Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Activity-based protein profiling for biochemical pathway discovery in cancer

Key Points

  • Activity-based protein profiling (ABPP) facilitates the discovery of deregulated enzymes in cancer.

  • Competitive ABPP yields selective inhibitors for functional characterization of cancer enzymes.

  • ABPP can be integrated with metabolomics to map deregulated enzymatic pathways in cancer.

  • ABPP can be integrated with other proteomic methods to map proteolytic pathways in cancer.

  • ABPP probes can be used to image tumour development in living animals.

Abstract

Large-scale profiling methods have uncovered numerous gene and protein expression changes that correlate with tumorigenesis. However, determining the relevance of these expression changes and which biochemical pathways they affect has been hindered by our incomplete understanding of the proteome and its myriad functions and modes of regulation. Activity-based profiling platforms enable both the discovery of cancer-relevant enzymes and selective pharmacological probes to perturb and characterize these proteins in tumour cells. When integrated with other large-scale profiling methods, activity-based proteomics can provide insight into the metabolic and signalling pathways that support cancer pathogenesis and illuminate new strategies for disease diagnosis and treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activity-based protein profiling.
Figure 2: Serine hydrolases KIAA1363 and MAGL regulate lipid metabolic pathways that support cancer pathogenesis.
Figure 3: Proteomic strategies for mapping protease substrates.

Similar content being viewed by others

References

  1. Deberardinis, R. J., Lum, J. J., Hatzivassiliou, G. & Thompson, C. B. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell. Metab. 7, 11–20 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Warburg, O. On respiratory impairment in cancer cells. Science 124, 269–270 (1956).

    CAS  PubMed  Google Scholar 

  4. Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956). A seminal paper describing how cancer cells primarily depend on glycolysis for energy, showing that cancer cells have a fundamentally altered metabolism compared with normal cells.

    CAS  PubMed  Google Scholar 

  5. Christofk, H. R. et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452, 230–233 (2008). This paper shows that the M2 isoform of pyruvate kinase is responsible for the Warburg effect.

    Article  CAS  PubMed  Google Scholar 

  6. Christofk, H. R., Vander Heiden, M. G., Wu, N., Asara, J. M. & Cantley, L. C. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452, 181–186 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Dang, L. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462, 739–744 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wise, D. R. et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc. Natl Acad. Sci. USA 105, 18782–18787 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. DeBerardinis, R. J. et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl Acad. Sci. USA 104, 19345–19350 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Menendez, J. A. & Lupu, R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nature Rev. Cancer 7, 763–777 (2007). A comprehensive review of the roles of enhanced fatty acid synthase and de novo lipogenesis in cancer.

    Article  CAS  PubMed  Google Scholar 

  11. Nomura, D. K. et al. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell 140, 49–61 (2010). This paper used ABPP in combination with metabolomics to show that the lipolytic enzyme MAGL regulates pro-tumorigenic fatty acid products in cancer cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mohamed, M. M. & Sloane, B. F. Cysteine cathepsins: multifunctional enzymes in cancer. Nature Rev. Cancer 6, 764–775 (2006).

    Article  CAS  Google Scholar 

  13. Brown, P. O. & Botstein, D. Exploring the new world of the genome with DNA microarrays. Nature Genet. 21, 33–37 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Golub, T. R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Patterson, S. D. & Aebersold, R. H. Proteomics: the first decade and beyond. Nature Genet. 33, 311–323 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Yates, J. R. Mass spectral analysis in proteomics. Annu. Rev. Biophys. Biomol. Struct. 33, 297–316 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Domon, B. & Aebersold, R. Mass spectrometry and protein analysis. Science 312, 212–217 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Cravatt, B. F., Simon, G. M. & Yates, J. R., 3rd . The biological impact of mass-spectrometry-based proteomics. Nature 450, 991–1000 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Kobe, B. & Kemp, B. E. Active site-directed protein regulation. Nature 402, 373–376 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Liu, Y., Patricelli, M. P. & Cravatt, B. F. Activity-based protein profiling: the serine hydrolases. Proc. Natl Acad. Sci. USA 96, 14694–14699 (1999). This paper describes the principles of ABPP and development of probes for the serine hydrolase superfamily.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cravatt, B. F., Wright, A. T. & Kozarich, J. W. Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu. Rev. Biochem. 77, 383–414 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Fonovic, M. & Bogyo, M. Activity based probes for proteases: applications to biomarker discovery, molecular imaging and drug screening. Curr. Pharm. Des. 13, 253–261 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Vinayavekhin, N., Homan, E. A. & Saghatelian, A. Exploring disease through metabolomics. ACS Chem. Biol. 5, 91–103 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Saghatelian, A. et al. Assignment of endogenous substrates to enzymes by global metabolite profiling. Biochemistry 43, 14332–14339 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Speers, A. E., Adam, G. C. & Cravatt, B. F. Activity-based protein profiling in vivo using a copper(i)-catalyzed azide-alkyne [3 + 2] cycloaddition. J. Amer. Chem. Soc. 125, 4686–4687 (2003).

    Article  CAS  Google Scholar 

  26. Speers, A. E. & Cravatt, B. F. Profiling enzyme activities in vivo using click chemistry methods. Chem. Biol. 11, 535–546 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Kidd, D., Liu, Y. & Cravatt, B. F. Profiling serine hydrolase activities in complex proteomes. Biochemistry 40, 4005–4015 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Patricelli, M. P., Giang, D. K., Stamp, L. M. & Burbaum, J. J. Direct visualization of serine hydrolase activities in complex proteome using fluorescent active site-directed probes. Proteomics 1, 1067–1071 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Greenbaum, D. et al. Chemical approaches for functionally probing the proteome. Mol. Cell. Proteomics 1, 60–68 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Kato, D. et al. Activity-based probes that target diverse cysteine protease families. Nature Chem. Biol. 1, 33–38 (2005).

    Article  CAS  Google Scholar 

  31. Saghatelian, A., Jessani, N., Joseph, A., Humphrey, M. & Cravatt, B. F. Activity-based probes for the proteomic profiling of metalloproteases. Proc. Natl Acad. Sci. USA 101, 10000–10005 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sieber, S. A., Niessen, S., Hoover, H. S. & Cravatt, B. F. Proteomic profiling of metalloprotease activities with cocktails of active-site probes. Nature Chem. Biol. 2, 274–281 (2006).

    Article  CAS  Google Scholar 

  33. Chan, E. W., Chattopadhaya, S., Panicker, R. C., Huang, X. & Yao, S. Q. Developing photoactive affinity probes for proteomic profiling: hydroxamate-based probes for metalloproteases. J. Am. Chem. Soc. 126, 14435–14446 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Li, Y. M. et al. Photoactivated gamma-secretase inhibitors directed to the active site covalently label presenilin 1. Nature 405, 689–694 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Patricelli, M. P. et al. Functional interrogation of the kinome using nucleotide acyl phosphates. Biochemistry 46, 350–358 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Cohen, M. S., Hadjivassiliou, H. & Taunton, J. A clickable inhibitor reveals context-dependent autoactivation of p90 RSK. Nature Chem. Biol. 3, 156–160 (2007).

    Article  CAS  Google Scholar 

  37. Liu, Y. et al. Wortmannin, a widely used phosphoinositide 3-kinase inhibitor, also potently inhibits mammalian polo-like kinase. Chem. Biol. 12, 99–107 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Yee, M. C., Fas, S. C., Stohlmeyer, M. M., Wandless, T. J. & Cimprich, K. A. A cell-permeable activity-based probe for protein and lipid kinases. J. Biol. Chem. 280, 29053–29059 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Kumar, S. et al. Activity-based probes for protein tyrosine phosphatases. Proc. Natl Acad. Sci. USA 101, 7943–7948 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Salisbury, C. M. & Cravatt, B. F. Activity-based probes for proteomic profiling of histone deacetylase complexes. Proc. Natl Acad. Sci. USA 104, 1171–1176 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Salisbury, C. M. & Cravatt, B. F. Optimization of activity-based probes for proteomic profiling of histone deacetylase complexes. J. Am. Chem. Soc. 130, 2184–2194 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Hekmat, O., Kim, Y. W., Williams, S. J., He, S. & Withers, S. G. Active-site peptide “fingerprinting” of glycosidases in complex mixtures by mass spectrometry. Discovery of a novel retaining beta-1,4-glycanase in Cellulomonas fimi. J. Biol. Chem. 280, 35126–35135 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Vocadlo, D. J. & Bertozzi, C. R. A strategy for functional proteomic analysis of glycosidase activity from cell lysates. Angew. Chem. Int. Ed Engl. 43, 5338–5342 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Adam, G. C., Cravatt, B. F. & Sorensen, E. J. Profiling the specific reactivity of the proteome with non-directed activity-based probes. Chem. Biol. 8, 81–95 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Weerapana, E., Simon, G. M. & Cravatt, B. F. Disparate proteome reactivity profiles of carbon electrophiles. Nature Chem. Biol. 4, 405–407 (2008).

    Article  CAS  Google Scholar 

  46. Simon, G. M. & Cravatt, B. F. Activity-based proteomics of enzyme superfamilies: serine hydrolases as a case study. J. Biol. Chem. 285, 11051–11055 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Puustinen, P. et al. PME-1 protects extracellular signal-regulated kinase pathway activity from protein phosphatase 2A-mediated inactivation in human malignant glioma. Cancer Res. 69, 2870–7 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Andreasen, P. A., Egelund, R. & Petersen, H. H. The plasminogen activation system in tumor growth, invasion, and metastasis. Cell. Mol. Life Sci. 57, 25–40 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Jessani, N. et al. A streamlined platform for high-content functional proteomics of primary human specimens. Nature Methods 2, 691–697 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Jessani, N., Niessen, S., Mueller, B. M. & Cravatt, B. F. Breast cancer cell lines grown in vivo: what goes in isn't always the same as what comes out. Cell Cycle 4, 253–255 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Jessani, N. et al. Carcinoma and stromal enzyme activity profiles associated with breast tumor growth in vivo. Proc. Natl Acad. Sci. USA 101, 13756–13761 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jessani, N., Liu, Y., Humphrey, M. & Cravatt, B. F. Enzyme activity profiles of the secreted and membrane proteome that depict cancer cell invasiveness. Proc. Natl Acad. Sci. USA 99, 10335–10340 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chiang, K. P., Niessen, S., Saghatelian, A. & Cravatt, B. F. An enzyme that regulates ether lipid signaling pathways in cancer annotated by multidimensional profiling. Chem. Biol. 13, 1041–1050 (2006). This paper uses ABPP coupled with metabolomics to determine that the uncharacterized enzyme KIAA1363 regulates ether lipid metabolism in aggressive cancer cells.

    Article  CAS  PubMed  Google Scholar 

  54. Shields, D. J. et al. RBBP9: a tumor-associated serine hydrolase activity required for pancreatic neoplasia. Proc. Natl Acad. Sci. USA 107, 2189–2194 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Madsen, M. A., Deryugina, E. I., Niessen, S., Cravatt, B. F. & Quigley, J. P. Activity-based protein profiling implicates urokinase activation as a key step in human fibrosarcoma intravasation. J. Biol. Chem. 281, 15997–16005 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Greenbaum, D., Medzihradszky, K. F., Burlingame, A. & Bogyo, M. Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chem. Biol. 7, 569–581 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Joyce, J. A. et al. Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell 5, 443–453 (2004). This paper uses ABPP to identify the cathepsin class of cysteine proteases as important contributors to cancer pathogenesis.

    Article  CAS  PubMed  Google Scholar 

  58. Rolen, U. et al. Activity profiling of deubiquitinating enzymes in cervical carcinoma biopsies and cell lines. Mol. Carcinog. 45, 260–269 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Blais, D. R. et al. Activity-based proteome profiling of hepatoma cells during hepatitis C virus replication using protease substrate probes. J. Proteome Res. 9, 912–923 (2009).

    Article  CAS  Google Scholar 

  60. Blum, G., von Degenfeld, G., Merchant, M. J., Blau, H. M. & Bogyo, M. Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes. Nature Chem. Biol. 3, 668–677 (2007). This paper describes the use of ABPP probes for near-infrared imaging of protease activities in tumours in living animals.

    Article  CAS  Google Scholar 

  61. Lee, J. & Bogyo, M. Development of near-infrared fluorophore (NIRF)-labeled activity-based probes for in vivo imaging of legumain. ACS Chem. Biol. 5, 233–243 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Edgington, L. E. et al. Noninvasive optical imaging of apoptosis by caspase-targeted activity-based probes. Nature Med. 15, 967–973 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Blum, G., Weimer, R. M., Edgington, L. E., Adams, W. & Bogyo, M. Comparative assessment of substrates and activity based probes as tools for non-invasive optical imaging of cysteine protease activity. PLoS One 4, e6374 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Greenbaum, D. C. et al. Small molecule affinity fingerprinting. A tool for enzyme family subclassification, target identification, and inhibitor design. Chem. Biol. 9, 1085–1094 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Leung, D., Hardouin, C., Boger, D. L. & Cravatt, B. F. Discovering potent and selective reversible inhibitors of enzymes in complex proteomes. Nature Biotechnol. 21, 687–691 (2003).

    Article  CAS  Google Scholar 

  66. Li, W., Blankman, J. L. & Cravatt, B. F. A functional proteomic strategy to discover inhibitors for uncharacterized hydrolases. J. Am. Chem. Soc. 129, 9594–9595 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Wright, A. T. & Cravatt, B. F. Chemical proteomic probes for profiling cytochrome p450 activities and drug interactions in vivo. Chem. Biol. 14, 1043–1051 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wright, A. T., Song, J. D. & Cravatt, B. F. A suite of activity-based probes for human cytochrome P450 enzymes. J. Am. Chem. Soc. 131, 10692–10700 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Long, J. Z. et al. Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. Nature Chem. Biol. 5, 37–44 (2009).

    Article  CAS  Google Scholar 

  70. Coussens, L. M., Fingleton, B. & Matrisian, L. M. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295, 2387–2392 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Liu, Y., Jiang, N., Wu, J., Dai, W. & Rosenblum, J. S. Polo-like kinases inhibited by wortmannin. Labeling site and downstream effects. J. Biol. Chem. 282, 2505–2511 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Bachovchin, D. A., Brown, S. J., Rosen, H. & Cravatt, B. F. Identification of selective inhibitors of uncharacterized enzymes by high-throughput screening with fluorescent activity-based probes. Nature Biotechnol. 27, 387–394 (2009).

    Article  CAS  Google Scholar 

  73. Bachovchin, D. A. et al. Oxime esters as selective, covalent inhibitors of the serine hydrolase retinoblastoma-binding protein 9 (RBBP9). Bioorg Med. Chem. Lett. 20, 2254–2258 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Roos, D. S. & Choppin, P. W. Tumorigenicity of cell lines with altered lipid composition. Proc. Natl Acad. Sci. USA 81, 7622–7626 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Snyder, F. & Wood, R. Alkyl and alk-1-enyl ethers of glycerol in lipids from normal and neoplastic human tissues. Cancer Res. 29, 251–257 (1969).

    CAS  PubMed  Google Scholar 

  76. Long, J. Z., Nomura, D. K. & Cravatt, B. F. Characterization of monoacylglycerol lipase inhibition reveals differences in central and peripheral endocannabinoid metabolism. Chem. Biol. 16, 744–753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Van Schaftingen, E., Rzem, R. & Veiga-da-Cunha, M. L. -2-hydroxyglutaric aciduria, a disorder of metabolite repair. J. Inherit Metab. Dis. 32, 135–142 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Koblinski, J. E., Ahram, M. & Sloane, B. F. Unraveling the role of proteases in cancer. Clin. Chim. Acta 291, 113–135 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Janicke, F. et al. Urokinase (uPA) and its inhibitor PAI-1 are strong and independent prognostic factors in node-negative breast cancer. Breast Cancer Res. Treat 24, 195–208 (1993).

    Article  CAS  PubMed  Google Scholar 

  80. Kessenbrock, K., Plaks, V. & Werb, Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141, 52–67 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tandon, A. K., Clark, G. M., Chamness, G. C., Chirgwin, J. M. & McGuire, W. L. Cathepsin D and prognosis in breast cancer. N. Engl. J. Med. 322, 297–302 (1990).

    Article  CAS  PubMed  Google Scholar 

  82. Van Damme, P. et al. Caspase-specific and nonspecific in vivo protein processing during Fas-induced apoptosis. Nature Methods 2, 771–777 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Xu, G., Shin, S. B. & Jaffrey, S. R. Global profiling of protease cleavage sites by chemoselective labeling of protein N-termini. Proc. Natl Acad. Sci. USA 106, 19310–19315 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mahrus, S. et al. Global sequencing of proteolytic cleavage sites in apoptosis by specific labeling of protein N termini. Cell 134, 866–876 (2008). This paper describes an advanced N-terminal labelling method to map the precise sites of proteolytic cleavage in complex cellular systems.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kleifeld, O. et al. Isotopic labeling of terminal amines in complex samples identifies protein N-termini and protease cleavage products. Nature Biotechnol. 28, 281–288.

  86. Dix, M. M., Simon, G. M. & Cravatt, B. F. Global mapping of the topography and magnitude of proteolytic events in apoptosis. Cell 134, 679–691 (2008). This paper uses an integrated gel and MS platform to map proteolytic cleavage events and their effect on protein levels and structure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Simon, G. M., Dix, M. M. & Cravatt, B. F. Comparative assessment of large-scale proteomic studies of apoptotic proteolysis. ACS Chem. Biol. 4, 401–408 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gygi, S. P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnol. 17, 994–999 (1999).

    Article  CAS  Google Scholar 

  89. Khidekel, N., Ficarro, S. B., Peters, E. C. & Hsieh-Wilson, L. C. Exploring the O-GlcNAc proteome: direct identification of O-GlcNAc-modified proteins from the brain. Proc. Natl Acad. Sci. USA 101, 13132–13137 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Martin, B. R. & Cravatt, B. F. Large-scale profiling of protein palmitoylation in mammalian cells. Nature Methods 6, 135–138 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hang, H. C. et al. Chemical probes for the rapid detection of Fatty-acylated proteins in Mammalian cells. J. Am. Chem. Soc. 129, 2744–2745 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Ward, P. S. et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting α-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17, 225–234.

  93. Saghatelian, A. & Cravatt, B. F. Global strategies to integrate the proteome and metabolome. Curr. Opin. Chem. Biol. 9, 62–68 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Vinayavekhin, N. & Saghatelian, A. Untargeted metabolomics. Curr. Protoc Mol. Biol. 30, 1–24 (2010).

    PubMed  Google Scholar 

  95. Smith, C. A., Want, E. J., O'Maille, G., Abagyan, R. & Siuzdak, G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779–787 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Wishart, D. S. et al. HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res. 37, D603–D610 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Wishart, D. S. et al. HMDB: the Human Metabolome Database. Nucleic Acids Res. 35, D521–D526 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sana, T. R., Roark, J. C., Li, X., Waddell, K. & Fischer, S. M. Molecular formula and METLIN Personal Metabolite Database matching applied to the identification of compounds generated by LC/TOF-MS. J. Biomol. Tech. 19, 258–266 (2008).

    PubMed  PubMed Central  Google Scholar 

  99. Smith, C. A. et al. METLIN: a metabolite mass spectral database. Ther. Drug Monit. 27, 747–751 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Schmelzer, K., Fahy, E., Subramaniam, S. & Dennis, E. A. The lipid maps initiative in lipidomics. Methods Enzymol. 432, 171–183 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health (CA087660 and CA132630), the American Cancer Society (D.K.N.), the California Breast Cancer Research Foundation (M.M.D.), the ARCS Foundation (M.M.D.) and the Skaggs Institute for Chemical Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin F. Cravatt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Benjamin F. Cravatt's homepage

Glossary

Bio-orthogonal chemical handle

A chemical handle that can be specifically modified with reporter tags within the confines of a biological environment.

Click chemistry

Chemistry that allows for quick and reliable joining of small units; the most commonly used click-chemistry reaction is the Huisgen azide-alkyne cycloaddition using a copper catalyst.

Intravasating

A process in cancer metastasis in which the cancer cells invade through the basement membrane into blood vessels.

Ether lipid

A lipid in which one or more of the oxygens on a glycerol backbone is bonded to an alkyl chain by an ether linkage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nomura, D., Dix, M. & Cravatt, B. Activity-based protein profiling for biochemical pathway discovery in cancer. Nat Rev Cancer 10, 630–638 (2010). https://doi.org/10.1038/nrc2901

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2901

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer