Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Integrating high-throughput technologies in the quest for effective biomarkers for ovarian cancer

Abstract

Despite widespread interest, few serum biomarkers have been introduced to the clinic over the past 20 years. Each approach to ovarian cancer biomarker discovery has its own advantages and disadvantages and it seems likely that a global biomarker discovery platform that mines all possible sources for biomarkers might be more useful. Such data could be combined with information from relevant microarray data, bioinformatic analyses and literature searches. This proposed integrated systems biology approach has the potential to yield promising ovarian cancer markers for diagnosis, prognosis and monitoring of patients during therapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Integrated systems biology biomarker discovery platform.
Figure 2: Performance characteristics of CA125 and nidogen 2.

Similar content being viewed by others

References

  1. Jemal, A. et al. Cancer statistics, 2008. CA Cancer J. Clin. 58, 71–96 (2008).

    Article  Google Scholar 

  2. Konstantinopoulos, P. A., Spentzos, D. & Cannistra, S. A. Gene-expression profiling in epithelial ovarian cancer. Nature Clin. Pract. Oncol. 5, 577–587 (2008).

    Article  CAS  Google Scholar 

  3. Cannistra, S. A. Cancer of the ovary. N. Engl. J. Med. 351, 2519–2529 (2004).

    Article  CAS  Google Scholar 

  4. Diamandis, E. P., Fritsche, H. A., Lilja, H., Chan, D. W. & Schwartz, M. K. Tumor Markers: Physiology, Pathobiology, Technology, and Clinical Applications. (AACC Press, Washington DC., 2002).

    Google Scholar 

  5. Kohn, E. C., Mills, G. B. & Liotta, L. Promising directions for the diagnosis and management of gynecological cancers. Int. J. Gynaecol. Obstet. 83 (Suppl. 1), 203–209 (2003).

    Article  Google Scholar 

  6. Rustin, G. J., Nelstrop, A. E., Tuxen, M. K. & Lambert, H. E. Defining progression of ovarian carcinoma during follow-up according to CA 125: a North Thames Ovary Group Study. Ann. Oncol. 7, 361–364 (1996).

    Article  CAS  Google Scholar 

  7. Huhtinen, K., et al. Serum HE4 concentration differentiates malignant ovarian tumours from ovarian endometriotic cysts. Br. J. Cancer 100, 1315–1319 (2009).

    Article  CAS  Google Scholar 

  8. Meinhold-Heerlein, I. et al. An integrated clinical-genomics approach identifies a candidate multi-analyte blood test for serous ovarian carcinoma. Clin. Cancer Res. 13, 458–466 (2007).

    Article  CAS  Google Scholar 

  9. Menon, U. et al. Sensitivity and specificity of multimodal and ultrasound screening for ovarian cancer, and stage distribution of detected cancers: results of the prevalence screen of the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS). Lancet Oncol. 10, 327–340 (2009).

    Article  Google Scholar 

  10. Visintin, I. et al. Diagnostic markers for early detection of ovarian cancer. Clin. Cancer Res. 14, 1065–1072 (2008).

    Article  CAS  Google Scholar 

  11. Pepe, M. S. et al. Phases of biomarker development for early detection of cancer. J. Natl. Cancer Inst. 93, 1054–1061 (2001).

    Article  CAS  Google Scholar 

  12. Ransohoff, D. F. Lessons from controversy: ovarian cancer screening and serum proteomics. J. Natl. Cancer Inst. 97, 315–319 (2005).

    Article  CAS  Google Scholar 

  13. Pepe, M. S., Feng, Z., Janes, H., Bossuyt, P. M. & Potter, J. D. Pivotal evaluation of the accuracy of a biomarker used for classification or prediction: standards for study design. J. Natl. Cancer Inst. 100, 1432–1438 (2008).

    Article  CAS  Google Scholar 

  14. Jacobs, I. J. & Menon, U. Progress and challenges in screening for early detection of ovarian cancer. Mol. Cell Proteomics. 3, 355–366 (2004).

    Article  CAS  Google Scholar 

  15. Anderson, N. L. & Anderson, N. G. The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell Proteomics 1, 845–867 (2002).

    Article  CAS  Google Scholar 

  16. Petricoin, E. F. et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359, 572–577 (2002).

    Article  CAS  Google Scholar 

  17. Karsan, A. et al. Analytical and preanalytical biases in serum proteomic pattern analysis for breast cancer diagnosis. Clin. Chem. 51, 1525–1528 (2005).

    Article  CAS  Google Scholar 

  18. Banks, R. E. et al. Influences of blood sample processing on low-molecular-weight proteome identified by surface-enhanced laser desorption/ionization mass spectrometry. Clin. Chem. 51, 1637–1649 (2005).

    Article  CAS  Google Scholar 

  19. Diamandis, E. P. Analysis of serum proteomic patterns for early cancer diagnosis: drawing attention to potential problems. J. Natl. Cancer Inst. 96, 353–356 (2004).

    Article  Google Scholar 

  20. Diamandis, E. P. Mass spectrometry as a diagnostic and a cancer biomarker discovery tool: opportunities and potential limitations. Mol. Cell Proteomics 3, 367–378 (2004).

    Article  CAS  Google Scholar 

  21. Simpkins, F., Czechowicz, J. A., Liotta, L. & Kohn, E. C. SELDI-TOF mass spectrometry for cancer biomarker discovery and serum proteomic diagnostics. Pharmacogenomics 6, 647–653 (2005).

    Article  CAS  Google Scholar 

  22. Su, F. et al. Validation of candidate serum ovarian cancer biomarkers for early detection. Biomark. Insights 2, 369–375 (2007).

    Article  Google Scholar 

  23. Nossov, V. et al. The early detection of ovarian cancer: from traditional methods to proteomics. Can we really do better than serum CA-125? Am. J. Obstet. Gynecol. 199, 215–223 (2008).

    Article  CAS  Google Scholar 

  24. Zhang, Z. et al. Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Res. 64, 5882–5890 (2004).

    Article  CAS  Google Scholar 

  25. Diamandis, E. P. Validation of breast cancer biomarkers identified by mass spectrometry. Clin. Chem. 52, 771–772 (2006).

    Article  CAS  Google Scholar 

  26. Chang, H. W. et al. Assessment of plasma DNA levels, allelic imbalance, and CA 125 as diagnostic tests for cancer. J. Natl. Cancer Inst. 94, 1697–1703 (2002).

    Article  CAS  Google Scholar 

  27. Stroun, M. et al. Neoplastic characteristics of the DNA found in the plasma of cancer patients. Oncology 46, 318–322 (1989).

    Article  CAS  Google Scholar 

  28. Adam, R. A. & Adam, Y. G. Malignant ascites: past, present, and future. J. Am. Coll. Surg. 198, 999–1011 (2004).

    Article  Google Scholar 

  29. Tamsma, J. T., Keizer, H. J. & Meinders, A. E. Pathogenesis of malignant ascites: Starling's law of capillary hemodynamics revisited. Ann. Oncol. 12, 1353–1357 (2001).

    Article  CAS  Google Scholar 

  30. Gortzak-Uzan, L. et al. A proteome resource of ovarian cancer ascites: integrated proteomic and bioinformatic analyses to identify putative biomarkers. J. Proteome Res. 7, 339–351 (2008).

    Article  CAS  Google Scholar 

  31. Kondo, T. Tissue proteomics for cancer biomarker development: laser microdissection and 2D-DIGE. BMB. Rep. 41, 626–634 (2008).

    Article  CAS  Google Scholar 

  32. Good, D. M. et al. Body fluid proteomics for biomarker discovery: lessons from the past hold the key to success in the future. J. Proteome Res. 6, 4549–4555 (2007).

    Article  CAS  Google Scholar 

  33. Jones, M. B. et al. Proteomic analysis and identification of new biomarkers and therapeutic targets for invasive ovarian cancer. Proteomics 2, 76–84 (2002).

    Article  CAS  Google Scholar 

  34. Bengtsson, S. et al. Large-scale proteomics analysis of human ovarian cancer for biomarkers. J. Proteome Res. 6, 1440–1450 (2007).

    Article  CAS  Google Scholar 

  35. Kulasingam, V. & Diamandis, E. P. Tissue culture-based breast cancer biomarker discovery platform. Int. J. Cancer 123, 2007–2012 (2008).

    Article  CAS  Google Scholar 

  36. Faca, V. M. et al. Proteomic analysis of ovarian cancer cells reveals dynamic processes of protein secretion and shedding of extra-cellular domains. PLoS ONE 3, e2425 (2008).

    Article  Google Scholar 

  37. Kelly-Spratt, K. S., Kasarda, A. E., Igra, M. & Kemp, C. J. A mouse model repository for cancer biomarker discovery. J. Proteome Res. 7, 3613–3618 (2008).

    Article  CAS  Google Scholar 

  38. Frese, K. K. & Tuveson, D. A. Maximizing mouse cancer models. Nature Rev. Cancer 7, 645–658 (2007).

    Article  CAS  Google Scholar 

  39. Maser, R. S. et al. Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers. Nature 447, 966–971 (2007).

    Article  CAS  Google Scholar 

  40. Pitteri, S. J. et al. Integrated proteomic analysis of human cancer cells and plasma from tumor bearing mice for ovarian cancer biomarker discovery. PLoS ONE 4, e7916 (2009).

    Article  Google Scholar 

  41. Bignotti, E. et al. Differential gene expression profiles between tumor biopsies and short-term primary cultures of ovarian serous carcinomas: identification of novel molecular biomarkers for early diagnosis and therapy. Gynecol. Oncol. 103, 405–416 (2006).

    Article  CAS  Google Scholar 

  42. Welsh, J. B. et al. Large-scale delineation of secreted protein biomarkers overexpressed in cancer tissue and serum. Proc. Natl. Acad. Sci. USA 100, 3410–3415 (2003).

    Article  CAS  Google Scholar 

  43. Tan, D. S., Lambros, M. B., Natrajan, R. & Reis-Filho, J. S. Getting it right: designing microarray (and not 'microawry') comparative genomic hybridization studies for cancer research. Lab. Invest. 87, 737–754 (2007).

    Article  CAS  Google Scholar 

  44. Spentzos, D. et al. Gene expression signature with independent prognostic significance in epithelial ovarian cancer. J. Clin. Oncol. 22, 4700–4710 (2004).

    Article  Google Scholar 

  45. Moore, R. G. et al. A novel multiple marker bioassay utilizing HE4 and CA125 for the prediction of ovarian cancer in patients with a pelvic mass. Gynecol. Oncol. 112, 40–46 (2009).

    Article  CAS  Google Scholar 

  46. Vargo-Gogola, T. & Rosen, J. M. Modelling breast cancer: one size does not fit all. Nature Rev. Cancer 7, 659–672 (2007).

    Article  CAS  Google Scholar 

  47. Rifai, N., Gillette, M. A. & Carr, S. A. Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nature Biotechnol. 24, 971–983 (2006).

    Article  CAS  Google Scholar 

  48. Kuk, C. et al. Mining the ovarian cancer ascites proteome for potential ovarian cancer biomarkers. Mol. Cell Proteomics 8, 661–669 (2009).

    Article  CAS  Google Scholar 

  49. Gunawardana, C. G. et al. Comprehensive analysis of conditioned media from ovarian cancer cell lines identifies novel candidate markers of epithelial ovarian cancer. J. Proteome. Res. 8, 4705–4713 (2009).

    Article  CAS  Google Scholar 

  50. Kuk, C. et al. Nidogen-2: a new serum biomarker for ovarian cancer. Clin. Biochem. 43, 355–361 (2009).

    Article  Google Scholar 

  51. Hellstrom, I. et al. The HE4 (WFDC2) protein is a biomarker for ovarian carcinoma. Cancer Res. 63, 3695–3700 (2003).

    PubMed  Google Scholar 

  52. Moore, R. G. et al. The use of multiple novel tumor biomarkers for the detection of ovarian carcinoma in patients with a pelvic mass. Gynecol. Oncol. 108, 402–408 (2008).

    Article  CAS  Google Scholar 

  53. Davidson, B. et al. Granulin-epithelin precursor is a novel prognostic marker in epithelial ovarian carcinoma. Cancer 100, 2139–2147 (2004).

    Article  CAS  Google Scholar 

  54. He, Z. & Bateman, A. Progranulin (granulin-epithelin precursor, PC-cell-derived growth factor, acrogranin) mediates tissue repair and tumorigenesis. J. Mol. Med. 81, 600–612 (2003).

    Article  CAS  Google Scholar 

  55. Jones, M. B., Spooner, M. & Kohn, E. C. The granulin-epithelin precursor: a putative new growth factor for ovarian cancer. Gynecol. Oncol. 88, S136–S139 (2003).

    Article  CAS  Google Scholar 

  56. Jones, M. B. et al. The granulin-epithelin precursor/PC-cell-derived growth factor is a growth factor for epithelial ovarian cancer. Clin. Cancer Res. 9, 44–51 (2003).

    CAS  PubMed  Google Scholar 

  57. Simpson, R. J., Bernhard, O. K., Greening, D. W. & Moritz, R. L. Proteomics-driven cancer biomarker discovery: looking to the future. Curr. Opin. Chem. Biol. 12, 72–77 (2008).

    Article  CAS  Google Scholar 

  58. Diamandis, E. P., Hanash, S., Lopez, M., Carr, S. & Petricoin, E. F. Protein quantification by mass spectrometry: is it ready for prime time? Clin. Chem. 55, 1427–1430 (2009).

    Article  CAS  Google Scholar 

  59. Addona, T. A. et al. Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. Nature Biotechnol. 27, 633–641 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleftherios P. Diamandis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Eleftherios P. Diamandis' homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulasingam, V., Pavlou, M. & Diamandis, E. Integrating high-throughput technologies in the quest for effective biomarkers for ovarian cancer. Nat Rev Cancer 10, 371–378 (2010). https://doi.org/10.1038/nrc2831

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2831

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing