F. & Weinberg, R. A. Activation of miR-31 function in already-established metastases elicits metastatic regression. Genes Dev. 25, 646–659 (2011). A comprehensive study evaluating the antimetastatic role of miR-31 and suggesting the potential use of miR-31 for the treatment of metastatic disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Valastyan, S. et al. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137, 1032–1046 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ma, L. et al. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nature Biotech. 28, 341–347 (2010). The only report of systemically delivering antagomirs for cancer therapy. In mice, anti-miR-10b treatment suppressed metastasis without affecting primary tumour development.

    Article  CAS  Google Scholar 

  85. Huang, Q. et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat. Cell Biol. 10, 202–210 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Tavazoie, S. F. et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451, 147–152 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Roush, S. & Slack, F. J. The let-7 family of microRNAs. Trends Cell Biol. 18, 505–516 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Dangi-Garimella, S., Strouch, M. J., Grippo, P. J., Bentrem, D. J. & Munshi, H. G. Collagen regulation of let-7 in pancreatic cancer involves TGF-β1-mediated membrane type 1-matrix metalloproteinase expression. Oncogene 30, 1002–1008 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Wang, M., Hu, Y., Amatangelo, M. D. & Stearns, M. E. Role of ribosomal protein RPS2 in controlling let-7a expression in human prostate cancer. Mol. Cancer Res. 9, 36–50 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Trang, P. et al. Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol. Ther. 19, 1116–1122 (2011). This paper reports the use of systemically delivered miRNAs ( let-7 and miR-34) to treat preformed lung tumours. Systemically delivered miRNAs were well tolerated and effective.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lee, S. T. et al. Let-7 microRNA inhibits the proliferation of human glioblastoma cells. J. Neurooncol. 102, 19–24 (2010).

    Article  PubMed  CAS  Google Scholar 

  92. Yu, F. et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131, 1109–1123 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Hirai, H. et al. Activation of the c-K-ras oncogene in a human pancreas carcinoma. Biochem. Biophys. Res. Commun. 127, 168–174 (1985).

    Article  CAS  PubMed  Google Scholar 

  94. Kent, O. A. et al. Repression of the miR-143/145 cluster by oncogenic Ras initiates a tumor-promoting feed-forward pathway. Genes Dev. 24, 2754–2759 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nakano, H. et al. Isolation of transforming sequences of two human lung carcinomas: structural and functional analysis of the activated c-K-ras oncogenes. Proc. Natl Acad. Sci. USA 81, 71–75 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pramanik, D. et al. Restitution of tumor suppressor microRNAs using a systemic nanovector inhibits pancreatic cancer growth in mice. Mol. Cancer Ther. 10, 1470–1480 (2011). This study reports the systemic delivery of miR-34, miR-143 and miR-145 to orthotopic pancreatic tumours in vivo . Tumour growth was inhibited with no signs of toxicity. This is especially interesting because blood flow to the pancreas is thought to be low.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Earle, J. S. et al. Association of microRNA expression with microsatellite instability status in colorectal adenocarcinoma. J. Mol. Diagn. 12, 433–440 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gao, W. et al. Deregulated expression of miR-21, miR-143 and miR-181a in non small cell lung cancer is related to clinicopathologic characteristics or patient prognosis. Biomed. Pharmacother. 64, 399–408 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Han, Y. et al. MicroRNA expression signatures of bladder cancer revealed by deep sequencing. PLoS ONE 6, e18286 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhang, X., Liu, S., Hu, T., He, Y. & Sun, S. Up-regulated microRNA-143 transcribed by nuclear factor kappa B enhances hepatocarcinoma metastasis by repressing fibronectin expression. Hepatology 50, 490–499 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Marchini, S. et al. Association between miR-200c and the survival of patients with stage I epithelial ovarian cancer: a retrospective study of two independent tumour tissue collections. Lancet Oncol. 12, 273–285 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Volinia, S. et al. Reprogramming of miRNA networks in cancer and leukemia. Genome Res. 20, 589–599 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hermeking, H. The miR-34 family in cancer and apoptosis. Cell Death Differ. 17, 193–199 (2009).

    Article  PubMed  CAS  Google Scholar 

  104. Kasinski, A. L. & Slack, F. J. Potential microRNA therapies targeting Ras, NFκB and p53 signaling. Curr. Opin. Mol. Ther. 12, 147–157 (2010).

    CAS  PubMed  Google Scholar 

  105. Brosh, R. & Rotter, V. When mutants gain new powers: news from the mutant p53 field. Nature Rev. Cancer 9, 701–713 (2009).

    Article  CAS  Google Scholar 

  106. Wiggins, J. F. et al. Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res. 70, 5923–5930 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Liu, C. et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nature Med. 17, 211–215 (2011). This study showed that systemic miR-34 delivery inhibited prostate cancer metastasis and increased survival. CD44 was validated as a causal target of the miR-34 therapeutic effect.

    Article  CAS  PubMed  Google Scholar 

  108. Komar, G. et al. Decreased blood flow with increased metabolic activity: a novel sign of pancreatic tumor aggressiveness. Clin. Cancer Res. 15, 5511–5517 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Bai, S. et al. MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib. J. Biol. Chem. 284, 32015–32027 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Burchard, J. et al. microRNA-122 as a regulator of mitochondrial metabolic gene network in hepatocellular carcinoma. Mol. Syst. Biol. 6, 402 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Tsai, W. C. et al. MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology 49, 1571–1582 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Lanford, R. E. et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327, 198–201 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Su, J., Baigude, H., McCarroll, J. & Rana, T. M. Silencing microRNA by interfering nanoparticles in mice. Nucleic Acids Res. 39, e38 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kota, J. et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137, 1005–1017 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ji, J. et al. MicroRNA expression, survival, and response to interferon in liver cancer. N. Engl. J. Med. 361, 1437–1447 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lu, J. et al. MiR-26a inhibits cell growth and tumorigenesis of nasopharyngeal carcinoma through repression of EZH2. Cancer Res. 71, 225–233 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Sander, S., Bullinger, L. & Wirth, T. Repressing the repressor: a new mode of MYC action in lymphomagenesis. Cell Cycle 8, 556–559 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Krutzfeldt, J. et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 438, 685–689 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Jeon, H. M. et al. ID4 imparts chemoresistance and cancer stemness to glioma cells by derepressing miR-9*-mediated suppression of SOX2. Cancer Res. 71, 3410–3421 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Cittelly, D. M. et al. Oncogenic HER2Δ16 suppresses miR-15a/16 and deregulates BCL-2 to promote endocrine resistance of breast tumors. Carcinogenesis 31, 2049–2057 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Cittelly, D. M. et al. Downregulation of miR-342 is associated with tamoxifen resistant breast tumors. Mol. Cancer 9, 317 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Miller, T. E. et al. MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J. Biol. Chem. 283, 29897–29903 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhong, M., Ma, X., Sun, C. & Chen, L. MicroRNAs reduce tumor growth and contribute to enhance cytotoxicity induced by gefitinib in non-small cell lung cancer. Chem. Biol. Interact. 184, 431–438 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Harris, T. J. & McCormick, F. The molecular pathology of cancer. Nature Rev. Clin. Oncol. 7, 251–265 (2010).

    Article  CAS  Google Scholar 

  125. Kastl, L., Brown, I. & Schofield, A. C. miRNA-34a is associated with docetaxel resistance in human breast cancer cells. Breast Cancer Res. Treat. 12 Mar 2011 (doi:10.1007/s10549-011-1424-3).

  126. Johnson, S. M. et al. RAS is regulated by the let-7 microRNA family. Cell 120, 635–647 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Weidhaas, J. B. et al. MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Res. 67, 11111–11116 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Boyerinas, B. et al. Let-7 modulates acquired resistance of ovarian cancer to Taxanes via IMP-1-mediated stabilization of MDR1. Int. J. Cancer 26 May 2011 (doi:10.1002/ijc.26190).

  129. Chen, F. et al. Inhibition of c-FLIP expression by miR-512-3p contributes to taxol-induced apoptosis in hepatocellular carcinoma cells. Oncol. Rep. 23, 1457–1462 (2010).

    CAS  PubMed  Google Scholar 

  130. Fujita, Y. et al. MiR-148a attenuates paclitaxel resistance of hormone-refractory, drug-resistant prostate cancer PC3 cells by regulating MSK1 expression. J. Biol. Chem. 285, 19076–19084 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kojima, K., Fujita, Y., Nozawa, Y., Deguchi, T. & Ito, M. MiR-34a attenuates paclitaxel-resistance of hormone-refractory prostate cancer PC3 cells through direct and indirect mechanisms. Prostate 70, 1501–1512 (2010).

    Article  CAS  PubMed  Google Scholar 

  132. Zhou, M. et al. MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. J. Biol. Chem. 285, 21496–21507 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Holleman, A. et al. miR-135a contributes to paclitaxel resistance in tumor cells both in vitro and in vivo. Oncogene 30, 4386–4398 (2011). This study identified upregulation of miR-135a in paclitaxel-resistant tumours. Antagonizing miR-135a in vivo resensitized paclitaxel resistant tumours to this therapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Schetter, A. J. et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 299, 425–436 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Valeri, N. et al. MicroRNA-21 induces resistance to 5-fluorouracil by down-regulating human DNA MutS homolog 2 (hMSH2). Proc. Natl Acad. Sci. USA 107, 21098–21103 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Tomimaru, Y. et al. MicroRNA-21 induces resistance to the anti-tumour effect of interferon-alpha/5-fluorouracil in hepatocellular carcinoma cells. Br. J. Cancer 103, 1617–1626 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hwang, J. H. et al. Identification of microRNA-21 as a biomarker for chemoresistance and clinical outcome following adjuvant therapy in resectable pancreatic cancer. PLoS ONE 5, e10630 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Li, Y. et al. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res. 69, 6704–6712 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Park, J. K., Lee, E. J., Esau, C. & Schmittgen, T. D. Antisense inhibition of microRNA-21 or -221 arrests cell cycle, induces apoptosis, and sensitizes the effects of gemcitabine in pancreatic adenocarcinoma. Pancreas 38, e190–e199 (2009).

    Article  CAS  PubMed  Google Scholar 

  140. Ceppi, P. et al. Loss of miR-200c expression induces an aggressive, invasive, and chemoresistant phenotype in non-small cell lung cancer. Mol. Cancer Res. 8, 1207–1216 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Galluzzi, L. et al. miR-181a and miR-630 regulate cisplatin-induced cancer cell death. Cancer Res. 70, 1793–1803 (2010).

    Article  CAS  PubMed  Google Scholar 

  142. Weeraratne, S. D. et al. miR-34a confers chemosensitivity through modulation of MAGE-A and p53 in medulloblastoma. Neuro Oncol. 13, 165–175 (2011).

    Article  CAS  PubMed  Google Scholar 

  143. Ambros, V. microRNAs: tiny regulators with great potential. Cell 107, 823–826 (2001).

    Article  CAS  PubMed  Google Scholar 

  144. Pecot, C. V., Calin, G. A., Coleman, R. L., Lopez-Berestein, G. & Sood, A. K. RNA interference in the clinic: challenges and future directions. Nature Rev. Cancer 11, 59–67 (2011).

    Article  CAS  Google Scholar 

  145. Esquela-Kerscher, A. et al. The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle 7, 759–764 (2008).

    Article  CAS  PubMed  Google Scholar 

  146. Kumar, M. S. et al. Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc. Natl Acad. Sci. USA 105, 3903–3908 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Duncan, R. The dawning era of polymer therapeutics. Nature Rev. Drug Discov. 2, 347–360 (2003).

    Article  CAS  Google Scholar 

  148. Estevez, M. C. et al. Nanoparticle-aptamer conjugates for cancer cell targeting and detection. Methods Mol. Biol. 624, 235–248 (2010).

    Article  CAS  PubMed  Google Scholar 

  149. Chen, Y., Zhu, X., Zhang, X., Liu, B. & Huang, L. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol. Ther. 18, 1650–1656 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Arroyo, J. D. et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl Acad. Sci. USA 108, 5003–5008 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Hunter, M. P. et al. Detection of microRNA expression in human peripheral blood microvesicles. PLoS ONE 3, e3694 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Skog, J. et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol. 10, 1470–1476 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Grimm, D. et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441, 537–541 (2006).

    Article  CAS  PubMed  Google Scholar 

  155. Grimm, D. et al. Argonaute proteins are key determinants of RNAi efficacy, toxicity, and persistence in the adult mouse liver. J. Clin. Invest. 120, 3106–3119 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Chen, K. & Rajewsky, N. Natural selection on human microRNA binding sites inferred from SNP data. Nature Genet. 38, 1452–1456 (2006).

    Article  CAS  PubMed  Google Scholar 

  157. Chin, L. J. et al. A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non-small cell lung cancer risk. Cancer Res. 68, 8535–8540 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Jazdzewski, K. et al. Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc. Natl Acad. Sci. USA 105, 7269–7274 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Hoffman, A. E. et al. microRNA miR-196a-2 and breast cancer: a genetic and epigenetic association study and functional analysis. Cancer Res. 69, 5970–5977 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kumar, M. S., Lu, J., Mercer, K. L., Golub, T. R. & Jacks, T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nature Genet. 39, 673–677 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.L.K. was supported by a US National Institutes of Health (NIH) grant (1F32CA153885-01) and an American Cancer Society Postdoctoral Fellowship (120,766-PF-11-244-01-TBG). F.J.S. was supported by a grant from the US National Cancer Institute (NCI) (1R01CA131301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank J. Slack.

Ethics declarations

Competing interests

F.J.S. is a consultant to Mirna Therapeutics, Inc. and Mira Dx, Inc. A.L.K. declares no competing financial interests.

Related links

Glossary

miR-1792

This is a cluster of miRNAs containing miR-17, miR-20a, miR-18a, miR-19a, miR-19b and miR-92a. Clusters are expressed as a polycistronic message from a single promoter; this is indicated in the text by a tilde ().

Paralogues

Genes that are derived from the same ancestral gene but that reside in different locations in the same genome.

DICER

An endoribonuclease that cleaves precursor microRNAs (pre-miRNAs) into 20–25 nucleotide double-stranded RNAs.

Adaptive immune response

The adaptive immune response — also known as specific or acquired immunity — is mediated by antigen-specific lymphocytes and antibodies.

Innate immune response

The innate immune system provides an immediate, non-specific defence against pathogens until an adaptive, pathogen-specific immune response is able to develop.

Nestin promoter

This promoter drives the expression of genes in the central and peripheral nervous system and in myogenic and other tissues.

DMBA–TPA model

A two-stage chemical skin carcinogenesis model using a single dose of the genotoxic carcinogen, 7,12-dimethylbenz(a) anthracene (DMBA), followed by multiple doses of a non-genotoxic tumour-promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA).

Papillomas

Benign tumours of epithelial origin that grow outwards.

Polycistronic

A single transcript that carries the information of several genes.

Fragile site

A site in a chromosome that is susceptible to chromosome breakage and fusion with other chromosomes.

Host gene

A gene containing another gene (such as a microRNA within an intron of a protein-coding gene).

Seed region

Nucleotides 2–7 of the microRNA, typically having 100% complementarity with the target gene.

Xenografts

Grafts of cells or tissues that are transplanted from one species to another.

Haploinsufficient

A phenotype that arises in diploid organisms owing to the loss of only one allele.

Hemizygous

A state of having a single copy of a gene (in a diploid organism).

Epithelial to mesenchymal transition

(EMT). The conversion of polarized, immotile epithelial cells to motile mesenchymal cells. It is characterized by the loss of adhesion, the repression of E-cadherin, the expression of mesenchymal markers and increased cell motility.

Adjuvant

Treatment given in addition to the primary therapy. For cancer treatment, this typically refers to the therapy given after the surgical resection of a tumour.

Antagomirs

Chemically engineered, cholesterol-conjugated single-stranded RNA oligonucleotides that are complementary to microRNAs.

Autochthonous

Formed from endogenous tissue in the correct anatomical location.

Orthotopic

Transplanted into the correct anatomical location.

Silent information regulator 1

(SIRT1). A class-III histone deacetylase that regulates apoptosis in response to genotoxic and oxidative stress.

star strand

(miRNA*). The passenger strand of the mature microRNA (miRNA), originally thought not to be involved in miRNA-induced silencing; however, deep sequencing followed by functional studies have determined that the some of the miRNA* products are abundant and functional.

Selective oestrogen receptor modulator

(SERM). An agent that targets the oestrogen receptors, ERα and ERβ, which are often upregulated in breast cancer.

Docetaxel

A cytotoxic antimicrotubule agent that is used to treat breast, ovarian, prostate and non-small-cell lung cancer.

Gemcitabine

A nucleoside analogue that is used to treat multiple forms of cancer.

Cisplatin

A platinum-containing cytotoxic cancer drug.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasinski, A., Slack, F. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer 11, 849–864 (2011). https://doi.org/10.1038/nrc3166

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3166

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer