Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Childhood solid tumours: a developmental disorder

Abstract

Several lines of evidence demonstrate that the biology, genetics and environment of childhood solid tumours (CSTs) sets them apart from adult solid tumours. The nature of the progenitor cells from which these tumours arise, and their immature tissue environment, allows CSTs to develop with fewer defects in cell regulatory processes than adult cancers. These differences could explain why CSTs are more susceptible to therapeutic intervention than adult tumours. How does the aetiology of these cancers differ from those occurring in adults and how might this affect the development of more effective therapies?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tumour incidence with age.
Figure 2: WNT and SHH signalling pathways.
Figure 3: The WT1 gene in metanephros and Wilms' tumour development.

Similar content being viewed by others

References

  1. Ries, L. A. G. et al. (eds). SEER Cancer Statistics Review, 1975–2002 [online] National Cancer Institute. Bethesda, Maryland, http://seer.cancer.gov/csr/1975_2002/, based on November 2004 SEER data submission, posted to the SEER web site 2005.

    Google Scholar 

  2. Parkin, D. M., Whelan, S. L., Ferlay, J., Teppo, L. & Thomas, D. B. Cancer Incidence in Five Continents VIII. International Agency for Research on Cancer (IARC) Scientific Publications No. 155 (IARC, Lyon, France, 2002).

    Google Scholar 

  3. Stiller, C. A. Population based survival rates for childhood cancer in Britain, 1980–1991. Br. Med. J. 309, 1612–1616 (1994).

    Article  CAS  Google Scholar 

  4. Duffner, P. K., Cohen, M. E. & Parker, M. S. Prospective intellectual testing in children with brain tumors. Ann. Neurol. 23, 575–579 (1988).

    Article  CAS  Google Scholar 

  5. Jannoun, L. & Bloom, H. J. Long-term psychological effects in children treated for intracranial tumours. Int. J. Radiat. Oncol. Biol. Phys. 18, 747–753 (1990).

    Article  CAS  Google Scholar 

  6. Knudson, A. G. Stem cell regulation, tissue ontogeny, and oncogenic events. Semin. Cancer Biol. 3, 99–106 (1992).

    CAS  Google Scholar 

  7. Yachnin, S. The clinical significance of human α-fetoprotein. Ann. Clin. Sci. 8, 84–90 (1978).

    CAS  Google Scholar 

  8. Van Tornout, J. M. et al. Timing and magnitude of decline in α-fetoprotein levels in treated children with unresectable or metastatic hepatoblastoma are predictors of outcome: a report from the Children's Cancer Group. J. Clin. Oncol. 15, 1190–1197 (1997).

    Article  CAS  Google Scholar 

  9. Kho, A. T. et al. Conserved mechanisms across development and tumorigenesis revealed by a mouse development perspective of human cancers. Genes Dev. 18, 629–640 (2004).

    Article  CAS  Google Scholar 

  10. Dekel, B. Profiling gene expression in kidney development. Nephron. Exp. Nephrol. 95, e1–e6 (2003).

    Article  Google Scholar 

  11. Ohira, M. et al. Expression profiling and characterization of 4200 genes cloned from primary neuroblastomas: identification of 305 genes differentially expressed between favorable and unfavorable subsets. Oncogene 22, 5525–5536 (2003).

    Article  CAS  Google Scholar 

  12. Nakagawara, A. & Ohira, M. Comprehensive genomics linking between neural development and cancer: neuroblastoma as a model. Cancer Lett. 204, 213–224 (2004).

    Article  CAS  Google Scholar 

  13. Rickert, C. H. Neuropathology and prognosis of foetal brain tumours. Acta Neuropathol. 98, 567–576 (1999).

    Article  CAS  Google Scholar 

  14. Rosenblum, M., Matsutani, M. & Van Meir, E. in Pathology and Genetics of Tumours of the Nervous System (eds Kleihues, P. and Cavenee, W. K.) (International Agency for Research on Cancer, Lyon, France, 2000).

    Google Scholar 

  15. Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl Acad. Sci. USA 78, 7634–7638 (1981).

    Article  CAS  Google Scholar 

  16. Andrews, P. V. From teratocarcinomas to embryonic stem cells. Philos. Trans. R. Soc. Lond. B Biol. Sci. 357, 405–417 (2002).

    Article  Google Scholar 

  17. Boye, E. et al. Clonality and altered behavior of endothelial cells from hemangiomas. J. Clin. Invest. 107, 745–752 (2001).

    Article  CAS  Google Scholar 

  18. Ritter, M. R., Dorrell, M. I., Edmonds, J., Friedlander, S. F. & Friedlander, M. Insulin-like growth factor 2 and potential regulators of hemangioma growth and involution identified by large-scale expression analysis. Proc. Natl Acad. Sci. USA 99, 7455–7460 (2002).

    Article  CAS  Google Scholar 

  19. Takahashi, K. et al. Cellular markers that distinguish the phases of hemangioma during infancy and childhood. J. Clin. Invest. 93, 2357–2364 (1994).

    Article  CAS  Google Scholar 

  20. van Noesel, M. M. & Versteeg, R. Pediatric neuroblastomas: genetic and epigenetic 'danse macabre'. Gene 325, 1–15 (2004).

    Article  CAS  Google Scholar 

  21. Miale, T. D. & Kirpekar, K. Neuroblastoma stage IV-S. Med. Oncol. 11, 89–100 (1994).

    Article  CAS  Google Scholar 

  22. Fritsch, P., Kerbl, R., Lackner, H. & Urban, C. 'Wait and see' strategy in localized neuroblastoma in infants: an option not only for cases detected by mass screening. Pediatr. Blood Cancer 43, 679–682 (2004).

    Article  Google Scholar 

  23. Dome, J. S. & Coppes, M. J. Recent advances in Wilms tumor genetics. Curr. Opin. Pediatr. 14, 5–11 (2002).

    Article  Google Scholar 

  24. Fukuzawa, R. et al. Epigenetic differences between Wilms' tumours in white and east-Asian children. Lancet 363, 446–451 (2004).

    Article  CAS  Google Scholar 

  25. Knudson, A. G. Jr, Hethcote, H. W. & Brown, B. W. Mutation and childhood cancer: a probabilistic model for the incidence of retinoblastoma. Proc. Natl Acad. Sci. USA 72, 5116–5120 (1975).

    Article  Google Scholar 

  26. Jackson, A. L. & Loeb, L. A. The mutation rate and cancer. Genetics 148, 1483–1490 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kusafuka, T. et al. Mutation analysis of p53 gene in childhood malignant solid tumors. J. Pediatr. Surg. 32, 1175–1180 (1997).

    Article  CAS  Google Scholar 

  28. Thiele, C. J. & Kastan, M. B. in Principles and Practice of Pediatric Oncology (eds Pizzo, P. A. & Poplack, D. G.) 89–119 (Lippincott Williams & Wilkins, Hagerstown, Maryland, USA, 2002).

    Google Scholar 

  29. Toren, A., Amariglio, N. & Rechavi, G. Curable and non-curable malignancies: lessons from paediatric cancer. Med. Oncol. 13, 15–21 (1996).

    Article  CAS  Google Scholar 

  30. Olivier, M. et al. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum. Mutat. 19, 607–614 (2002).

    Article  CAS  Google Scholar 

  31. Sherr, C. J. Principles of tumor suppression. Cell 116, 235–246 (2004).

    Article  CAS  Google Scholar 

  32. Ohgaki, H., Vital, A., Kleihues, P. & Hainaut, P. in Pathology and Genetics of Tumours of the Nervous System (eds Kleihues, P. and Cavenee, W. K.)(International Agency for Research on Cancer, Lyon, France, 2000).

    Google Scholar 

  33. Rajagopalan, H. & Lengauer, C. Aneuploidy and cancer. Nature 432, 338–341 (2004).

    Article  CAS  Google Scholar 

  34. Rasheed, B. K. et al. Alterations of the TP53 gene in human gliomas. Cancer Res. 54, 1324–1330 (1994).

    CAS  PubMed  Google Scholar 

  35. Bruder, E. et al. Morphologic and molecular characterization of renal cell carcinoma in children and young adults. Am. J. Surg. Pathol. 28, 1117–1132 (2004).

    Article  Google Scholar 

  36. Dyer, M. & Bremner, R. A. The search for the retinoblastoma cell of origin. Nature Rev. Cancer 5, 91–101 (2005).

    Article  CAS  Google Scholar 

  37. Jiang, Z., Zacksenhaus, E., Gallie, B. L. & Phillips, R. A. The retinoblastoma gene family is differentially expressed during embryogenesis. Oncogene 14, 1789–1797 (1997).

    Article  CAS  Google Scholar 

  38. Weinberg, R. A. The retinoblastoma protein and cell cycle control. Cell 81, 323–330 (1995).

    Article  CAS  Google Scholar 

  39. Robanus-Maandag, E. et al. p107 is a suppressor of retinoblastoma development in pRb-deficient mice. Genes Dev. 12, 1599–1609 (1998).

    Article  CAS  Google Scholar 

  40. Trinh, E., Denchi, E. L. & Helin, K. Naturally death-resistant precursor cells revealed as the origin of retinoblastoma. Cancer Cell 5, 513–515 (2004).

    Article  CAS  Google Scholar 

  41. Marino, S., Hoogervoorst, D., Brandner, S. & Berns, A. Rb and p107 are required for normal cerebellar development and granule cell survival but not for Purkinje cell persistence. Development 130, 3359–3368 (2003).

    Article  CAS  Google Scholar 

  42. Chen, D. et al. Cell-specific effects of RB or RB/p107 loss on retinal development implicate an intrinsically death-resistant cell-of-origin in retinoblastoma. Cancer Cell 5, 539–551 (2004).

    Article  CAS  Google Scholar 

  43. Kaatsch, P., Rickert, C. H., Kuhl, J., Schuz, J. & Michaelis, J. Population-based epidemiological data on brain tumours in German children. Cancer 92, 3155–3164 (2001).

    Article  CAS  Google Scholar 

  44. Hahn, H. et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85, 841–851 (1996).

    Article  CAS  Google Scholar 

  45. Johnson, R. L. et al. Human homolog of patched, a candidate gene for the basal cell nevis syndrome. Science 272, 1668–1671 (1996).

    Article  CAS  Google Scholar 

  46. Ruiz i Altaba, A., Stecca, B. & Sanchez, P. Hedgehog–Gli signaling in brain tumors: stem cells and paradevelopmental programs in cancer. Cancer Lett. 204, 145–157 (2004).

    Article  CAS  Google Scholar 

  47. Dahmane, N. & Ruiz-i-Altaba, A. Sonic hedgehog regulates the growth and patterning of the cerebellum. Development 126, 3089–3100 (1999).

    PubMed  Google Scholar 

  48. Wechsler-Reya, R. J. & Scott, M. P. Control of neuronal precursor proliferation in the cerebellum by sonic hedgehog. Neuron 22, 103–114 (1999).

    Article  CAS  Google Scholar 

  49. Taylor, M. D. et al. Mutations in SUFU predispose to medulloblastoma. Nature Genet. 31, 306–310 (2002).

    Article  CAS  Google Scholar 

  50. Gilbertson, R. J. Medulloblastoma: signalling a change in treatment. Lancet Oncol. 5, 209–218 (2004).

    Article  Google Scholar 

  51. Hamilton, S. R. et al. The molecular basis of Turcot's syndrome. N. Engl. J. Med. 332, 839–847 (1995).

    Article  CAS  Google Scholar 

  52. Meng, X. et al. Suppressor of fused negatively regulates β-catenin signaling. J. Biol. Chem. 276, 40113–40119 (2001).

    Article  CAS  Google Scholar 

  53. Berman, D. M. et al. Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 297, 1559–1561 (2002).

    Article  CAS  Google Scholar 

  54. Kalapurakal, J. A. et al. Management of Wilms' tumour: current practice and future goals. Lancet Oncol. 5, 37–46 (2004).

    Article  Google Scholar 

  55. Call, K. M. et al. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms' tumor locus. Cell 60, 509–520 (1990).

    Article  CAS  Google Scholar 

  56. Gessler, M. et al. Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping. Nature 343, 774–778 (1990).

    Article  CAS  Google Scholar 

  57. Little, M., Holmes, G. & Walsh, P. WT1: what has the last decade told us? Bioessays 21, 191–202 (1999).

    Article  CAS  Google Scholar 

  58. Wagner, K. D., Wagner, N. & Schedl, A. The complex life of WT1. J. Cell Sci. 116, 1653–1658 (2003).

    Article  CAS  Google Scholar 

  59. Kreidberg, J. A. et al. WT-1 is required for early kidney development. Cell 74, 679–691 (1993).

    Article  CAS  Google Scholar 

  60. Davies, J. A. et al. Development of an siRNA-based method for repressing specific genes in renal organ culture and its use to show that the Wt1 tumour suppressor is required for nephron differentiation. Hum. Mol. Genet. 13, 235–246 (2004).

    Article  CAS  Google Scholar 

  61. Rose, E. A. et al. Complete physical map of the WAGR region of 11p13 localizes a candidate Wilms' tumor gene. Cell 60, 495–508 (1990).

    Article  CAS  Google Scholar 

  62. Coppes, M. J. et al. Inherited WT1 mutation in Denys–Drash syndrome. Cancer Res. 52, 6125–6128 (1992).

    CAS  PubMed  Google Scholar 

  63. Armstrong, J. F., Pritchard-Jones, K., Bickmore, W. A., Hastie, N. D. & Bard, J. B. The expression of the Wilms' tumour gene, WT1, in the developing mammalian embryo. Mech. Dev. 40, 85–97 (1993).

    Article  CAS  Google Scholar 

  64. Pelletier, J. et al. Germline mutations in the Wilms' tumor suppressor gene are associated with abnormal urogenital development in Denys–Drash syndrome. Cell 67, 437–447 (1991).

    Article  CAS  Google Scholar 

  65. Buendia, M. A. Genetic alterations in hepatoblastoma and hepatocellular carcinoma: common and distinctive aspects. Med. Pediatr. Oncol. 39, 530–535 (2002).

    Article  Google Scholar 

  66. Steenman, M., Westerveld, A. & Mannens, M. Genetics of Beckwith–Wiedemann syndrome-associated tumors: common genetic pathways. Genes Chromosom. Cancer 28, 1–13 (2000).

    Article  CAS  Google Scholar 

  67. Niles, R. M. Signaling pathways in retinoid chemoprevention and treatment of cancer. Mutat. Res. 555, 81–96 (2004).

    Article  CAS  Google Scholar 

  68. Tallman, M. S. Acute promyelocytic leukemia as a paradigm for targeted therapy. Semin. Hematol. 41, 27–32 (2004).

    Article  CAS  Google Scholar 

  69. Qualtrough, D., Buda, A., Gaffield, W., Williams, A. C. & Paraskeva, C. Hedgehog signalling in colorectal tumour cells: induction of apoptosis with cyclopamine treatment. Int. J. Cancer 110, 831–837 (2004).

    Article  CAS  Google Scholar 

  70. Tabs, S. & Avci, O. Induction of the differentiation and apoptosis of tumor cells in vivo with efficiency and selectivity. Eur. J. Dermatol. 14, 96–102 (2004).

    PubMed  Google Scholar 

  71. Singh, S. K. et al. Identification of human brain tumour initiating cells. Nature 432, 396–401 (2004).

    Article  CAS  Google Scholar 

  72. Tamaki, S. et al. Engraftment of sorted/expanded human central nervous system stem cells from fetal brain. J. Neurosci. Res. 69, 976–986 (2002).

    Article  CAS  Google Scholar 

  73. Little, J. Epidemiology of Childhood Cancer. International Agency for Research on Cancer (IARC) Scientific Publications No. 149 (IARC, Lyon, France, 1999).

    Google Scholar 

  74. Parkin, D. M. et al. International Incidence of Childhood Cancer. International Agency for Research on Cancer (IACR) Scientific Publications No. 144 (IARC, Lyon, France, 1998)

    Google Scholar 

  75. Raffel, C. et al. Sporadic medulloblastomas contain PTCH mutations. Cancer Res. 57, 842–845 (1997).

    CAS  PubMed  Google Scholar 

  76. Verloes, A. et al. Ondine–Hirschsprung syndrome (Haddad syndrome). Further delineation in two cases and review of the literature. Eur. J. Pediatr. 152, 75–77 (1993).

    Article  CAS  Google Scholar 

  77. Trochet, D. et al. Germline mutations of the paired-like homeobox 2B (PHOX2B) gene in neuroblastoma. Am. J. Hum. Genet. 74, 761–764 (2004).

    Article  CAS  Google Scholar 

  78. Amiel, J. et al. Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome. Nature Genet. 33, 459–461 (2003).

    Article  CAS  Google Scholar 

  79. Oosterhuis, J. W. & Looijenga, L. H. Testicular germ-cell tumours in a broader perspective. Nature Rev. Cancer 5, 210–222 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

P.J.S. and D.A.W. are supported by the Nottingham Children's Brain Tumour Research Centre. Thanks to J. Hewitt, B. Coyle, V. Sottile and R. Grundy for their constructive criticism of the manuscript. Thanks also to M. Hyatt for help with the production of figure 1 and J. Davies for figure 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Scotting.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

Entrez Gene

α-fetoprotein

IGF2

p107

p53

PTCH

RB

SHH

TIMP1

WT1

WT2

National Cancer Institute

medulloblastoma

neuroblastoma

retinoblastoma

Wilms' tumour

OMIM

Gorlin's syndrome

Turcot's syndrome

Glossary

METANEPHRIC DEVELOPMENT

The metanephros is the permanent kidney of adult amniotes. This forms later than the transient pronephros of the early embryo.

NEURAL CREST

The neural crest is a multipotent population of cells that arises from the dorsal aspect of the early neural tube. These cells migrate widely throughout the body and form almost all of the components of the peripheral nervous system as well as other non-neural cell types such as the melanocytes of the skin and bone and muscle of the face.

SYMPATHOADRENAL

The sympathoadrenal lineage is one fate of neural crest cells and represents a common progenitor of the adrenergic sympathetic neurons and the medullary cells of the adrenal gland.

PURKINJE CELLS

Purkinje cells are very large neurons of the cerebellum with a highly arborized dendritic tree. They are responsible for all output from the cerebellar cortex.

URETERIC BUDS

Ureteric buds represent the leading edges of the epithelial tubules that grow and branch from the nephric ducts to form the kidney tubules. The ureteric buds signal to surrounding mesenchyme to form the nephrons.

NEPHROGENIC RESTS

Nephrogenic rests are clusters of developmentally immature cells and dysplastic cellular arrangements.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scotting, P., Walker, D. & Perilongo, G. Childhood solid tumours: a developmental disorder. Nat Rev Cancer 5, 481–488 (2005). https://doi.org/10.1038/nrc1633

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1633

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing