Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The biology of ovarian cancer: new opportunities for translation

Key Points

  • Several factors make ovarian cancer a difficult disease to treat effectively. Although many patients experience symptoms, these often overlap with other ailments, and many patients are diagnosed after the cancer has metastasized. Ovarian cancer is also heterogeneous — multiple genetic and epigenetic changes are evident in patients with ovarian cancer; however, how such changes are selected for during tumorigenesis is not yet clear.

  • Mutation and loss of TP53 function is one of the most frequent genetic abnormalities in ovarian cancer and is observed in 60–80% of both sporadic and familial cases. Of the 16 candidate tumour suppressor genes identified to date in ovarian cancer, 3 are imprinted genes. Several growth inhibitory genes are also silenced by methylation or imprinting.

  • Inheritance of DNA repair defects contributes to as many as 10–15% of ovarian cancers. The lifetime risk of developing ovarian cancer in mutation carriers varies with the genetic defect (for BRCA1 30–60%, for BRCA2 15–30% and for hereditary non-polyposis colon cancer 7%).

  • At least 15 oncogenes have been implicated in ovarian cancers, and DNA copy number abnormalities have also been found in loci that are known to contain non-coding microRNAs. At least seven signalling pathways are activated in >50% of ovarian cancers, and mutations that affect cell proliferation, apoptosis and autophagy are also evident.

  • Ovarian cancer can be split into two groups on the basis of genetic changes: low-grade tumours with mutations in KRAS, BRAF and PIK3CA, loss of heterozygosity (LOH) on chromosome Xq, microsatellite instability and expression of amphiregulin; and high-grade tumours with aberrations in TP53 and potential aberrations in BRCA1 and BRCA2, as well as LOH on chromosomes 7q and 9p.

  • Changes in cell adhesion and motility also contribute to disease development and metastasis. Adhesion of ovarian cancer cells to the mesothelial cells and to the underlying stroma is mediated by CD44, CA125 and b1 intergrin on the surface of ovarian cancer cells that bind to mesothelin and hyaluronic acid on mesothelial cells, or to fibronectin, laminin and type IV collagen in the underlying matrix.

  • A crucial goal is to identify patients who would benefit from particular targeted therapies. Given the complexity of crosstalk between protein signalling pathways, predicting the impact and efficacy of any one signalling inhibitor is difficult. Inhibition of multiple pathways will almost certainly be required to substantially affect ovarian cancer growth.

  • Effective methods for early detection are needed. Given the prevalence of ovarian cancer, strategies for early detection must have a high sensitivity for early-stage disease (>75%), but an extremely high specificity (99.6%) to attain a positive predictive value of at least 10% (ten operations for each case of ovarian cancer). Using rising values of serum biomarkers such as CA125 to trigger transvaginal sonography is a promising approach.

Abstract

Over the past two decades, the 5-year survival for ovarian cancer patients has substantially improved owing to more effective surgery and treatment with empirically optimized combinations of cytotoxic drugs, but the overall cure rate remains approximately 30%. Many investigators think that further empirical trials using combinations of conventional agents are likely to produce only modest incremental improvements in outcome. Given the heterogeneity of this disease, increases in long-term survival might be achieved by translating recent insights at the molecular and cellular levels to personalize individual strategies for treatment and to optimize early detection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Goff, B. A. et al. Ovarian carcinoma diagnosis. Cancer 89, 2068 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Zebrowski, B. K. et al. Markedly elevated levels of vascular endothelial growth factor in malignant ascites. Ann. Surg. Oncol. 6, 373 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Mesiano, S., Ferrara, N. & Jaffe, R. Role of vascular endothelial growth factor in ovarian cancer: inhibition of ascites formation by immunoneutralization. Am. J. Path. 153, 1249 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Numnum, T. M. et al. The use of bevacizumab to palliate symptomatic ascites in patients with refractory ovarian cancer. Gynecol. Oncol. 102, 425 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Berek, J. S. in Practical Gynecologic Oncology 4th edn Ch. 11 Ovarian Cancer (eds Berek, J. S. & Hacker, N. F.) 443–511 (Lippincott Williams & Wilkins, Philadelphia, 2005).

    Google Scholar 

  6. Armstrong, D. K. et al. Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N. Engl. J. Med. 354, 34–43 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Feeley, K. M. & Wells, M. Precursor lesions of ovarian epithelial malignancy. Histopathology 38, 87 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, S. et al. Identification and characterization of ovarian cancer initiating cells from primary human tumors. Cancer Res. 68, 4311–4320 (2008). This report established the phenotype of tumour-initiating ovarian cancer cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alvero, A. B. et al. Molecular phenotyping of human ovarian cancer stem cells unravel the mechanisms for repair and chemoresistance. Cell Cycle 8, 188–169 (2009).

    Article  Google Scholar 

  10. Jacobs, I. J. et al. Clonal origin of epithelial ovarian cancer: analysis by loss of heterozygosity, p53 mutation and X chromosome inactivation. J. Natl Cancer Inst. 84, 1793–1798 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Bast, R. C. Jr & Mills, G. B. in The Molecular Basis of Cancer 3rd edn (eds Mendelsohn, J., Howley, P., Israel, M., Gray, J. & Thompson, C. ) 441–455 (W. B. Saunders Co., Philadelphia, 2008).

    Book  Google Scholar 

  12. Iwabuchi, H. et al. Genetic analysis of benign, low-grade and high-grade ovarian tumors. Cancer Res. 55, 6172–6180 (1995).

    CAS  PubMed  Google Scholar 

  13. Risch, H. A. et al. Population BRCA1 and BRCA2 mutation frequencies and cancer penetrances: a kin-cohort study in Ontario, Canada. J. Natl Cancer Inst. 98, 1675–1677 (2006).

    Article  CAS  Google Scholar 

  14. Cramer, D. W. et al. Genital talc exposure and risk of ovarian cancer. Int. J. Cancer 81, 351–356 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Muscat, J. E. & Huncharek, M. S. Perineal talc use and ovarian cancer: a critical review. Eur. J. Cancer Prev. 62, 358–360 (2006).

    Google Scholar 

  16. Kohler, M. F. et al. Spectrum of mutation and frequency of allelic deletion of the p53 gene in ovarian cancer. J. Natl Cancer Inst. 85, 1513–1519 (1993). This paper indicated that ovarian cancers undergo spontaneous mutation.

    Article  CAS  PubMed  Google Scholar 

  17. Berchuck, A. et al. Overexpression of p53 is not a feature of benign and early-stage borderline epithelial ovarian tumors. Gynecol. Oncol. 52, 232–236 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Berchuck, A. et al. The p53 tumor suppressor gene frequently is altered in gynecologic cancers. Am. J. Obstet. Gynecol. 170, 246–252 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Havrilesky, L. et al., Prognostic significance of p53 mutation and p53 overexpression in advanced epithelial ovarian cancer: a Gynecologic Oncology Group study. J. Clin. Oncol. 21, 3814–3825 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Hall, J. et al. Critical evaluation of p53 as a prognostic marker in ovarian cancer. Exp. Rev. Mol. Med. 12, 1–20 (2004). A thoughtful and thorough review of the prognostic significance of p53 in ovarian cancer.

    Article  Google Scholar 

  21. Buller, R. E. et al. A phase I/II trial of rAd/p53 (SCH58500) gene replacement in recurrent ovarian cancer. Cancer Gene Ther. 9, 553–566 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Vasey, P. A. et al. Phase I trial of intraperitoneal injection of the E1B-55-kd-gene-deleted adenovirus ONYX-015 (dl1520) given on days 1 through 5 every 3 weeks in patients with recurrent/refractory epithelial ovarian cancer. J. Clin. Oncol. 15, 1562–1569 (2002).

    Google Scholar 

  23. Kojima, K. et al. MDM2 antagonists induce p53-dependent apoptosis in AML: implications for leukemia therapy. Blood 106, 3150–3159 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu, Y. et al. in Methods in Enzymology: Regulators and Effectors of Small GTPases. Ras Proteins Vol. 407 (eds Balch, W. E., Der, C. & Hall, A.) 455–467 (Academic, New York, 2006). A comprehensive review of the role of DIRAS3 (ARHI) in ovarian cancer.

    Book  Google Scholar 

  25. Cvetkovic, D. et al. Altered expression and loss of heterozygosity of the LOT1 gene in ovarian cancer. Gynecol. Oncol. 95, 449–455 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Feng, W. et al. Imprinted tumor suppressor genes ARHI and PEG3 are the most frequently down-regulated in human ovarian cancers by loss of heterozygosity and promoter methylation. Cancer 112, 1489–1502 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Chen, M. Y. et al. Synergistic inhibition of ovarian cancer cell growth with demethylating agents and histone deacetylase inhibitors. Proc. Amer. Assoc. Cancer Res. 681 (2007).

  28. Mackay, H. et al. A phase II trial of the histone deacetylase inhibitor belinostat (PSC101) in patients with platinum resistant epithelial ovarian tumors and micropapillary/borderline (LMP) ovarian tumors. A PMH phase II consortium trial. J. Clin. Oncol. 26 (Suppl.) 5518 (2008).

    Article  Google Scholar 

  29. Balch, C. et al. The epigenetics of ovarian cancer drug resistance and resensitization. Am. J. Obstet. Gynecol. 191, 1552–1572 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Bast, R. C. et al. A phase IIa study of a sequential regimen using azacitidine to reverse platinum resistance to carboplatin in patients with platinum resistant or refractory epithelial ovarian cancer. J. Clin. Oncol. 26 (Suppl.) 3500 (2008).

    Article  Google Scholar 

  31. Rubin, S. C. et al. BRCA1, BRCA2, and hereditary nonpolyposis colorectal cancer gene mutations in an unselected ovarian cancer population: relationship to family history and implications for genetic testing. Am. J. Obstet. Gynecol. 178, 670–677 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Lancaster, J. M. et al. BRCA2 mutations in primary breast and ovarian cancers. Nature Genet. 13, 238–240 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Boyd, J. in Ovarian Cancer 5 (eds Sharp, F., Blackett, T., Berek, J. & Bast, R.) 3–16 (Isis Medical Media, Oxford, 1998).

    Google Scholar 

  34. Chetrit, A., Hirsh-Yechezkel, G., Ben-David, Y., Lubin, F. & Friedman, E. Effect of BRCA 1/2 mutations on long-term survival of patients with ovarian cancer: the national Israeli study of ovarian cancer. J. Clin. Oncol. 26, 20–25 (2008).

    Article  PubMed  Google Scholar 

  35. Moynahan, M. E. et al. Homology directed DNA repair, mitomycin-c resistance, and chromosome stability is restored with correction of a Brca1 mutation. Cancer Res. 61, 4842–4850 (2001).

    CAS  PubMed  Google Scholar 

  36. Narod, S. A & Foulkes, W. D. BRCA1 and BRCA2, 1994 and beyond. Nature Rev. Cancer 4, 665–676 (2004).

    Article  CAS  Google Scholar 

  37. Edwards, S. L. et al. Resistance to therapy caused by intragenic deletion in BRCA2. Nature 451, 1111–1115 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Sakai, W. et al. Secondary mutations as a mechanism of resistance to cisplatin in BRCA2-mutated cancers. Nature 451, 1116–1120 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Drew, Y. & Calvert, H. The potential of PARP inhibitors in genetic breast and ovarian cancers. Ann. NY Acad. Sci. 1138, 126–145 (2008).

    Article  CAS  Google Scholar 

  40. Yap, T. A., Carden, C. T. & Kaye, S. B. Beyond chemotherapy: targeted therapies in ovarian cancer. Nature Rev. Cancer 9, 167–181 (2009). A thorough and up-to-date review of molecular therapeutics for ovarian cancer.

    Article  CAS  Google Scholar 

  41. Hennessey, B. et al. BRCA status in ovarian cancer. Proc. Amer. Soc. Clin. Oncol. (in the press).

  42. Umayahara, K. et al. in Ovarian Cancer 5 (eds Sharp, F., Blackett, T., Berek, J. & Bast, R.) 17–23 (Isis Medical Media, Oxford, 1998).

    Google Scholar 

  43. Jazaeri, A. A. et al. Gene expression profiles of BRCA1-linked, BRCA2-linked, and sporadic ovarian cancers. J. Natl Cancer Inst. 13, 990–1000 (2002). This provocative paper suggests that sporadic ovarian cancers are either BRCA1 or BRCA2-like.

    Article  Google Scholar 

  44. Eder, A. M. et al. Atypical PKCι contributes to poor prognosis through loss of apical–basal polarity and cyclin E overexpression in ovarian cancer. Proc. Natl Acad. USA 102, 12519–12524 (2005).

    Article  CAS  Google Scholar 

  45. Zhang, L. et al. MicroRNAs exhibit high frequency genomic alterations in human cancer. Proc. Natl Acad. Sci. USA 103, 9136–9141 (2003).

    Article  CAS  Google Scholar 

  46. Tangir, J. et al. Frequent microsatellite instability in epithelial borderline ovarian tumors. Cancer Res. 56, 2501–2505 (1996).

    CAS  PubMed  Google Scholar 

  47. Rodabaugh, K. J. et al. Detailed deletion mapping of chromosome 9p and p16 gene alterations in human borderline and invasive epithelial ovarian tumors. Oncogene 11, 1249–1254 (1995).

    CAS  PubMed  Google Scholar 

  48. Berchuck, A. et al. Overexpression of p53 is not a feature of benign and early- stage borderline epithelial ovarian tumors. Gynecol. Oncol. 52, 232–236 (1994).

    Article  CAS  PubMed  Google Scholar 

  49. Iwabuchi, H. et al. Genetic analysis of benign, low-grade, and high-grade ovarian tumors. Cancer Res. 55, 6172–6180 (1995).

    CAS  PubMed  Google Scholar 

  50. Abu-Jawdeh, G. M. et al. Estrogen receptor expression is a common feature of ovarian borderline tumors. Gynecol. Oncol. 60, 301–307 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Liu, J. et al. A genetically defined model for human ovarian cancer. Cancer Res. 64, 1655–1663 (2004). This paper showed that an ovarian phenotype can be induced in xenografts by transfecting normal human ovarian surface epithelial cells with SV40 T antigen, telomerase and mutant Ras.

    Article  CAS  PubMed  Google Scholar 

  52. Cheng, K. W. et al. Emerging role of Rab GTPases in cancer and human disease. Cancer Res. 65, 2516–2519 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Gautschi, O. et al. Aurora kinases as cancer drug targets. Clin. Cancer Res. 14, 1639–1648 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Li, K. et al. Modulation of Notch signaling by antibodies specific for the extracellular regulatory region of Notch3. J. Biol. Chem. 283, 8046–8054 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Schilder, R. J, et al. Phase II study of gefitinib in patients with relapsed or persistent ovarian or primary peritoneal carcinoma and evaluation of epidermal growth factor receptor mutations and immunohistochemical expression: a Gynecologic Oncology Group Study. Clin. Cancer Res. 11, 5539–5548 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Gordon, A. N. et al. Efficacy and safety of erlotinib HCI, an epidermal growth factor receptor (HER1/EGFR) tyrosine kinase inhibitor, in patients with advanced ovarian carcinoma: results from a phase II multicenter study. Int. J. Gynecol. Cancer 15, 785–792 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Heinemann, V., Stintzing, S., Kirchner, T., Boeck, S. & Jung, A. Clinical relevance of EGFR- and KRAS-status in colorectal cancer patients treated with monoclonal antibodies directed against the EGFR. Cancer Treat. Rev. 35, 262–271 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Bookman, M. A. et al. Evaluation of monoclonal humanized anti-HER2 antibody, trastuzumab, in patients with recurrent or refractory ovarian or primary peritoneal carcinoma with overexpression of HER2: a phase II trial of the Gynecologic Oncology Group. J. Clin. Oncol. 21, 283–290 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Hu, L., Hofmann, J., Lu, Y., Mills, G. B. & Jaffe, R. B. Inhibition of phophatidylinositol 3′ kinase increases efficacy of paclitaxel in in vitro and in vivo ovarian cancer models. Cancer Res. 62, 1087–1092 (2002).

    CAS  PubMed  Google Scholar 

  60. Raynaud, F. L. et al. Pharmacologic characterization of a potent inhibitor of class I phophatidylinositide 3-kinases. Cancer Res. 67, 5840–5850 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Rosen, D. G. et al. The role of constitutively active signal transducer and activator of transcription 3 in ovarian tumorigenesis and prognosis. Cancer 107, 2730–2740 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Burke, W. M. et al. Inhibition of constitutively active Stat3 suppresses growth of human ovarian and breast cancer cells. Oncogene 20, 7925–7934 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Duan, Z. et al. 8-benzyl-4-oxo-8-azabicyclo[3.2.1]oct-2-ene-6, 7-dicarboxylic acid (SD-1008), a novel janus kinase 2 inhibitor, increases chemotherapy sensitivity in human ovarian cancer cells. Mol. Pharmacol. 72, 1137–1145 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. McMurray, J. S. A new small molecule Stat 3 inhibitor. Chem. Biol. 13, 1123–1124 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Murph, M. et al. Of spiders and crabs: the emergence of lysophospholipids and their metabolic pathways as targets for therapy in cancer. Clin. Cancer Res. 12, 6598–6602 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Beck, H. P. et al. Discovery of potent LPA2 (EDG4) antagonists as potential anticancer agents. Bioorg. Med. Chem. Lett. 18, 1037–1041 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Lin, Y. G. et al. Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-κB pathway. Clin. Cancer Res. 13, 3423–3430 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Samanta, A. K, Huang, H. J, Bast, R. C. Jr & Liao, W. Overexpression of MEKK3 confers resistance to apoptosis through activation of NFκB. J. Biol. Chem. 279, 7576–7583 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Häcker, H. & Karin, M. Regulation and function of IKK and IKK-related kinases. Science STKE 357, re 13 (2006).

    Google Scholar 

  70. Yang, J. et al. The essential role of MEKK3 in TNF-induced NF-κB activation. Nature Immunol. 2, 620–624 (2001).

    Article  CAS  Google Scholar 

  71. Karin, M. Nuclear factor κB in cancer development and progression. Nature 441, 431–436 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. See, H. T., Kavanagh, J. J., Hu, W. & Bast, R. C. Jr. Targeted therapy for epithelial ovarian cancer: current status and future prospects. Int. J. Gynecol. Cancer 13, 701–734 (2004).

    Article  Google Scholar 

  73. Suh, D. S., Yoon, M. S., Choi, K. U. & Kim, J. Y. Significance of E2F-1 overexpression in ovarian cancer. Int. J. Gynecol. Cancer 18, 492–498 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Reimer, D. et al. Expression of the E2 family of transcription factors and its clinical relevance in ovarian cancer. Ann. NY Acad. Sci. 1091, 270–286 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Berchuck, A. et al. Regulation of growth of normal ovarian epithelial cells and ovarian cancer cell lines by transforming growth factor-β. Am. J. Obstet. Gynecol. 166, 676–684 (1992).

    Article  CAS  PubMed  Google Scholar 

  76. Sunde, J. S. et al. Expression profiling identifies altered expression of genes that contribute to the inhibition of transforming growth factor-β signaling in ovarian cancer. Cancer Res. 66, 8404–8412 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Fuller, A. F. Jr, Guy, S., Budzik, G. P. & Donahoe, P. K. Mullerian inhibiting substance inhibits colony growth of a human ovarian carcinoma cell line. J. Clin. Endocrinol. Metabol. 54, 1051–1055 (1982).

    Article  CAS  Google Scholar 

  78. Szotek, P. P. et al. Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian inhibiting substance responsiveness. Proc. Natl Acad. Sci. USA 103, 11154–11159 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pieretti-Vanmarcke, R. et al. Mullerian inhibiting substance enhances subclinical doses of chemotherapeutic agents to inhibit human and mouse ovarian cancer. Proc. Natl Acad. Sci. USA 103, 17426–17431 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Reed, J. et al. Significance of Fas receptor protein expression in epithelial ovarian cancer. Hum. Pathol. 36, 971–976 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Kar, R. et al. Role of apoptotic regulators in human epithelial ovarian cancer. Cancer Biol. Ther. 6, 1101–1105 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Schuyer, M. et al. Reduced expression of BAX is associated with poor prognosis in patients with epithelial ovarian cancer: a multifactorial analysis of TP53, p21, BAX and BCL-2. Br. J. Cancer 85, 1359–1367 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lancaster, J. M. et al. High expression of tumor necrosis factor apoptosis- inducing ligand is associated with favorable ovarian cancer survival. Clin. Cancer Res. 9, 762–766 (2003).

    CAS  PubMed  Google Scholar 

  84. De la Torre, F. J. et al. Apoptosis in epithelial ovarian tumours: prognostic significance of clinical and histopathologic factors and its association with the immunohistochemical expression of apoptotic regulatory proteins (p53, bcl-2 and bax). Eur. J. Obstet. Gynecol. Reprod. Biol. 130, 121–128 (2007).

    Article  PubMed  CAS  Google Scholar 

  85. Liang, X. H. et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672–676 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Lu, Z. et al. A novel tumor suppressor gene ARHI induces autophagy and tumor dormancy in ovarian cancer xenografts. J. Clin. Invest. 118, 3917–3929 (2008). The initial report that linked autophagy and tumour dormancy.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Ren, J. et al. Lysophosphatidic acid is constitutively produced by human peritoneal mesothelial cells and enhances adhesion, migration, and invasion of ovarian cancer cells. Cancer Res. 15, 3006–3014 (2006).

    Article  CAS  Google Scholar 

  88. Fishman, D. A. et al. Lysophosphatidic acid promotes matrix metalloproteinase (MMP) activation and MMP-dependent invasion in ovarian cancer cells. Cancer Res. 1, 3194–3199 (2001).

    Google Scholar 

  89. Fang, X. et al. Mechanisms for lysophosphatidic acid-induced cytokine production in ovarian cancer cells. J. Biol. Chem. 279, 9653–9661 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Sood A, K. et al. Stress hormone-mediated invasion of ovarian cancer cells. Clin. Cancer Res. 15, 369–375 (2006). This report links stress to ovarian cancer growth through physiological mechanisms.

    Article  CAS  Google Scholar 

  91. Barbolina, M. V. et al. Microenvironmental regulation of membrane type 1 matrix metalloproteinase activity in ovarian carcinoma cells via collagen-induced EGR1 expression. J. Biol. Chem. 16, 4924–4931 (2007).

    Article  CAS  Google Scholar 

  92. Cai, K. Q. et al. Prominent expression of metalloproteinases in early stages of ovarian tumorigenesis. Mol. Carcinog. 46, 130–143 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Prezas, P. et al. Overexpression of the human tissue kallikrein genes KLK4, 5, 6, and 7 increases the malignant phenotype of ovarian cancer cells. Biol. Chem. 387, 807–811 (2006).

    CAS  PubMed  Google Scholar 

  94. Paliouras, M. et al. Human tissue kallikreins: the cancer biomarker family. Cancer Lett. 28, 61–79 (2007).

    Article  CAS  Google Scholar 

  95. Yin, B. W. T. & Lloyd, K. O. Molecular cloning of the CA125 ovarian cancer antigen: identification as a new mucin, MUC16. J. Biol. Chem. 276, 27371–27375 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Gubbels, J. A. et al. Mesothelin–MUC16 binding is a high affinity, N-glycan dependent interaction that facilitates peritoneal metastasis of ovarian tumors. Mol. Cancer 5, 50 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Rump, A., Morikawa, Y. & Tanaka, M. Binding of ovarian cancer antigen CA125/MUC16 to mesothelin mediates cell adhesion. J. Biol. Chem. 279, 9190–9198 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Cannistra, S. A. et al. CD44 variant expression is a common feature of epithelial ovarian cancer: lack of association with standard prognostic factors. J. Clin. Oncol. 13, 1912–1921 (1995).

    Article  CAS  PubMed  Google Scholar 

  99. Strobel, T., Swanson, L. & Cannistra, S. A. In vivo inhibition of CD44 limits intra-abdominal spread of a human ovarian cancer xenograft in nude mice: a novel role for CD44 in the process of peritoneal implantation. Cancer Res. 57, 1228–1232 (1997).

    CAS  PubMed  Google Scholar 

  100. Yoneda, J. et al. Expression of angiogenesis-related genes and progression of human ovarian carcinomas in nude mice. J. Natl Cancer Inst. 90, 447–454 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Birrer, M. J. et al. Whole genome oligonucleotide-based array comparative genomic hybridization analysis identified fibroblast growth factor 1 as a prognostic marker for advanced-stage serous ovarian adenocarcinomas. J. Clin Oncol. 1, 2281–2287 (2007). A recent comparative genomic hybridization analysis that indicates the importance of FGF1 in the pathogenesis of ovarian cancer.

    Article  CAS  Google Scholar 

  102. Monk, B. J. et al. Salvage bevacizumab (rhuMAB VEGF)-based therapy after multiple prior cytoxic regimens in advanced refractory epithelial ovarian cancer. Gynecol. Oncol. 102, 140–144 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Kamat, A. A. et al. Metronomic chemotherapy enhances the efficacy of antivascular therapy in ovarian cancer. Cancer Res. 67, 281–288 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Lu, C. et al. Impact of vessel maturation on antiangiogenic therapy in ovarian cancer. Am. J. Obstet. Gynecol. 198, 477.e1–477.e9 (2008).

    Article  CAS  Google Scholar 

  105. Lin, Y. G. et al. EphA2 overexpression in associated with angiogenesis in ovarian cancer. Cancer 109, 332–340 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Landen, C. N. et al. Efficacy and antivascular effects of EphA2 reduction with an agonistic antibody in ovarian cancer. J. Natl Cancer Inst. 98, 1558–1570 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Landen, C. N. et al. Intraperitoneal delivery of liposomal siRNA for therapy of advanced ovarian cancer. Cancer Biol. Ther. 5, 1708–1713 (2006). This paper showed that neutral liposomes allow the efficient delivery of siRNA to human ovarian cancer xenografts.

    Article  CAS  PubMed  Google Scholar 

  108. Mancuso, M. R. et al. Rapid vascular regrowth in tumors after reversal of VEGF inhibition. J. Clin. Invest. 116, 2610–2621 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yang, G. et al. The chemokine growth-regulated oncogene 1 (Gro-1) links RAS signaling to the senescence of stromal fibroblasts and ovarian tumorigenesis. Proc. Natl Acad. Sci. USA 31, 16472–16477 (2006).

    Article  CAS  Google Scholar 

  110. Milliken, D. et al. Analysis of chemokines and chemokine receptor expression in ovarian cancer ascites. Clin. Cancer Res. 8, 1108–1114 (2002).

    CAS  PubMed  Google Scholar 

  111. Zhang, L. et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N. Engl. J. Med. 16, 203–213 (2003). A thorough study that documents the prognostic significance of T cell infiltration in ovarian cancer.

    Article  Google Scholar 

  112. Sato, E. et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc. Natl Acad. Sci. USA 102, 18538–18543 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Jiang, Y. P. et al. Expression of chemokine CXCL12 and its receptor CXCR4 in human epithelial ovarian cancer: an independent prognostic factor for tumor progression. Gynecol. Oncol. 103, 226–233 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Kryczek, I. et al. CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Res. 65, 465–472 (2005).

    CAS  PubMed  Google Scholar 

  115. Curiel, T. J. et al. Dendritic cell subsets differentially regulate angiogenesis in human ovarian cancer. Cancer Res. 64, 5535–5538 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Kajiyana, H. et al. Involvement of SDF-1α/CXCR4 axis in the enhanced peritoneal metastasis of epithelial ovarian cancer. Int. J. Cancer 122, 91–99 (2008).

    Article  CAS  Google Scholar 

  117. Szosarek, P. W. et al. Expression and regulation of tumor necrosis factor α in normal and malignant ovarian epithelium. Mol. Cancer Ther. 5, 382–390 (2006).

    Article  Google Scholar 

  118. Kulbe, H. et al. The inflammatory cytokine tumor necrosis factor-α generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. Cancer Res. 67, 585–592 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Madhusdan, S. et al. Study of etanercept, a tumor necrosis α inhibitor, in recurrent ovarian cancer. J. Clin. Oncol. 23, 5950–5959 (2005).

    Article  CAS  Google Scholar 

  120. Rustin, G. J. S. et al. Use of CA-125 in clinical trial evaluation of new therapeutic drugs for ovarian cancer. Clin. Cancer Res. 10, 3919–3926 (2004). A recent review regarding the application of CA125 to clinical trials.

    Article  CAS  PubMed  Google Scholar 

  121. Menon, U. et al. Sensitivity and specificity of multimodal and ultrasound screening for ovarian cancer, and stage distribution of detected cancers: results of the prevalence screen of the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS). Lancet Oncol. 10, 327–340 (2009). Initial data from this trial suggest that combining CA125 and transvaginal ultrasound will be an effective strategy for the early detection of ovarian cancer.

    Article  PubMed  Google Scholar 

  122. Das, P. M. & Bast, R. C Jr. Early detection of ovarian cancer. Biomarkers Med. 2, 291–303 (2008).

    Article  CAS  Google Scholar 

  123. Bouchard, D. et al. Proteins with whey-acidic protein motifs and cancer. Lancet Oncol. 7, 167–174 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Lu, K. H. et al. Selection of potential markers for epithelial ovarian cancer with gene expression arrays and recursive descent partition analysis. Clin. Cancer Res. 10, 3291–3300 (2004).

    Article  CAS  PubMed  Google Scholar 

  125. Clarke, C. H. et al. A panel of proteomic markers improves the sensitivity of CA125 for detecting stage I epithelial ovarian cancer. J. Clin. Oncol. 26 (Suppl.) 5542 (2008).

    Article  Google Scholar 

  126. Bast, R. C. et al. Optimizing a two-stage strategy for early detection of ovarian cancer. NCI Translational Science Meeting 300, #292. National Cancer Institute [online] (2008).

  127. Shridhar, V., et al. Genetic analysis of early- versus late-stage ovarian tumors. Cancer Res. 61, 5895–5904 (2001).

    CAS  PubMed  Google Scholar 

  128. Marquez, R. T. et al. Patterns of gene expression in different histotypes of epithelial ovarian cancer correlate with those in normal fallopian tube, endometrium and colon. Clin. Cancer Res. 11, 6116 (2005). This study showed that the gene expression profiles of different ovarian cancer histotypes correlate with their morphological counterparts in normal tissues.

    Article  CAS  PubMed  Google Scholar 

  129. Cheng, W. et al. Lineage infidelity of epithelial ovarian cancers is controlled by HOX genes that specify regional identity in the reproductive tract. Nature Med. 11, 531 (2005). The authors make a convincing argument that the HOX genes have a role in determining ovarian cancer histotypes.

    Article  CAS  PubMed  Google Scholar 

  130. Tothill, R. W. et al. Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clin. Cancer Res. 14, 5198–5208 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Schwartz, D. R. et al. Gene expression in ovarian cancer reflects both morphology and biological behavior, distinguishing clear cell from other poor-prognosis ovarian carcinomas. Cancer Res. 63, 4722–4729 (2002).

    Google Scholar 

  132. Kurman R. J. & Shih, L. E. M. Pathogenesis of ovarian cancer: lessons from morphology and biology and their clinical implications. Int. J. Gynecol. Pathol. 27, 151–160 (2008). This review summarizes the evidence for type I and type II ovarian cancer.

    Google Scholar 

  133. Bast, R. C. Jr et al. A radioimmunoassay using a monoclonal antibody to monitor the course of epithelial ovarian cancer. New Engl. J. Med. 309, 883–887 (1983). This is the original report of the CA125 assay.

    Article  PubMed  Google Scholar 

  134. Spaeth, E. L. et al. Mesenchymal stem cell transition to tumor-associated fibroblasts contribures to fibrovascular network expansion and tumor progression. PLoS ONE 4, e4992 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the M. D. Anderson Ovarian SPORE National Cancer Institutes (P50CA83639), the National Foundation for Cancer Research, the Ovarian Cancer Research Fund, the Mossy Foundation and the Zarrow Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Bast Jr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

National Cancer Institute Drug Dictionary

azacytidine

belinostat

bevacizumab

carboplatin

cisplatin

cyclophosphamide

dasatinib

docetaxel

erlotinib

gefitinib

ONYX-015

paclitaxel

perifosine

VEGF Trap

FURTHER INFORMATION

Robert C. Bast's homepage

Glossary

Intercurrent infection

An infection that occurs at the same time as a patient is suffering from a different disease.

Endometriosis

The growth of tissue that resembles the endometrium in areas within the pelvic cavity.

Loss of heterozygosity

(LOH). In cells that carry a mutated allele of a tumour suppressor gene, the gene becomes fully inactivated when the cell loses a large part of the chromosome that carries the wild-type allele. Regions with a high frequency of LOH are thought to contain tumour suppressor genes.

Metronomic chemotherapy

The frequent, chronic administration of chemotherapy at low, non-toxic doses, with no prolonged drug-free breaks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bast, R., Hennessy, B. & Mills, G. The biology of ovarian cancer: new opportunities for translation. Nat Rev Cancer 9, 415–428 (2009). https://doi.org/10.1038/nrc2644

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2644

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing