Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family

Key Points

  • SRC1 was the first cloned steroid receptor co-activator that interacts with steroid hormone receptors to promote transcriptional activation in a hormone-dependent manner.

  • The p160 SRC family contains three homologous members, SRC1, SRC2 and SRC3, that interact with nuclear receptors and specific transcription factors. They recruit chromatin remodelling and other transcriptional enzymes to facilitate the assembly of general transcription factors for transcriptional activation.

  • SRCs are post-translationally modified in response to several upstream signalling pathways. These post-translational modifications determine or modulate SRC stability, subcellular localization, functional specificity, co-activator activity and/or co-activator complex assembly or disassembly.

  • SRC-knockout mice show that SRCs are involved in many physiological processes and each SRC has both specific and redundant physiological functions in embryonic and adult tissues.

  • SRC1 expression is increased in a subset of breast cancers and is positively correlated with ERBB2 positivity and poor disease-free survival rate. Knockdown of SRC1 in breast cancer cells inhibits cell proliferation.

  • Knockout of Src1 in mouse mammary tumour virus (MMTV)–polyoma middle T (PyMT) mice suppresses metastasis without affecting primary tumour formation. SRC1 promotes breast cancer metastasis by upregulating ERBB2, colony stimulating factor 1 and TWIST1 expression.

  • Both gene amplification and overexpression of SRC3 occur in a subset of breast cancers. SRC3 overexpression usually correlates with the expression of ERBB2, matrix metalloproteinase 2 (MMP2), MMP9 and polyoma enhancer activator 3, and with larger tumour size, higher tumour grade and/or poor disease-free survival.

  • SRC3 has an important role in promoting breast tumour cell proliferation, migration, invasion and metastasis through many mechanisms, such as increasing the function of oestrogen receptor-α and E2F1, the activity of the insulin-like growth factor 1 (IGF1) signalling pathway, epidermal growth factor receptor (EGFR) and ERBB2, and the expression of MMPs.

  • Knockout of Src3 in mice suppresses mammary tumour initiation, growth and metastasis, and overexpression of SRC3 in mouse mammary epithelial cells is sufficient to induce spontaneous mammary tumorigenesis.

  • SRC3 expression is increased during prostate tumorigenesis in mice. Knockout of Src3 efficiently arrests prostate tumour progression at a well-differentiated stage.

Abstract

The three homologous members of the p160 SRC family (SRC1, SRC2 and SRC3) mediate the transcriptional functions of nuclear receptors and other transcription factors, and are the most studied of all the transcriptional co-activators. Recent work has indicated that the SRCgenes are subject to amplification and overexpression in various human cancers. Some of the molecular mechanisms responsible for SRC overexpression, along with the mechanisms by which SRCs promote breast and prostate cancer cell proliferation and survival, have been identified, as have the specific contributions of individual SRC family members to spontaneous breast and prostate carcinogenesis in genetically manipulated mouse models. These studies have identified new challenges for cancer research and therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular structure of SRCs and their functional mechanisms in steroid hormone-induced gene expression.
Figure 2: Post-translational modifications of SRCs.
Figure 3: SRCs promote carcinogenesis through multiple pathways.

Similar content being viewed by others

References

  1. Spelsberg, T. C., Steggles, A. W. & O'Malley, B. W. Progesterone-binding components of chick oviduct. 3. Chromatin acceptor sites. J. Biol. Chem. 246, 4188–4197 (1971).

    CAS  PubMed  Google Scholar 

  2. O'Malley, B. W. Coregulators: from whence came these “master genes”. Mol. Endocrinol. 21, 1009–1013 (2007).

    CAS  PubMed  Google Scholar 

  3. Meyer, M. E. et al. Steroid hormone receptors compete for factors that mediate their enhancer function. Cell 57, 433–442 (1989).

    CAS  PubMed  Google Scholar 

  4. Halachmi, S. et al. Estrogen receptor-associated proteins: possible mediators of hormone-induced transcription. Science 264, 1455–1458 (1994).

    CAS  PubMed  Google Scholar 

  5. Klein-Hitpass, L. et al. The progesterone receptor stimulates cell-free transcription by enhancing the formation of a stable preinitiation complex. Cell 60, 247–257 (1990).

    CAS  PubMed  Google Scholar 

  6. Onate, S. A., Tsai, S. Y., Tsai, M. J. & O'Malley, B. W. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270, 1354–1357 (1995). This article identified SRC1 as the first steroid receptor co-activator.

    CAS  PubMed  Google Scholar 

  7. Voegel, J. J., Heine, M. J., Zechel, C., Chambon, P. & Gronemeyer, H. TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J. 15, 3667–3675 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hong, H., Kohli, K., Garabedian, M. J. & Stallcup, M. R. GRIP1, a transcriptional coactivator for the AF-2 transactivation domain of steroid, thyroid, retinoid, and vitamin D receptors. Mol. Cell. Biol. 17, 2735–2744 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Torchia, J. et al. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 387, 677–684 (1997).

    CAS  PubMed  Google Scholar 

  10. Li, H., Gomes, P. J. & Chen, J. D. RAC3, a steroid/nuclear receptor-associated coactivator that is related to SRC-1 and TIF2. Proc. Natl Acad. Sci. USA 94, 8479–8484 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Anzick, S. L. et al. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277, 965–968 (1997). This article first reported that SRC3 was amplified and overexpressed in breast cancer.

    CAS  PubMed  Google Scholar 

  12. Chen, H. et al. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90, 569–580 (1997).

    CAS  PubMed  Google Scholar 

  13. Takeshita, A., Cardona, G. R., Koibuchi, N., Suen, C. S. & Chin, W. W. TRAM-1, a novel 160-kDa thyroid hormone receptor activator molecule, exhibits distinct properties from steroid receptor coactivator-1. J. Biol. Chem. 272, 27629–27634 (1997).

    CAS  PubMed  Google Scholar 

  14. Chen, Y. H., Kim, J. H. & Stallcup, M. R. GAC63, a GRIP1-dependent nuclear receptor coactivator. Mol. Cell. Biol. 25, 5965–5972 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim, J. H., Li, H. & Stallcup, M. R. CoCoA, a nuclear receptor coactivator which acts through an N-terminal activation domain of p160 coactivators. Mol. Cell 12, 1537–1549 (2003).

    CAS  PubMed  Google Scholar 

  16. Lee, Y. H., Campbell, H. D. & Stallcup, M. R. Developmentally essential protein flightless I is a nuclear receptor coactivator with actin binding activity. Mol. Cell. Biol. 24, 2103–2117 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Belandia, B. & Parker, M. G. Functional interaction between the p160 coactivator proteins and the transcriptional enhancer factor family of transcription factors. J. Biol. Chem. 275, 30801–30805 (2000).

    CAS  PubMed  Google Scholar 

  18. Chen, S. L., Dowhan, D. H., Hosking, B. M. & Muscat, G. E. The steroid receptor coactivator, GRIP-1, is necessary for MEF-2C-dependent gene expression and skeletal muscle differentiation. Genes Dev. 14, 1209–1228 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Darimont, B. D. et al. Structure and specificity of nuclear receptor-coactivator interactions. Genes Dev. 12, 3343–3356 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Heery, D. M., Kalkhoven, E., Hoare, S. & Parker, M. G. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387, 733–736 (1997).

    CAS  PubMed  Google Scholar 

  21. Voegel, J. J. et al. The coactivator TIF2 contains three nuclear receptor-binding motifs and mediates transactivation through CBP binding-dependent and -independent pathways. EMBO J. 17, 507–519 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Anafi, M. et al. GCN5 and ADA adaptor proteins regulate triiodothyronine/GRIP1 and SRC-1 coactivator-dependent gene activation by the human thyroid hormone receptor. Mol. Endocrinol. 14, 718–732 (2000).

    CAS  PubMed  Google Scholar 

  23. Brown, K., Chen, Y., Underhill, T. M., Mymryk, J. S. & Torchia, J. The coactivator p/CIP/SRC-3 facilitates retinoic acid receptor signaling via recruitment of GCN5. J. Biol. Chem. 278, 39402–39412 (2003).

    CAS  PubMed  Google Scholar 

  24. Huang, S. M. & Stallcup, M. R. Mouse Zac1, a transcriptional coactivator and repressor for nuclear receptors. Mol. Cell. Biol. 20, 1855–1867 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Koh, S. S., Chen, D., Lee, Y. H. & Stallcup, M. R. Synergistic enhancement of nuclear receptor function by p160 coactivators and two coactivators with protein methyltransferase activities. J. Biol. Chem. 276, 1089–1098 (2001).

    CAS  PubMed  Google Scholar 

  26. Liu, P. Y., Hsieh, T. Y., Chou, W. Y. & Huang, S. M. Modulation of glucocorticoid receptor-interacting protein 1 (GRIP1) transactivation and co-activation activities through its C-terminal repression and self-association domains. FEBSJ. 273, 2172–2183 (2006).

    CAS  Google Scholar 

  27. Ma, H. et al. Multiple signal input and output domains of the 160-kilodalton nuclear receptor coactivator proteins. Mol. Cell. Biol. 19, 6164–6173 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Surapureddi, S. et al. Identification of a transcriptionally active peroxisome proliferator-activated receptor α-interacting cofactor complex in rat liver and characterization of PRIC285 as a coactivator. Proc. Natl Acad. Sci. USA 99, 11836–11841 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Yao, T. P., Ku, G., Zhou, N., Scully, R. & Livingston, D. M. The nuclear hormone receptor coactivator SRC-1 is a specific target of p300. Proc. Natl Acad. Sci. USA 93, 10626–10631 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Spencer, T. E. et al. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389, 194–198 (1997).

    CAS  PubMed  Google Scholar 

  31. Xu, J. & Li, Q. Review of the in vivo functions of the p160 steroid receptor coactivator family. Mol. Endocrinol. 17, 1681–1692 (2003).

    CAS  PubMed  Google Scholar 

  32. Zhang, H. et al. Differential gene regulation by the SRC family of coactivators. Genes Dev. 18, 1753–1765 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Jeong, J. W. et al. The genomic analysis of the impact of steroid receptor coactivators ablation on hepatic metabolism. Mol. Endocrinol. 20, 1138–1152 (2006).

    CAS  PubMed  Google Scholar 

  34. Oh, A. et al. The nuclear receptor coactivator AIB1 mediates insulin-like growth factor I-induced phenotypic changes in human breast cancer cells. Cancer Res. 64, 8299–8308 (2004).

    CAS  PubMed  Google Scholar 

  35. Kamei, Y. et al. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85, 403–414 (1996).

    CAS  PubMed  Google Scholar 

  36. Kalkhoven, E., Valentine, J. E., Heery, D. M. & Parker, M. G. Isoforms of steroid receptor co-activator 1 differ in their ability to potentiate transcription by the oestrogen receptor. EMBO J. 17, 232–243 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Reiter, R., Wellstein, A. & Riegel, A. T. An isoform of the coactivator AIB1 that increases hormone and growth factor sensitivity is overexpressed in breast cancer. J. Biol. Chem. 276, 39736–39741 (2001).

    CAS  PubMed  Google Scholar 

  38. Lopez, G. N., Turck, C. W., Schaufele, F., Stallcup, M. R. & Kushner, P. J. Growth factors signal to steroid receptors through mitogen-activated protein kinase regulation of p160 coactivator activity. J. Biol. Chem. 276, 22177–22182 (2001).

    CAS  PubMed  Google Scholar 

  39. Rowan, B. G., Weigel, N. L. & O'Malley, B. W. Phosphorylation of steroid receptor coactivator-1. Identification of the phosphorylation sites and phosphorylation through the mitogen-activated protein kinase pathway. J. Biol. Chem. 275, 4475–4483 (2000).

    CAS  PubMed  Google Scholar 

  40. Wu, R. C. et al. Selective phosphorylations of the SRC-3/AIB1 coactivator integrate genomic reponses to multiple cellular signaling pathways. Mol. Cell 15, 937–949 (2004).

    CAS  PubMed  Google Scholar 

  41. Giamas, G. et al. CK1δ modulates the transcriptional activity of ERα via AIB1 in an estrogen-dependent manner and regulates ERα–AIB1 interactions. Nucleic Acids Res. 37, 3110–3123 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ueda, T., Mawji, N. R., Bruchovsky, N. & Sadar, M. D. Ligand-independent activation of the androgen receptor by interleukin-6 and the role of steroid receptor coactivator-1 in prostate cancer cells. J. Biol. Chem. 277, 38087–38094 (2002).

    CAS  PubMed  Google Scholar 

  43. Rowan, B. G., Garrison, N., Weigel, N. L. & O'Malley, B. W. 8-Bromo-cyclic AMP induces phosphorylation of two sites in SRC-1 that facilitate ligand-independent activation of the chicken progesterone receptor and are critical for functional cooperation between SRC-1 and CREB binding protein. Mol. Cell. Biol. 20, 8720–8730 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gregory, C. W. et al. Epidermal growth factor increases coactivation of the androgen receptor in recurrent prostate cancer. J. Biol. Chem. 279, 7119–7130 (2004).

    CAS  PubMed  Google Scholar 

  45. Shang, Y. & Brown, M. Molecular determinants for the tissue specificity of SERMs. Science 295, 2465–2468 (2002).

    CAS  PubMed  Google Scholar 

  46. Shah, Y. M. & Rowan, B. G. The Src kinase pathway promotes tamoxifen agonist action in Ishikawa endometrial cells through phosphorylation-dependent stabilization of estrogen receptor-αpromoter interaction and elevated steroid receptor coactivator 1 activity. Mol. Endocrinol. 19, 732–748 (2005).

    CAS  PubMed  Google Scholar 

  47. Frigo, D. E. et al. p38 mitogen-activated protein kinase stimulates estrogen-mediated transcription and proliferation through the phosphorylation and potentiation of the p160 coactivator glucocorticoid receptor-interacting protein 1. Mol. Endocrinol. 20, 971–983 (2006).

    CAS  PubMed  Google Scholar 

  48. Borud, B. et al. The nuclear receptor coactivators p300/CBP/cointegrator-associated protein (p/CIP) and transcription intermediary factor 2 (TIF2) differentially regulate PKA-stimulated transcriptional activity of steroidogenic factor 1. Mol. Endocrinol. 16, 757–773 (2002).

    CAS  PubMed  Google Scholar 

  49. Hoang, T. et al. cAMP-dependent protein kinase regulates ubiquitin-proteasome-mediated degradation and subcellular localization of the nuclear receptor coactivator GRIP1. J. Biol. Chem. 279, 49120–49130 (2004).

    CAS  PubMed  Google Scholar 

  50. Oh, A. S. et al. Tyrosine phosphorylation of the nuclear receptor coactivator AIB1/SRC-3 is enhanced by Abl kinase and is required for its activity in cancer cells. Mol. Cell. Biol. 28, 6580–6593 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Bouras, T., Southey, M. C. & Venter, D. J. Overexpression of the steroid receptor coactivator AIB1 in breast cancer correlates with the absence of estrogen and progesterone receptors and positivity for p53 and HER2/neu. Cancer Res. 61, 903–907 (2001).

    CAS  PubMed  Google Scholar 

  52. Osborne, C. K. et al. Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. J. Natl Cancer Inst. 95, 353–361 (2003).

    CAS  PubMed  Google Scholar 

  53. Schiff, R., Massarweh, S., Shou, J. & Osborne, C. K. Breast cancer endocrine resistance: how growth factor signaling and estrogen receptor coregulators modulate response. Clin. Cancer Res. 9, S447–S454 (2003).

    Google Scholar 

  54. Wu, R. C., Feng, Q., Lonard, D. M. & O'Malley, B. W. SRC-3 coactivator functional lifetime is regulated by a phospho-dependent ubiquitin time clock. Cell 129, 1125–1140 (2007).

    CAS  PubMed  Google Scholar 

  55. Li, C. et al. Essential phosphatases and a phospho-degron are critical for regulation of SRC-3/AIB1 coactivator function and turnover. Mol. Cell 31, 835–849 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Yi, P. et al. Atypical protein kinase C regulates dual pathways for degradation of the oncogenic coactivator SRC-3/AIB1. Mol. Cell 29, 465–476 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Amazit, L. et al. Subcellular localization and mechanisms of nucleocytoplasmic trafficking of steroid receptor coactivator-1. J. Biol. Chem. 278, 32195–32203 (2003).

    CAS  PubMed  Google Scholar 

  58. Hermanson, O., Glass, C. K. & Rosenfeld, M. G. Nuclear receptor coregulators: multiple modes of modification. Trends Endocrinol. Metab. 13, 55–60 (2002).

    CAS  PubMed  Google Scholar 

  59. Qutob, M. S., Bhattacharjee, R. N., Pollari, E., Yee, S. P. & Torchia, J. Microtubule-dependent subcellular redistribution of the transcriptional coactivator p/CIP. Mol. Cell. Biol. 22, 6611–6626 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Amazit, L. et al. Regulation of SRC-3 intercompartmental dynamics by estrogen receptor and phosphorylation. Mol. Cell. Biol. 27, 6913–6932 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Wu, R. C. et al. Regulation of SRC-3 (pCIP/ACTR/AIB-1/RAC-3/TRAM-1) Coactivator activity by IκB kinase. Mol. Cell. Biol. 22, 3549–3561 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Zheng, F. F., Wu, R. C., Smith, C. L. & O'Malley, B. W. Rapid estrogen-induced phosphorylation of the SRC-3 coactivator occurs in an extranuclear complex containing estrogen receptor. Mol. Cell. Biol. 25, 8273–8284 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Yu, C. et al. An essential function of the SRC-3 coactivator in suppression of cytokine mRNA translation and inflammatory response. Mol. Cell 25, 765–778 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Baumann, C. T. et al. The glucocorticoid receptor interacting protein 1 (GRIP1) localizes in discrete nuclear foci that associate with ND10 bodies and are enriched in components of the 26S proteasome. Mol. Endocrinol. 15, 485–500 (2001).

    CAS  PubMed  Google Scholar 

  65. Shao, W., Keeton, E. K., McDonnell, D. P. & Brown, M. Coactivator AIB1 links estrogen receptor transcriptional activity and stability. Proc. Natl Acad. Sci. USA 101, 11599–11604 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Yan, F., Gao, X., Lonard, D. M. & Nawaz, Z. Specific ubiquitin-conjugating enzymes promote degradation of specific nuclear receptor coactivators. Mol. Endocrinol. 17, 1315–1331 (2003).

    CAS  PubMed  Google Scholar 

  67. Imhof, M. O. & McDonnell, D. P. Yeast RSP5 and its human homolog hRPF1 potentiate hormone-dependent activation of transcription by human progesterone and glucocorticoid receptors. Mol. Cell. Biol. 16, 2594–2605 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Lonard, D. M., Nawaz, Z., Smith, C. L. & O'Malley, B. W. The 26S proteasome is required for estrogen receptor-α and coactivator turnover and for efficient estrogen receptor-α transactivation. Mol. Cell 5, 939–948 (2000).

    CAS  PubMed  Google Scholar 

  69. Gianni, M. et al. P38MAPK-dependent phosphorylation and degradation of SRC-3/AIB1 and RARα-mediated transcription. EMBO J. 25, 739–751 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Desterro, J. M., Rodriguez, M. S. & Hay, R. T. SUMO-1 modification of IκBα inhibits NF-κB activation. Mol. Cell 2, 233–239 (1998).

    CAS  PubMed  Google Scholar 

  71. Kirsh, O. et al. The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase. EMBO J. 21, 2682–2691 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Chauchereau, A., Amazit, L., Quesne, M., Guiochon-Mantel, A. & Milgrom, E. Sumoylation of the progesterone receptor and of the steroid receptor coactivator SRC-1. J. Biol. Chem. 278, 12335–12343 (2003).

    CAS  PubMed  Google Scholar 

  73. Jimenez-Lara, A. M., Heine, M. J. & Gronemeyer, H. PIAS3 (protein inhibitor of activated STAT-3) modulates the transcriptional activation mediated by the nuclear receptor coactivator TIF2. FEBS Lett. 526, 142–146 (2002).

    CAS  PubMed  Google Scholar 

  74. Kotaja, N., Vihinen, M., Palvimo, J. J. & Janne, O. A. Androgen receptor-interacting protein 3 and other PIAS proteins cooperate with glucocorticoid receptor-interacting protein 1 in steroid receptor-dependent signaling. J. Biol. Chem. 277, 17781–17788 (2002).

    CAS  PubMed  Google Scholar 

  75. Kotaja, N., Karvonen, U., Janne, O. A. & Palvimo, J. J. The nuclear receptor interaction domain of GRIP1 is modulated by covalent attachment of SUMO-1. J. Biol. Chem. 277, 30283–30288 (2002).

    CAS  PubMed  Google Scholar 

  76. Wu, H. et al. Coordinated regulation of AIB1 transcriptional activity by sumoylation and phosphorylation. J. Biol. Chem. 281, 21848–21856 (2006).

    CAS  PubMed  Google Scholar 

  77. Li, X. et al. The SRC-3/AIB1 coactivator is degraded in a ubiquitin- and ATP-independent manner by the REGγ proteasome. Cell 124, 381–392 (2006).

    CAS  PubMed  Google Scholar 

  78. Chen, H., Lin, R. J., Xie, W., Wilpitz, D. & Evans, R. M. Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase. Cell 98, 675–686 (1999).

    CAS  PubMed  Google Scholar 

  79. Feng, Q., Yi, P., Wong, J. & O'Malley, B. W. Signaling within a coactivator complex: methylation of SRC-3/AIB1 is a molecular switch for complex disassembly. Mol. Cell. Biol. 26, 7846–7857 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Naeem, H. et al. The activity and stability of the transcriptional coactivator p/CIP/SRC-3 are regulated by CARM1-dependent methylation. Mol. Cell. Biol. 27, 120–134 (2007).

    CAS  PubMed  Google Scholar 

  81. Mark, M. et al. Partially redundant functions of SRC-1 and TIF2 in postnatal survival and male reproduction. Proc. Natl Acad. Sci. USA 101, 4453–4458 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang, Z. et al. Critical roles of the p160 transcriptional coactivators p/CIP and SRC-1 in energy balance. Cell. Metab. 3, 111–122 (2006).

    CAS  PubMed  Google Scholar 

  83. Fleming, F. J., Hill, A. D., McDermott, E. W., O'Higgins, N. J. & Young, L. S. Differential recruitment of coregulator proteins steroid receptor coactivator-1 and silencing mediator for retinoid and thyroid receptors to the estrogen receptor-estrogen response element by β-estradiol and 4-hydroxytamoxifen in human breast cancer. J. Clin. Endocrinol. Metab. 89, 375–383 (2004).

    CAS  PubMed  Google Scholar 

  84. Fleming, F. J. et al. Expression of SRC-1, AIB1, and PEA3 in HER2 mediated endocrine resistant breast cancer; a predictive role for SRC-1. J. Clin. Pathol. 57, 1069–1074 (2004). This article reported that SRC1 expression in breast cancer was correlated with ERBB2 positivity and worse DFS.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Myers, E. et al. Inverse relationship between ER-β and SRC-1 predicts outcome in endocrine-resistant breast cancer. Br. J. Cancer 91, 1687–1693 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Hudelist, G. et al. Expression of sex steroid receptors and their co-factors in normal and malignant breast tissue: AIB1 is a carcinoma-specific co-activator. Breast Cancer Res. Treat. 78, 193–204 (2003).

    CAS  PubMed  Google Scholar 

  87. List, H. J., Reiter, R., Singh, B., Wellstein, A. & Riegel, A. T. Expression of the nuclear coactivator AIB1 in normal and malignant breast tissue. Breast Cancer Res. Treat. 68, 21–28 (2001).

    CAS  PubMed  Google Scholar 

  88. Qin, L. et al. The AIB1 oncogene promotes breast cancer metastasis by activation of PEA3-mediated matrix metalloproteinase 2 (MMP2) and MMP9 expression. Mol. Cell. Biol. 28, 5937–5950 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Redmond, A. M. et al. Coassociation of estrogen receptor and p160 proteins predicts resistance to endocrine treatment; SRC-1 is an independent predictor of breast cancer recurrence. Clin. Cancer Res. 15, 2098–2106 (2009).

    CAS  PubMed  Google Scholar 

  90. Tai, H., Kubota, N. & Kato, S. Involvement of nuclear receptor coactivator SRC-1 in estrogen-dependent cell growth of MCF-7 cells. Biochem. Biophys. Res. Commun. 267, 311–316 (2000).

    CAS  PubMed  Google Scholar 

  91. Cavarretta, I. T. et al. Reduction of coactivator expression by antisense oligodeoxynucleotides inhibits ERα transcriptional activity and MCF-7 proliferation. Mol. Endocrinol. 16, 253–270 (2002).

    CAS  PubMed  Google Scholar 

  92. Wei, X., Xu, H. & Kufe, D. MUC1 oncoprotein stabilizes and activates estrogen receptor α. Mol. Cell 21, 295–305 (2006).

    CAS  PubMed  Google Scholar 

  93. Kishimoto, H. et al. The p160 family coactivators regulate breast cancer cell proliferation and invasion through autocrine/paracrine activity of SDF-1α/CXCL12. Carcinogenesis 26, 1706–1715 (2005).

    CAS  PubMed  Google Scholar 

  94. Wang, S. et al. Disruption of the SRC-1 gene in mice suppresses breast cancer metastasis without affecting primary tumor formation. Proc. Natl Acad. Sci. USA 106, 151–156 (2009). This article first reported that SRC1 deficiency strongly suppressed breast cancer metastasis in MMTV-PyMT mice by inhibiting ERBB2 and CSF1 expression.

    CAS  PubMed  Google Scholar 

  95. Qin, L., Liu, Z., Chen, H. & Xu, J. The steroid receptor coactivator-1 (SRC-1) regulates Twist expression and promotes breast cancer metastasis. Cancer Res. 69, 3819–3827 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Girault, I. et al. Expression analysis of estrogen receptor α coregulators in breast carcinoma: evidence that NCOR1 expression is predictive of the response to tamoxifen. Clin. Cancer Res. 9, 1259–1266 (2003).

    CAS  PubMed  Google Scholar 

  97. Bautista, S. et al. In breast cancer, amplification of the steroid receptor coactivator gene AIB1 is correlated with estrogen and progesterone receptor positivity. Clin. Cancer Res. 4, 2925–2929 (1998).

    CAS  PubMed  Google Scholar 

  98. Zhao, C. et al. Elevated expression levels of NCOA3, TOP1, and TFAP2C in breast tumors as predictors of poor prognosis. Cancer 98, 18–23 (2003).

    CAS  PubMed  Google Scholar 

  99. Glaeser, M., Floetotto, T., Hanstein, B., Beckmann, M. W. & Niederacher, D. Gene amplification and expression of the steroid receptor coactivator SRC3 (AIB1) in sporadic breast and endometrial carcinomas. Horm. Metab. Res. 33, 121–126 (2001).

    CAS  PubMed  Google Scholar 

  100. Font de Mora, J. & Brown, M. AIB1 is a conduit for kinase-mediated growth factor signaling to the estrogen receptor. Mol. Cell. Biol. 20, 5041–5047 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Smith, C. L., Nawaz, Z. & O'Malley, B. W. Coactivator and corepressor regulation of the agonist/antagonist activity of the mixed antiestrogen, 4-hydroxytamoxifen. Mol. Endocrinol. 11, 657–666 (1997).

    CAS  PubMed  Google Scholar 

  102. Planas-Silva, M. D., Shang, Y., Donaher, J. L., Brown, M. & Weinberg, R. A. AIB1 enhances estrogen-dependent induction of cyclin D1 expression. Cancer Res. 61, 3858–3862 (2001).

    CAS  PubMed  Google Scholar 

  103. List, H. J. et al. Ribozyme targeting demonstrates that the nuclear receptor coactivator AIB1 is a rate-limiting factor for estrogen-dependent growth of human MCF-7 breast cancer cells. J. Biol. Chem. 276, 23763–23768 (2001).

    CAS  PubMed  Google Scholar 

  104. Kuang, S. Q. et al. AIB1/SRC-3 deficiency affects insulin-like growth factor I signaling pathway and suppresses v-Ha-ras-induced breast cancer initiation and progression in mice. Cancer Res. 64, 1875–1885 (2004). This article first demonstrated that SRC3 deficiency suppressed oncogene-induced mammary tumour initiation, growth and metastasis and inhibited the IGF1 signalling pathways by downregulating IGF1, IRS1 and IRS2.

    CAS  PubMed  Google Scholar 

  105. Kuang, S. Q. et al. Mice lacking the amplified in breast cancer 1/steroid receptor coactivator-3 are resistant to chemical carcinogen-induced mammary tumorigenesis. Cancer Res. 65, 7993–8002 (2005). This article demonstrated that SRC3 deficiency specifically protected mouse mammary gland from chemical carcinogen-induced tumorigenesis.

    CAS  PubMed  Google Scholar 

  106. Fereshteh, M. P. et al. The nuclear receptor coactivator amplified in breast cancer-1 is required for Neu (ErbB2/HER2) activation, signaling, and mammary tumorigenesis in mice. Cancer Res. 68, 3697–3706 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Torres-Arzayus, M. I. et al. High tumor incidence and activation of the PI3K/AKT pathway in transgenic mice define AIB1 as an oncogene. Cancer Cell 6, 263–274 (2004). This article demonstrated that overexpression of SRC3 in mouse mammary epithelial cells caused spontaneous mammary tumors, suggesting that overexpressed SRC3 is oncogenic.

    CAS  PubMed  Google Scholar 

  108. Maki, H. E. et al. Screening of genetic and expression alterations of SRC1 gene in prostate cancer. Prostate 66, 1391–1398 (2006).

    CAS  PubMed  Google Scholar 

  109. Agoulnik, I. U. et al. Role of SRC-1 in the promotion of prostate cancer cell growth and tumor progression. Cancer Res. 65, 7959–7967 (2005).

    CAS  PubMed  Google Scholar 

  110. Gregory, C. W. et al. A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy. Cancer Res. 61, 4315–4319 (2001).

    CAS  PubMed  Google Scholar 

  111. Fujimoto, N., Mizokami, A., Harada, S. & Matsumoto, T. Different expression of androgen receptor coactivators in human prostate. Urology 58, 289–294 (2001).

    CAS  PubMed  Google Scholar 

  112. Mori, R. et al. Prognostic value of the androgen receptor and its coactivators in patients with D1 prostate cancer. Anticancer Res. 28, 425–430 (2008).

    CAS  PubMed  Google Scholar 

  113. Tien, J. C.-Y., Zhou, S. & Xu, J. The role of SRC-1 in murine prostate carcinogenesis is nonessential due to a possible compensation of SRC-3/AIB1 overexpression. Int. J. Biol. Sci. 5, 256–264 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Agoulnik, I. U. et al. Androgens modulate expression of transcription intermediary factor 2, an androgen receptor coactivator whose expression level correlates with early biochemical recurrence in prostate cancer. Cancer Res. 66, 10594–10602 (2006).

    CAS  PubMed  Google Scholar 

  115. Gnanapragasam, V. J., Leung, H. Y., Pulimood, A. S., Neal, D. E. & Robson, C. N. Expression of RAC 3, a steroid hormone receptor co-activator in prostate cancer. Br. J. Cancer 85, 1928–1936 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhou, H. J. et al. SRC-3 is required for prostate cancer cell proliferation and survival. Cancer Res. 65, 7976–7983 (2005).

    CAS  PubMed  Google Scholar 

  117. Zhou, G., Hashimoto, Y., Kwak, I., Tsai, S. Y. & Tsai, M. J. Role of the steroid receptor coactivator SRC-3 in cell growth. Mol. Cell. Biol. 23, 7742–7755 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Chung, A. C. et al. Genetic ablation of the amplified-in-breast cancer 1 inhibits spontaneous prostate cancer progression in mice. Cancer Res. 67, 5965–5975 (2007). This article first reported that SRC3 deficiency in mice arrested spontaneous prostate cancer progression at a well-differentiated stage.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Xie, D. et al. Correlation of AIB1 overexpression with advanced clinical stage of human colorectal carcinoma. Hum. Pathol. 36, 777–783 (2005).

    CAS  PubMed  Google Scholar 

  120. Kershah, S. M., Desouki, M. M., Koterba, K. L. & Rowan, B. G. Expression of estrogen receptor coregulators in normal and malignant human endometrium. Gynecol. Oncol. 92, 304–313 (2004).

    CAS  PubMed  Google Scholar 

  121. Uchikawa, J. et al. Expression of steroid receptor coactivators and corepressors in human endometrial hyperplasia and carcinoma with relevance to steroid receptors and Ki-67 expression. Cancer 98, 2207–2213 (2003).

    CAS  PubMed  Google Scholar 

  122. Balmer, N. N. et al. Steroid receptor coactivator AIB1 in endometrial carcinoma, hyperplasia and normal endometrium: correlation with clinicopathologic parameters and biomarkers. Mod. Pathol. 19, 1593–1605 (2006).

    CAS  PubMed  Google Scholar 

  123. Xu, F. P. et al. SRC-3/AIB1 protein and gene amplification levels in human esophageal squamous cell carcinomas. Cancer Lett. 245, 69–74 (2007).

    CAS  PubMed  Google Scholar 

  124. Sakakura, C. et al. Amplification and over-expression of the AIB1 nuclear receptor co-activator gene in primary gastric cancers. Int. J. Cancer 89, 217–223 (2000).

    CAS  PubMed  Google Scholar 

  125. Yoshida, H. et al. Steroid receptor coactivator-3, a homolog of Taiman that controls cell migration in the Drosophila ovary, regulates migration of human ovarian cancer cells. Mol. Cell. Endocrinol. 245, 77–85 (2005).

    CAS  PubMed  Google Scholar 

  126. Henke, R. T. et al. Overexpression of the nuclear receptor coactivator AIB1 (SRC-3) during progression of pancreatic adenocarcinoma. Clin. Cancer Res. 10, 6134–6142 (2004).

    CAS  PubMed  Google Scholar 

  127. Carapeti, M., Aguiar, R. C., Goldman, J. M. & Cross, N. C. A novel fusion between MOZ and the nuclear receptor coactivator TIF2 in acute myeloid leukemia. Blood 91, 3127–3133 (1998).

    CAS  PubMed  Google Scholar 

  128. Liang, J., Prouty, L., Williams, B. J., Dayton, M. A. & Blanchard, K. L. Acute mixed lineage leukemia with an inv(8)(p11q13) resulting in fusion of the genes for MOZ and TIF2. Blood 92, 2118–2122 (1998).

    CAS  PubMed  Google Scholar 

  129. Deguchi, K. et al. MOZ-TIF2-induced acute myeloid leukemia requires the MOZ nucleosome binding motif and TIF2-mediated recruitment of CBP. Cancer Cell 3, 259–271 (2003).

    CAS  PubMed  Google Scholar 

  130. Huntly, B. J. et al. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 6, 587–596 (2004).

    CAS  PubMed  Google Scholar 

  131. Coste, A. et al. Absence of the steroid receptor coactivator-3 induces B-cell lymphoma. EMBO J. 25, 2453–2464 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Lahusen, T., Fereshteh, M., Oh, A., Wellstein, A. & Riegel, A. T. Epidermal growth factor receptor tyrosine phosphorylation and signaling controlled by a nuclear receptor coactivator, amplified in breast cancer 1. Cancer Res. 67, 7256–7265 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Yan, J. et al. Steroid receptor coactivator-3/AIB1 promotes cell migration and invasiveness through focal adhesion turnover and matrix metalloproteinase expression. Cancer Res. 68, 5460–5468 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Louie, M. C., Revenko, A. S., Zou, J. X., Yao, J. & Chen, H. W. Direct control of cell cycle gene expression by proto-oncogene product ACTR, and its autoregulation underlies its transforming activity. Mol. Cell. Biol. 26, 3810–3823 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Louie, M. C., Zou, J. X., Rabinovich, A. & Chen, H. W. ACTR/AIB1 functions as an E2F1 coactivator to promote breast cancer cell proliferation and antiestrogen resistance. Mol. Cell. Biol. 24, 5157–5171 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Mussi, P., Yu, C., O'Malley, B. W. & Xu, J. Stimulation of steroid receptor coactivator-3 (SRC-3) gene overexpression by a positive regulatory loop of E2F1 and SRC-3. Mol. Endocrinol. 20, 3105–3119 (2006).

    CAS  PubMed  Google Scholar 

  137. Mukherjee, A. et al. Steroid receptor coactivator 2 is critical for progesterone-dependent uterine function and mammary morphogenesis in the mouse. Mol. Cell. Biol. 26, 6571–6583 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Liu, Z., Liao, L., Zhou, S. & Xu, J. Generation and validation of a mouse line with a floxed SRC-3/AIB1 allele for conditional knockout. Int. J. Biol. Sci. 4, 202–207 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Xu, J. et al. Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene. Science 279, 1922–1925 (1998). This article first reported the phenotype of SRC1-knockout mice and demonstrated an important physiological role of the co-activator in vivo .

    CAS  PubMed  Google Scholar 

  140. Weiss, R. E. et al. Mice deficient in the steroid receptor co-activator 1 (SRC-1) are resistant to thyroid hormone. EMBO J. 18, 1900–1904 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Kamiya, Y. et al. Modulation by steroid receptor coactivator-1 of target-tissue responsiveness in resistance to thyroid hormone. Endocrinology 144, 4144–4153 (2003).

    CAS  PubMed  Google Scholar 

  142. Puigserver, P. et al. Activation of PPARγcoactivator-1 through transcription factor docking. Science 286, 1368–1371 (1999).

    CAS  PubMed  Google Scholar 

  143. Picard, F. et al. SRC-1 and TIF2 control energy balance between white and brown adipose tissues. Cell 111, 931–941 (2002).

    CAS  PubMed  Google Scholar 

  144. Gehin, M. et al. The function of TIF2/GRIP1 in mouse reproduction is distinct from those of SRC-1 and p/CIP. Mol. Cell. Biol. 22, 5923–5937 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Ye, X. et al. Roles of steroid receptor coactivator (SRC)-1 and transcriptional intermediary factor (TIF) 2 in androgen receptor activity in mice. Proc. Natl Acad. Sci. USA 102, 9487–9492 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Chopra, A. R. et al. Absence of the SRC-2 coactivator results in a glycogenopathy resembling Von Gierke's disease. Science 322, 1395–1399 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Xu, J. et al. The steroid receptor coactivator SRC-3 (p/CIP/RAC3/AIB1/ACTR/TRAM-1) is required for normal growth, puberty, female reproductive function, and mammary gland development. Proc. Natl Acad. Sci. USA 97, 6379–6384 (2000). This article first reported the phenotype of SRC3-knockout mice and demonstrated that SRC3 has an important role in growth and mammary gland development.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Wang, Z. et al. Regulation of somatic growth by the p160 coactivator p/CIP. Proc. Natl Acad. Sci. USA 97, 13549–13554 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Liao, L., Chen, X., Wang, S., Parlow, A. F. & Xu, J. Steroid receptor coactivator 3 maintains circulating insulin-like growth factor I (IGF-I) by controlling IGF-binding protein 3 expression. Mol. Cell. Biol. 28, 2460–2469 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Brzozowski, A. M. et al. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389, 753–758 (1997).

    CAS  PubMed  Google Scholar 

  151. Shiau, A. K. et al. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95, 927–937 (1998).

    CAS  PubMed  Google Scholar 

  152. Beischlag, T. V. et al. Recruitment of the NCoA/SRC-1/p160 family of transcriptional coactivators by the aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator complex. Mol. Cell. Biol. 22, 4319–4333 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Carlson, D. B. & Perdew, G. H. A dynamic role for the Ah receptor in cell signaling? Insights from a diverse group of Ah receptor interacting proteins. J. Biochem. Mol. Toxicol. 16, 317–325 (2002).

    CAS  PubMed  Google Scholar 

  154. Kumar, M. B. & Perdew, G. H. Nuclear receptor coactivator SRC-1 interacts with the Q-rich subdomain of the AhR and modulates its transactivation potential. Gene Expr. 8, 273–286 (1999).

    CAS  PubMed  Google Scholar 

  155. Lee, S. K. et al. Steroid receptor coactivator-1 coactivates activating protein-1-mediated transactivations through interaction with the c-Jun and c-Fos subunits. J. Biol. Chem. 273, 16651–16654 (1998).

    CAS  PubMed  Google Scholar 

  156. Dennis, J. H., Budhram-Mahadeo, V. & Latchman, D. S. Functional interaction between Brn-3a and Src-1 co-activates Brn-3a-mediated transactivation. Biochem. Biophys. Res. Commun. 294, 487–495 (2002).

    CAS  PubMed  Google Scholar 

  157. Song, L. N. & Gelmann, E. P. Interaction of β-catenin and TIF2/GRIP1 in transcriptional activation by the androgen receptor. J. Biol. Chem. 280, 37853–37867 (2005).

    CAS  PubMed  Google Scholar 

  158. Goel, A. & Janknecht, R. Concerted activation of ETS protein ER81 by p160 coactivators, the acetyltransferase p300 and the receptor tyrosine kinase HER2/Neu. J. Biol. Chem. 279, 14909–14916 (2004).

    CAS  PubMed  Google Scholar 

  159. Martinez-Jimenez, C. P., Castell, J. V., Gomez-Lechon, M. J. & Jover, R. Transcriptional activation of CYP2C9, CYP1A1, and CYP1A2 by hepatocyte nuclear factor 4α requires coactivators peroxisomal proliferator activated receptor-γ coactivator 1α and steroid receptor coactivator 1. Mol. Pharmacol. 70, 1681–1692 (2006).

    CAS  PubMed  Google Scholar 

  160. Wang, J. C., Stafford, J. M. & Granner, D. K. SRC-1 and GRIP1 coactivate transcription with hepatocyte nuclear factor 4. J. Biol. Chem. 273, 30847–30850 (1998).

    CAS  PubMed  Google Scholar 

  161. Reily, M. M., Pantoja, C., Hu, X., Chinenov, Y. & Rogatsky, I. The GRIP1:IRF3 interaction as a target for glucocorticoid receptor-mediated immunosuppression. EMBO J. 25, 108–117 (2006).

    CAS  PubMed  Google Scholar 

  162. Gao, Z. et al. Coactivators and corepressors of NF-κB in IκB alpha gene promoter. J. Biol. Chem. 280, 21091–21098 (2005).

    CAS  PubMed  Google Scholar 

  163. Li, G., Heaton, J. H. & Gelehrter, T. D. Role of steroid receptor coactivators in glucocorticoid and transforming growth factor βregulation of plasminogen activator inhibitor gene expression. Mol. Endocrinol. 20, 1025–1034 (2006).

    CAS  PubMed  Google Scholar 

  164. Kino, T., Slobodskaya, O., Pavlakis, G. N. & Chrousos, G. P. Nuclear receptor coactivator p160 proteins enhance the HIV-1 long terminal repeat promoter by bridging promoter-bound factors and the Tat-P-TEFb complex. J. Biol. Chem. 277, 2396–2405 (2002).

    CAS  PubMed  Google Scholar 

  165. Yi, M., Tong, G. X., Murry, B. & Mendelson, C. R. Role of CBP/p300 and SRC-1 in transcriptional regulation of the pulmonary surfactant protein-A (SP-A) gene by thyroid transcription factor-1 (TTF-1). J. Biol. Chem. 277, 2997–3005 (2002).

    CAS  PubMed  Google Scholar 

  166. Baldwin, A., Huh, K. W. & Munger, K. Human papillomavirus E7 oncoprotein dysregulates steroid receptor coactivator 1 localization and function. J. Virol. 80, 6669–6677 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Lee, S. K., Kim, H. J., Kim, J. W. & Lee, J. W. Steroid receptor coactivator-1 and its family members differentially regulate transactivation by the tumor suppressor protein p53. Mol. Endocrinol. 13, 1924–1933 (1999).

    CAS  PubMed  Google Scholar 

  168. Batsche, E., Desroches, J., Bilodeau, S., Gauthier, Y. & Drouin, J. Rb enhances p160/SRC coactivator-dependent activity of nuclear receptors and hormone responsiveness. J. Biol. Chem. 280, 19746–19756 (2005).

    CAS  PubMed  Google Scholar 

  169. Brosens, J. J., Hayashi, N. & White, J. O. Progesterone receptor regulates decidual prolactin expression in differentiating human endometrial stromal cells. Endocrinology 140, 4809–4820 (1999).

    CAS  PubMed  Google Scholar 

  170. Mani, A. et al. E6AP mediates regulated proteasomal degradation of the nuclear receptor coactivator amplified in breast cancer 1 in immortalized cells. Cancer Res. 66, 8680–8686 (2006).

    CAS  PubMed  Google Scholar 

  171. Verma, S. et al. The ubiquitin-conjugating enzyme UBCH7 acts as a coactivator for steroid hormone receptors. Mol. Cell. Biol. 24, 8716–8726 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Zhang, A. et al. Identification of a novel family of ankyrin repeats containing cofactors for p160 nuclear receptor coactivators. J. Biol. Chem. 279, 33799–33805 (2004).

    CAS  PubMed  Google Scholar 

  173. Lee, S. K. et al. A nuclear factor, ASC-2, as a cancer-amplified transcriptional coactivator essential for ligand-dependent transactivation by nuclear receptors in vivo. J. Biol. Chem. 274, 34283–34293 (1999).

    CAS  PubMed  Google Scholar 

  174. Chen, D. et al. Regulation of transcription by a protein methyltransferase. Science 284, 2174–2177 (1999).

    CAS  PubMed  Google Scholar 

  175. Wu, X., Li, H. & Chen, J. D. The human homologue of the yeast DNA repair and TFIIH regulator MMS19 is an AF-1-specific coactivator of estrogen receptor. J. Biol. Chem. 276, 23962–23968 (2001).

    CAS  PubMed  Google Scholar 

  176. Kino, T. & Chrousos, G. P. Tumor necrosis factor α receptor- and Fas-associated FLASH inhibit transcriptional activity of the glucocorticoid receptor by binding to and interfering with its interaction with p160 type nuclear receptor coactivators. J. Biol. Chem. 278, 3023–3029 (2003).

    CAS  PubMed  Google Scholar 

  177. Kino, T., Ichijo, T. & Chrousos, G. P. FLASH interacts with p160 coactivator subtypes and differentially suppresses transcriptional activity of steroid hormone receptors. J. Steroid Biochem. Mol. Biol. 92, 357–363 (2004).

    CAS  PubMed  Google Scholar 

  178. Liang, J., Zhang, H., Zhang, Y., Zhang, Y. & Shang, Y. GAS, a new glutamate-rich protein, interacts differentially with SRCs and is involved in oestrogen receptor function. EMBO Rep. 10, 51–57 (2009).

    CAS  PubMed  Google Scholar 

  179. Chauchereau, A., Georgiakaki, M., Perrin-Wolff, M., Milgrom, E. & Loosfelt, H. JAB1 interacts with both the progesterone receptor and SRC-1. J. Biol. Chem. 275, 8540–8548 (2000).

    CAS  PubMed  Google Scholar 

  180. Yi, P. et al. Peptidyl-prolyl isomerase 1 (Pin1) serves as a coactivator of steroid receptor by regulating the activity of phosphorylated steroid receptor coactivator 3 (SRC-3/AIB1). Mol. Cell. Biol. 25, 9687–9699 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Lanz, R. B. et al. A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell 97, 17–27 (1999).

    CAS  PubMed  Google Scholar 

  182. Berns, E. M., van Staveren, I. L., Klijn, J. G. & Foekens, J. A. Predictive value of SRC-1 for tamoxifen response of recurrent breast cancer. Breast Cancer Res. Treat. 48, 87–92 (1998).

    CAS  PubMed  Google Scholar 

  183. Carroll, R. S. et al. Expression of a subset of steroid receptor cofactors is associated with progesterone receptor expression in meningiomas. Clin. Cancer Res. 6, 3570–3575 (2000).

    CAS  PubMed  Google Scholar 

  184. Hussein-Fikret, S. & Fuller, P. J. Expression of nuclear receptor coregulators in ovarian stromal and epithelial tumours. Mol. Cell. Endocrinol. 229, 149–160 (2005).

    CAS  PubMed  Google Scholar 

  185. Lassmann, S. et al. Array CGH identifies distinct DNA copy number profiles of oncogenes and tumor suppressor genes in chromosomal- and microsatellite-unstable sporadic colorectal carcinomas. J. Mol. Med. 85, 293–304 (2007).

    CAS  PubMed  Google Scholar 

  186. Fujita, Y. et al. Chromosome arm 20q gains and other genomic alterations in esophageal squamous cell carcinoma, as analyzed by comparative genomic hybridization and fluorescence in situ hybridization. Hepatogastroenterology 50, 1857–1863 (2003).

    CAS  PubMed  Google Scholar 

  187. Wang, Y. et al. Prognostic significance of c-myc and AIB1 amplification in hepatocellular carcinoma. A broad survey using high-throughput tissue microarray. Cancer 95, 2346–2352 (2002).

    CAS  PubMed  Google Scholar 

  188. Chen, Y. J. et al. Genome-wide profiling of oral squamous cell carcinoma. J. Pathol. 204, 326–332 (2004).

    CAS  PubMed  Google Scholar 

  189. Tanner, M. M. et al. Frequent amplification of chromosomal region 20q12-q13 in ovarian cancer. Clin. Cancer Res. 6, 1833–1839 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by US National Institutes of Health grants (R01DK058242, R01CA112403 and R01CA119689 to J.X.; P01DK059820, R01HD07857 and R01HD08818 to B.W.O.), National Institute of Diabetes and Digestive and Kidney Diseases-Nuclear Receptor Signalling Atlas, an American Cancer Society Research Scholar Award (ACS number RSG-05-082-01 to J.X.) and a Susan Komen for the Cure Award (BCTR0707225 to R.W.).

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

National Cancer Institute Drug Dictionary 

tamoxifen

FURTHER INFORMATION

Jianming Xu's homepage

Bert W. O'Malley's homepage

Glossary

pS2 gene

Agene that, in ERα-positive human breast cancer cells, such as MCF7 cells, is a direct target gene of ERα. On oestrogen treatment, pS2 mRNA expression can be substantially induced within 15 minutes.

Pituitary isograft

Implantation of a pituitary gland isolated from a syngeneic donor mouse into the kidney capsule of a recipient mouse. On stimulation of the implanted pituitary isograft, the recipient mouse shows significantly increased levels of prolactin, progesterone and oestradiol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Wu, RC. & O'Malley, B. Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family. Nat Rev Cancer 9, 615–630 (2009). https://doi.org/10.1038/nrc2695

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2695

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing