Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecules and mechanisms of the graft-versus-leukaemia effect

Key Points

  • Allogeneic stem-cell transplantation, in which donor immune cells transplanted with bone-marrow stem cells recognize and eliminate leukaemia, is now recognized as an immunological modality for cancer therapy.

  • New approaches to transplantation take advantage of the allogeneic graft-versus-leukaemia (GVL) effect and facilitate the eradication of malignancies with low and minimally toxic doses of chemotherapy.

  • In human leukocyte antigen (HLA)-matched transplant recipients, T-cell responses to minor histocompatibility antigens are responsible for antileukaemic activity, but also cause graft-versus-host disease (GVHD). The discovery of the polymorphic genes that encode minor histocompability antigens is now proceeding rapidly and has identified a subset of these antigens that can be targeted for selective destruction of leukaemic cells without GVHD.

  • Non-polymorphic self-proteins are often overexpressed in leukaemic cells as a consequence of molecular dysregulation. Many of these proteins are expressed at low levels on a limited subset of normal cells, and T cells of sufficient avidity to distinguish malignant cells from normal cells can be identified and might also contribute to GVL activity.

  • The development of effective methods for isolating and propagating antigen-specific T cells indicates that adoptive T-cell therapy using T cells that are selected for recognition of leukaemic cells will be a useful adjunct to stem-cell transplantation for treating or preventing leukaemic relapse.

  • Approaches to regulate the fate and migration of adoptively transferred T cells are being developed and promise to improve the safety and efficacy of T-cell therapy for leukaemia.

Abstract

The ability of allogeneic bone-marrow cells and peripheral-blood stem cells to cure leukaemia remains the most striking example of the ability of the human immune system to recognize and destroy tumours. However, harnessing this 'graft-versus-leukaemia' effect to improve outcome for patients with advanced disease and segregating it from graft-versus-host disease have proven to be key challenges. The recent identification of molecules that are specifically expressed by leukaemic cells and that can be recognized by T cells has indicated that immunological reactivity can be targeted. This anticancer specificity of T cells should soon be routinely incorporated into allogeneic stem-cell transplant regimens to promote tumour eradication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Separating the graft-versus-leukaemia effect from graft-versus-host disease.
Figure 2: Adoptive immunotherapy with donor T cells to augment the graft-versus-leukaemia response.

Similar content being viewed by others

References

  1. Appelbaum, F. R. The current status of hematopoietic cell transplantation. Annu. Rev. Med. 54, 491–512 (2003).

    CAS  PubMed  Google Scholar 

  2. Klein, J. & Sato, A. The HLA system. N. Engl. J. Med. 343, 702–709 (2000).

    CAS  PubMed  Google Scholar 

  3. Vogelsang, G. B., Lee, L. & Bensen-Kennedy, D. M. Pathogenesis and treatment of graft-versus-host disease after bone marrow transplant. Annu. Rev. Med. 54, 29–52 (2003).

    CAS  PubMed  Google Scholar 

  4. Falkenburg, J. H., van de Corput, L., Marijt, E. W. & Willemze, R. Minor histocompatibility antigens in human stem cell transplantation. Exp. Hematol. 31, 743–751 (2003).

    CAS  PubMed  Google Scholar 

  5. Barnes, D. W. H., Corp, M. J., Loutit, J. F. & Neal, F. E. Treatment of murine leukemia with x-rays and homologous bone marrow. Br. Med. J. 32, 626–627 (1956).

    Google Scholar 

  6. Weiden, P. L. et al. Antileukemic effect of graft-versus-host disease in human recipients of allogeneic-marrow grafts. N. Engl. J. Med. 300, 1068–1073 (1979).

    CAS  PubMed  Google Scholar 

  7. Horowitz, M. M. et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood 75, 555–562 (1990).

    CAS  PubMed  Google Scholar 

  8. Marmont, A. M. et al. T-cell depletion of HLA-identical transplants in leukemia. Blood 78, 2120–2130 (1991).

    CAS  PubMed  Google Scholar 

  9. Passweg, J. R. et al. Graft-versus-leukemia effects in T lineage and B lineage acute lymphoblastic leukemia. Bone Marrow Transplant. 21, 153–158 (1998).

    CAS  PubMed  Google Scholar 

  10. Kolb, H. J. et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. European Group for Blood and Marrow Transplantation Working Party Chronic Leukemia. Blood 86, 2041–2050 (1995).

    CAS  PubMed  Google Scholar 

  11. Collins, R. H. Jr et al. Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J. Clin. Oncol. 15, 433–444 (1997).

    PubMed  Google Scholar 

  12. Storb, R. et al. Stable mixed hematopoietic chimerism in DLA-identical littermate dogs given sublethal total body irradiation before and pharmacological immunosuppression after marrow transplantation. Blood 89, 3048–3054 (1997).

    CAS  PubMed  Google Scholar 

  13. Khouri, I. F. et al. Nonablative allogeneic hematopoietic transplantation as adoptive immunotherapy for indolent lymphoma: low incidence of toxicity, acute graft-versus-host disease, and treatment-related mortality. Blood 98, 3595–3599 (2001).

    CAS  PubMed  Google Scholar 

  14. Champlin, R. et al. Harnessing graft-versus-malignancy: non-myeloablative preparative regimens for allogeneic haematopoietic transplantation, an evolving strategy for adoptive immunotherapy. Br. J. Haematol. 111, 18–29 (2000).

    CAS  PubMed  Google Scholar 

  15. Maloney, D. G. et al. Allografting with nonmyeloablative conditioning following cytoreductive autografts for the treatment of patients with multiple myeloma. Blood 102, 3447–3454 (2003).

    CAS  PubMed  Google Scholar 

  16. Maris, M. B. et al. HLA-matched unrelated donor hematopoietic cell transplantation after nonmyeloablative conditioning for patients with hematologic malignancies. Blood 102, 2021–2030 (2003).

    CAS  PubMed  Google Scholar 

  17. Childs, R. et al. Regression of metastatic renal-cell carcinoma after nonmyeloablative allogeneic peripheral-blood stem-cell transplantation. N. Engl. J. Med. 343, 750–758 (2000).

    CAS  PubMed  Google Scholar 

  18. Mielcarek, M. et al. Graft-versus-host disease after nonmyeloablative versus conventional hematopoietic stem cell transplantation. Blood 102, 756–762 (2003).

    CAS  PubMed  Google Scholar 

  19. Ruggeri, L. et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295, 2097–2100 (2002).

    CAS  PubMed  Google Scholar 

  20. Parham, P. & McQueen, K. L. Alloreactive killer cells: hindrance and help for haematopoietic transplants. Nature Rev. Immunol. 3, 108–122 (2003).

    CAS  Google Scholar 

  21. Fontaine, P. et al. Adoptive transfer of minor histocompatibility antigen-specific T lymphocytes eradicates leukemia cells without causing graft-versus-host disease. Nature Med. 7, 789–794 (2001). Shows that it is possible in a murine transplant model to eradicate leukaemia by the adoptive transfer of CD8+ T cells specific for a single minor histocompatibility antigen.

    CAS  PubMed  Google Scholar 

  22. Warren, E. H., Greenberg, P. D. & Riddell, S. R. Cytotoxic T-lymphocyte-defined human minor histocompatibility antigens with a restricted tissue distribution. Blood 91, 2197–2207 (1998).

    CAS  PubMed  Google Scholar 

  23. Falkenburg, J. H. et al. Growth inhibition of clonogenic leukemic precursor cells by minor histocompatibility antigen-specific cytotoxic T lymphocytes. J. Exp. Med. 174, 27–33 (1991).

    CAS  PubMed  Google Scholar 

  24. Bonnet, D., Warren, E. H., Greenberg, P. D., Dick, J. E. & Riddell, S. R. CD8+ minor histocompatibility antigen-specific cytotoxic T lymphocyte clones eliminate human acute myeloid leukemia stem cells. Proc. Natl Acad. Sci. USA 96, 8639–8644 (1999). A minor subset of human leukaemia cells exhibit stem-cell properties and can establish leukaemic haematopoiesis in immunodeficient mice. This study shows that leukaemic stem cells express minor histocompatibility antigens and can be eradicated by CD8+ cytotoxic T cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. den Haan, J. M. et al. The minor histocompatibility antigen HA-1: a diallelic gene with a single amino acid polymorphism. Science 279, 1054–1057 (1998).

    CAS  PubMed  Google Scholar 

  26. Mommaas, B. et al. Identification of a novel HLA-B60-restricted T cell epitope of the minor histocompatibility antigen HA-1 locus. J. Immunol. 169, 3131–3136 (2002).

    CAS  PubMed  Google Scholar 

  27. den Haan, J. M. et al. Identification of a graft versus host disease-associated human minor histocompatibility antigen. Science 268, 1476–1480 (1995). Describes the use of peptide elution, high-performance liquid chromatographic fractionation and mass spectrometry to identify the molecular structure of the first human minor histocompatibility antigen.

    CAS  PubMed  Google Scholar 

  28. Pierce, R. A. et al. The HA-2 minor histocompatibility antigen is derived from a diallelic gene encoding a novel human class I myosin protein. J. Immunol. 167, 3223–3230 (2001).

    CAS  PubMed  Google Scholar 

  29. Spierings, E. et al. The minor histocompatibility antigen HA-3 arises from differential proteasome-mediated cleavage of the lymphoid blast crisis (Lbc) oncoprotein. Blood 102, 621–629 (2003).

    CAS  PubMed  Google Scholar 

  30. Brickner, A. G. et al. The immunogenicity of a new human minor histocompatibility antigen results from differential antigen processing. J. Exp. Med. 193, 195–206 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Dolstra, H. et al. Recognition of a B cell leukemia-associated minor histocompatibility antigen by CTL. J. Immunol. 158, 560–565 (1997).

    CAS  PubMed  Google Scholar 

  32. Dolstra, H. et al. A human minor histocompatibility antigen specific for B cell acute lymphoblastic leukemia. J. Exp. Med. 189, 301–308 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Murata, M., Warren, E. H. & Riddell, S. R. A human minor histocompatibility antigen resulting from differential expression due to a gene deletion. J. Exp. Med. 197, 1279–1289 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Akatsuka, Y. et al. Identification of a polymorphic gene, BCL2A1, encoding two novel hematopoietic lineage-specific minor histocompatibility antigens. J. Exp. Med. 197, 1489–1500 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, W. et al. Human H-Y: a male-specific histocompatibility antigen derived from the SMCY protein. Science 269, 1588–1590 (1995).

    CAS  PubMed  Google Scholar 

  36. Meadows, L. et al. The HLA-A*0201-restricted H-Y antigen contains a posttranslationally modified cysteine that significantly affects T cell recognition. Immunity 6, 273–281 (1997).

    CAS  PubMed  Google Scholar 

  37. Pierce, R. A. et al. Cutting edge: the HLA-A*0101-restricted HY minor histocompatibility antigen originates from DFFRY and contains a cysteinylated cysteine residue as identified by a novel mass spectrometric technique. J. Immunol. 163, 6360–6364 (1999).

    CAS  PubMed  Google Scholar 

  38. Vogt, M. H. et al. UTY gene codes for an HLA-B60-restricted human male-specific minor histocompatibility antigen involved in stem cell graft rejection: characterization of the critical polymorphic amino acid residues for T-cell recognition. Blood 96, 3126–3132 (2000).

    CAS  PubMed  Google Scholar 

  39. Warren, E. H. et al. The human UTY gene encodes a novel HLA-B8-restricted H-Y antigen. J. Immunol. 164, 2807–2814 (2000).

    CAS  PubMed  Google Scholar 

  40. Vogt, M. H. et al. The DBY gene codes for an HLA-DQ5-restricted human male-specific minor histocompatibility antigen involved in graft-versus-host disease. Blood 99, 3027–3032 (2002).

    CAS  PubMed  Google Scholar 

  41. Spierings, E. et al. Identification of HLA class II-restricted H-Y-specific T-helper epitope evoking CD4+ T-helper cells in H-Y-mismatched transplantation. Lancet 362, 610–615 (2003).

    CAS  PubMed  Google Scholar 

  42. Teshima, T. et al. Acute graft-versus-host disease does not require alloantigen expression on host epithelium. Nature Med. 8, 575–581 (2002).

    CAS  PubMed  Google Scholar 

  43. Goulmy, E. et al. Mismatches of minor histocompatibility antigens between HLA-identical donors and recipients and the development of graft-versus-host disease after bone marrow transplantation. N. Engl. J. Med. 334, 281–285 (1996).

    CAS  PubMed  Google Scholar 

  44. Mutis, T. et al. Tetrameric HLA class I-minor histocompatibility antigen peptide complexes demonstrate minor histocompatibility antigen-specific cytotoxic T lymphocytes in patients with graft-versus-host disease. Nature Med. 5, 839–842 (1999).

    CAS  PubMed  Google Scholar 

  45. Lin, M. T. et al. Absence of statistically significant correlation between disparity for the minor histocompatibility antigen-HA-1 and outcome after allogeneic hematopoietic cell transplantation. Blood 98, 3172–3173 (2001).

    CAS  PubMed  Google Scholar 

  46. Murata, M. et al. No significant association between HA-1 incompatibility and incidence of acute graft-versus-host disease after HLA-identical sibling bone marrow transplantation in Japanese patients. Int. J. Hematol. 72, 371–375 (2000).

    CAS  PubMed  Google Scholar 

  47. Marijt, W. A. et al. Hematopoiesis-restricted minor histocompatibility antigens HA-1- or HA-2-specific T cells can induce complete remissions of relapsed leukemia. Proc. Natl Acad. Sci. USA 100, 2742–2747 (2003). Regression of leukaemia after donor-lymphocyte infusion correlated temporarily with large in vivo expansion of CD8+ cytotoxic T cells specific for HA-1 and HA-2.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kircher, B. et al. Induction of HA-1-specific cytotoxic T-cell clones parallels the therapeutic effect of donor lymphocyte infusion. Br. J. Haematol. 117, 935–939 (2002).

    PubMed  Google Scholar 

  49. Nagy, B. et al. Abnormal expression of apoptosis-related genes in haematological malignancies: overexpression of MYC is poor prognostic sign in mantle cell lymphoma. Br. J. Haematol. 120, 434–441 (2003).

    CAS  PubMed  Google Scholar 

  50. Dolstra, H. et al. Bi-directional allelic recognition of the human minor histocompatibility antigen HB-1 by cytotoxic T lymphocytes. Eur J. Immunol. 32, 2748–2758 (2002).

    CAS  PubMed  Google Scholar 

  51. Phillips, R. L. et al. The genetic program of hematopoietic stem cells. Science 288, 1635–1640 (2000).

    CAS  PubMed  Google Scholar 

  52. Nielsen, M. et al. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci. 12, 1007–1017 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Akatsuka, Y. et al. Disparity for a newly identified minor histocompatibility antigen, HA-8, correlates with acute graft-versus-host disease after haematopoietic stem cell transplantation from an HLA-identical sibling. Br. J. Haematol. 123, 671–675 (2003).

    CAS  PubMed  Google Scholar 

  54. Dickinson, A. M. et al. In situ dissection of the graft-versus-host activities of cytotoxic T cells specific for minor histocompatibility antigens. Nature Med. 8, 410–414 (2002).

    CAS  PubMed  Google Scholar 

  55. Randolph, S. S., Gooley, T. A., Warren, E. H., Appelbaum, F. R. & Riddell, S. R. Female donors contribute to a selective graft versus leukemia effect in male recipients of HLA matched related hematopoietic cell transplants. Blood 103, 347–352 (2004).

    CAS  PubMed  Google Scholar 

  56. Gao, L. et al. Selective elimination of leukemic CD34+ progenitor cells by cytotoxic T lymphocytes specific for WT1. Blood 95, 2198–2203 (2000).

    CAS  PubMed  Google Scholar 

  57. Molldrem, J. et al. Targeted T-cell therapy for human leukemia: cytotoxic T lymphocytes specific for a peptide derived from proteinase 3 preferentially lyse human myeloid leukemia cells. Blood 88, 2450–2457 (1996).

    CAS  PubMed  Google Scholar 

  58. Andersen, M. H. et al. Spontaneous cytotoxic T-cell responses against survivin-derived MHC class I-restricted T-cell epitopes in situ as well as ex vivo in cancer patients. Cancer Res. 61, 5964–5968 (2001).

    CAS  PubMed  Google Scholar 

  59. Arai, J. et al. Identification of human telomerase reverse transcriptase-derived peptides that induce HLA-A24-restricted antileukemia cytotoxic T lymphocytes. Blood 97, 2903–2907 (2001).

    CAS  PubMed  Google Scholar 

  60. Maecker, B. et al. The shared tumor-associated antigen cytochrome P450 1B1 is recognized by specific cytotoxic T cells. Blood 102, 3287–3294 (2003).

    CAS  PubMed  Google Scholar 

  61. Siegel, S. et al. Induction of cytotoxic T-cell responses against the oncofetal antigen-immature laminin receptor for the treatment of hematologic malignancies. Blood 102, 4416–4423 (2003).

    CAS  PubMed  Google Scholar 

  62. Scharnhorst, V., van der Eb, A. J. & Jochemsen, A. G. WT1 proteins: functions in growth and differentiation. Gene 273, 141–161 (2001).

    CAS  PubMed  Google Scholar 

  63. Inoue, K. et al. Aberrant overexpression of the Wilms tumor gene (WT1) in human leukemia. Blood 89, 1405–1412 (1997).

    CAS  PubMed  Google Scholar 

  64. Rezvani, K. et al. Functional leukemia-associated antigen-specific memory CD8+ T cells exist in healthy individuals and in patients with chronic myelogenous leukemia before and after stem cell transplantation. Blood 102, 2892–2900 (2003).

    CAS  PubMed  Google Scholar 

  65. Ohminami, H., Yasukawa, M. & Fujita, S. HLA class I-restricted lysis of leukemia cells by a CD8+ cytotoxic T-lymphocyte clone specific for WT1 peptide. Blood 95, 286–293 (2000).

    CAS  PubMed  Google Scholar 

  66. Azuma, T. et al. Identification of a novel WT1-derived peptide which induces human leucocyte antigen-A24-restricted anti-leukaemia cytotoxic T lymphocytes. Br. J. Haematol. 116, 601–603 (2002).

    CAS  PubMed  Google Scholar 

  67. Gao, L. et al. Human cytotoxic T lymphocytes specific for Wilms' tumor antigen-1 inhibit engraftment of leukemia-initiating stem cells in non-obese diabetic-severe combined immunodeficient recipients. Transplantation 75, 1429–1436 (2003).

    PubMed  Google Scholar 

  68. Williams, R. C. Jr et al. Epitopes on proteinase-3 recognized by antibodies from patients with Wegener's granulomatosis. J. Immunol. 152, 4722–4737 (1994).

    CAS  PubMed  Google Scholar 

  69. Dengler, R. et al. Immunocytochemical and flow cytometric detection of proteinase 3 (myeloblastin) in normal and leukaemic myeloid cells. Br. J. Haematol. 89, 250–257 (1995).

    CAS  PubMed  Google Scholar 

  70. Molldrem, J. J. et al. Cytotoxic T lymphocytes specific for a nonpolymorphic proteinase 3 peptide preferentially inhibit chronic myeloid leukemia colony-forming units. Blood 90, 2529–2534 (1997).

    CAS  PubMed  Google Scholar 

  71. Molldrem, J. J., Lee, P. P., Wang, C., Champlin, R. E. & Davis, M. M. A PR1-human leukocyte antigen-A2 tetramer can be used to isolate low-frequency cytotoxic T lymphocytes from healthy donors that selectively lyse chronic myelogenous leukemia. Cancer Res. 59, 2675–2681 (1999).

    CAS  PubMed  Google Scholar 

  72. Molldrem, J. J. et al. Chronic myelogenous leukemia shapes host immunity by selective deletion of high-avidity leukemia-specific T cells. J. Clin. Invest. 111, 639–647 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Molldrem, J. J. et al. Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nature Med. 6, 1018–1023 (2000). MHC-class-I–peptide tetramers were used to show that CD8+ T cells specific for proteinase 3 — a protein expressed in normal myeloid differentiation and overexpressed in chronic myeloid leukaemia — are expanded in patients with leukaemia that respond to interferon-α therapy or allogeneic stem-cell transplantation.

    CAS  PubMed  Google Scholar 

  74. Burchert, A. et al. Interferon-α, but not the ABL-kinase inhibitor imatinib (STI571), induces expression of myeloblastin and a specific T-cell response in chronic myeloid leukemia. Blood 101, 259–264 (2003).

    CAS  PubMed  Google Scholar 

  75. Riddell, S. R. et al. Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science 257, 238–241 (1992).

    CAS  PubMed  Google Scholar 

  76. Walter, E. A. et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N. Engl. J. Med. 333, 1038–1044 (1995).

    CAS  PubMed  Google Scholar 

  77. Heslop, H. E. et al. Long-term restoration of immunity against Epstein–Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes. Nature Med. 2, 551–555 (1996).

    CAS  PubMed  Google Scholar 

  78. Dudley, M. E. et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumour lymphocytes. Science 298, 850–854 (2002). Shows that the use of non-myeloablative chemotherapy to induce lymphopaenia allows for dramatic in vivo expansion and clonal repopulation of adoptively transferred T cells specific for differentiation antigens expressed in melanoma. This therapy was associated with tumour regression and autoimmune destruction of normal melanocytes in some patients.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Yee, C. et al. Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumour effect of transferred T cells. Proc. Natl Acad. Sci. USA 99, 16168–16173 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Mutis, T. et al. Efficient induction of minor histocompatibility antigen HA-1-specific cytotoxic T-cells using dendritic cells retrovirally transduced with HA-1-coding cDNA. Biol. Blood Marrow Transplant. 8, 412–419 (2002).

    CAS  PubMed  Google Scholar 

  81. Osman, Y. et al. Generation of bcr–abl specific cytotoxic T-lymphocytes by using dendritic cells pulsed with bcr-abl (b3a2) peptide: its applicability for donor leukocyte transfusions in marrow grafted CML patients. Leukemia 13, 166–174 (1999).

    CAS  PubMed  Google Scholar 

  82. Osman, Y. et al. Dendritic cells stimulate the expansion of PML–RARα specific cytotoxic T-lymphocytes: its applicability for antileukemia immunotherapy. J. Exp. Clin. Cancer Res. 18, 485–492 (1999).

    CAS  PubMed  Google Scholar 

  83. Yee C. et al. Isolation of high avidity melanoma-reactive CTL from heterogeneous populations using peptide-MHC tetramers. J. Immunol. 162, 2227–2234 (1999).

    CAS  PubMed  Google Scholar 

  84. Becker C. et al. Adoptive tumor therapy with T lymphocytes enriched through an IFN-γ capture assay. Nature Med. 7, 1159–1162 (2001).

    CAS  PubMed  Google Scholar 

  85. Brodie, S. J. et al. In vivo migration and function of transferred HIV-1-specific cytotoxic T cells. Nature Med. 5, 34–41 (1999).

    CAS  PubMed  Google Scholar 

  86. Lu, J. et al. Interleukin 15 promotes antigen-independent in vitro expansion and long-term survival of antitumour cytotoxic T lymphocytes. Clin. Cancer Res. 8, 3877–3884 (2002).

    CAS  PubMed  Google Scholar 

  87. Cooper, L. J., Kalos, M., Lewinsohn, D. A., Riddell, S. R. & Greenberg, P. D. Transfer of specificity for human immunodeficiency virus type 1 into primary human T lymphocytes by introduction of T-cell receptor genes. J. Virol. 74, 8207–8212 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Stanislawski, T. et al. Circumventing tolerance to a human MDM2-derived tumor antigen by TCR gene transfer. Nature Immunol. 2, 962–970 (2001).

    CAS  Google Scholar 

  89. Heemskerk, M. H. et al. Redirection of antileukemic reactivity of peripheral T lymphocytes using gene transfer of minor histocompatibility antigen HA-2-specific T-cell receptor complexes expressing a conserved alpha joining region. Blood 102, 3530–3540 (2003).

    CAS  PubMed  Google Scholar 

  90. Dudley, M. E. & Rosenberg, S. A. Adoptive-cell-transfer therapy for the treatment of patients with cancer. Nature Rev. Cancer 3, 666–675 (2003).

    CAS  Google Scholar 

  91. Brentjens, R. J. et al. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nature Med. 9, 279–286 (2003).

    CAS  PubMed  Google Scholar 

  92. Sallusto, F. & Lanzavecchia, A. Understanding dendritic cell and T-lymphocyte traffic through the analysis of chemokine receptor expression. Immunol. Rev. 177, 134–140 (2000).

    CAS  PubMed  Google Scholar 

  93. Mohle, R. et al. The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1. Blood 91, 4523–4530 (1998).

    CAS  PubMed  Google Scholar 

  94. Koelle, D. M. et al. Expression of cutaneous lymphocyte-associated antigen by CD8+ T cells specific for a skin-tropic virus. J. Clin. Invest. 110, 537–548 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Hacein-Bey-Abina, S. et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med. 348, 255–256 (2003).

    PubMed  Google Scholar 

  96. Bonini, C. et al. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 276, 1719–1724 (1997).

    CAS  PubMed  Google Scholar 

  97. Riddell, S. R. et al. T-cell mediated rejection of gene-modified HIV-specific cytotoxic T lymphocytes in HIV-infected patients. Nature Med. 2, 216–223 (1996).

    CAS  PubMed  Google Scholar 

  98. Thomis, D. C. et al. A Fas-based suicide switch in human T cells for the treatment of graft-versus-host disease. Blood 97, 1249–1257 (2001).

    CAS  PubMed  Google Scholar 

  99. Berger, C. et al. Pharmacologically regulated Fas-mediated death of adoptively transferred T cells in a nonhuman primate model. Blood 103, 1261–1269 (2003).

    PubMed  Google Scholar 

  100. Chen, B. J., Cui, X., Sempowski, G. D., Liu, C. & Chao, N. J. Transfer of allogeneic CD62L- memory T cells without graft-versus-host disease. Blood 103, 1534–1541 (2003).

    PubMed  Google Scholar 

  101. Anderson, B. E. et al. Memory CD4+ T cells do not induce graft-versus-host disease. J. Clin. Invest. 112, 101–108 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Hughes, T. P. et al. Frequency of major molecular responses to imatinib or interferon α plus cytarabine in newly diagnosed chronic myeloid leukemia. N. Engl. J. Med. 349, 1423–1432 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the authors' laboratory is supported in part by grants from the National Institutes of Health and the Leukemia and Lymphoma Society. We thank past and present members of the Programme in Immunology for helpful discussions, and W. Hilliker for assistance in preparation of the manuscript.

Correction: The DOI number given for this article in the May 2004 print issue of Nature Reviews Cancer was wrong. The correct DOI number is: doi:10.1038/nrc1365.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley R. Riddell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Cancer.gov

acute lymphoblastic leukaemia

acute myelogenous leukaemia

chronic lymphoblastic leukaemia

chronic myelogenous leukaemia

melanoma

multiple myeloma

renal-cell carcinoma

LocusLink

BCL2A1

CD34

CLA1

CXCR4

HA-1

HA-2

HA-8

HB-1

IFN-γ

proteinase 3

SDF1

SMCY

UGT2B17

UTY

WT1

FURTHER INFORMATION

International Bone Marrow Transplant Registry

International Histocompatibility Working Group

Glossary

HLA MISMATCHED

Individuals mismatched (that is, non-identical) at one or more alleles of the human leukocyte antigen (hla) complex.

SYNGENEIC STEM-CELL TRANSPLANTATION

Stem-cell transplantation performed between genetically identical twins.

NON-MYELOABLATIVE CONDITIONING

Chemotherapy and/or low-dose irradiation given to prepare a patient for a haematopoietic stem-cell graft from another individual. The purpose is to immunosuppress the recipient, but the dose of chemoradiotherapy is not sufficient to irreversibly damage the patient's own bone marrow.

PANCYTOPAENIA

The severe reduction in the number of red blood cells, white blood cells and platelets that is seen after intensive chemotherapy.

HAPLO-IDENTICAL STEM-CELL TRANSPLANTATION

Stem-cell transplantation performed between individuals who are genetically identical for half of the human leukocyte antigen molecules.

BONE-MARROW CHIMAERA

These occur after allogeneic haematopoietic-stem-cell transplantation. In chimaeras, the bone marrow and haematopoietic cells are derived from the donor (one genotype), whereas the remaining cells in the body are all derived from the host (a second genotype).

SELF-TOLERANCE

The normal lack of an immunological response to autologous or self-antigens. A breakdown of self-tolerance can result in autoimmunity.

CD34+ CELLS

The CD34+ glycoprotein is a cell-surface marker of early haematopoietic progenitor cells.

WEGENER'S GRANULOMATOSIS

A rare disorder that is characterized by chronic inflammation of blood vessels and granulomas in the nasal passages, lungs and kidneys. This disorder is associated with antibodies directed against the proteinase enzyme of neutrophils.

CD4+ HELPER T-CELL RESPONSE

The subset of peripheral T cells that express the CD4 glycoprotein on the cell surface are called helper T cells. Helper T cells recognize peptide antigens presented on the cell surface in association with major histocompatibility complex class II molecules, and secrete cytokines that orchestrate responses by other immune cells, including CD8+ T cells and B cells.

CD28 CO-STIMULATION

T cells require several signals for full activation. Engagement of the t-cell receptor by human-leukocyte-antigen–peptide complexes provides a first signal that is required, but not sufficient, for T-cell activation. A second signal, or co-stimulation, is provided by engagement of other molecules, including CD28, which binds to CD80 (B7.1) and CD86 (B7.2) on antigen-presenting cells.

LYMPHOPAENIC

A state of having a subnormal level of circulating lymphocytes.

HOMEOSTATIC REGULATION

The tendency to correct abnormal levels of cells or molecules by feedback regulation. For example, in response to lymphopaenia, homeostatic mechanisms drive the expansion of residual lymphocytes to restore lymphocyte numbers to normal levels.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bleakley, M., Riddell, S. Molecules and mechanisms of the graft-versus-leukaemia effect. Nat Rev Cancer 4, 371–380 (2004). https://doi.org/10.1038/nrc1365

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1365

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing