Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Prevention of non-melanoma skin cancer by targeting ultraviolet-B-light signalling

Key Points

  • The incidence of non-melanoma skin cancers such as squamous-cell carcinoma (SCC) in many countries including the United States has been increasing recently with significant effects on public health. Primary prevention — for example, the use of sun screens — has proven inadequate in impacting the incidence of skin cancer, and this has stimulated the development of chemoprevention strategies.

  • Ultraviolet B (UVB) light acts as a tumour-initiating, -promoting and -progressing agent in the generation of SCC.

  • UVB light mediates skin-tumour promotion through activation of the transcription factor complex activator protein-1 (AP-1) and through the expression of the cyclooxygenase-2 (COX2) gene.

  • UVB light mediates AP-1 activation, which increases binding of the differentially phosphorylated cyclic-AMP-response-element-binding protein (CREB) to the CRE site and c-FOS AP-1 site within the promoter region of the c-FOS gene, so increasing transcription and expression of c-FOS.

  • UVB light mediates COX2 transcription through increased binding of differentially phosphorylated CREB to a CRE site in the promoter region of the COX2 gene.

  • UVB light induces increased phosphorylation of CREB at serine 133 through activation of p38 mitogen-activated protein kinase (MAPK), which results in increased transcription of the c-FOS and COX2 genes.

  • UVB light decreases phosphorylation of CREB at Ser129 through activation of the phosphatidylinositol 3-kinase (PI3K)–AKT pathway, which results in increased binding of CREB to the promoter regions of the c-FOS and COX2 genes and increased transcription.

  • Epigallocatechin gallate (EGCG) is an inhibitor of the UVB-light-induced p38 MAPK pathway and has shown chemopreventive activity in preventing UVB-light-induced skin-tumour development.

  • Nordihydroguaiaretic acid (NDGA) is an inhibitor of UVB-light-induced PI3K–AKT pathway and NDGA has been shown to have chemopreventive activity.

  • New chemopreventive agents that target UVB-light signalling pathways — leading to AP-1 activation and COX2 expression — are being translated into the clinic.

Abstract

The incidence of non-melanoma skin cancer is rising and primary prevention, including the use of sun screens, has proven inadequate in reducing this incidence. Chemoprevention strategies are therefore needed. Ultraviolet B light can initiate skin-tumour development through DNA damage and mutation in crucial target genes, and can also promote the clonal expansion of initiated cells to give rise to benign skin tumours. Targeting key molecules in the ultraviolet-light signal-transduction pathway is being explored for early chemoprevention of non-melanoma skin cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stages of UVB-light-induced skin carcinogenesis.
Figure 2: UVB-light signalling pathway involving p38 and ERK leading to c-FOS transcription and AP-1 activation.
Figure 3: Prostaglandin synthesis pathway.
Figure 4: UVB-light signalling pathways involving p38 and PI3K leading to altered phosphorylation of CREB with increased transactivation of the c-FOS and COX2 promoters.

Similar content being viewed by others

References

  1. Johnson, T. M. et al. Clinical and histologic trends of melanoma. J. Am. Acad. Dermatol. 38, 681–686 (1998).

    CAS  PubMed  Google Scholar 

  2. Diepgen, T. L. & Mahler, V. The epidemiology of skin cancer. Br. J. Dermatol. 146 (Suppl 61), 1–6 (2002).

    PubMed  Google Scholar 

  3. Greenlee, R. T., Murray, T., Bolden, S. & Wingo, P. A. Cancer statistics, 2000. CA Cancer J. Clin. 50, 7–33 (2000).

    CAS  PubMed  Google Scholar 

  4. Marks, R. An overview of skin cancers. Incidence and causation. Cancer 75, 607–612 (1995). Skin cancer incidence rates are increasing in the United States and in many other countries. Therefore, skin cancer has become a significant public health problem.

    CAS  PubMed  Google Scholar 

  5. Moller, R., Reymann, F. & Hou-Jensen, K. Metastases in dermatological patients with squamous cell carcinoma. Arch. Dermatol. 115, 703–705 (1979).

    CAS  PubMed  Google Scholar 

  6. Frankel, D. H., Hanusa, B. H. & Zitelli, J. A. New primary nonmelanoma skin cancer in patients with a history of squamous cell carcinoma of the skin. Implications and recommendations for follow-up. J. Am. Acad. Dermatol. 26, 720–726 (1992).

    CAS  PubMed  Google Scholar 

  7. Karagas, M. R. et al. Risk of subsequent basal cell carcinoma and squamous cell carcinoma of the skin among patients with prior skin cancer. Skin Cancer Prevention Study Group. JAMA 267, 3305–3310 (1992).

    CAS  PubMed  Google Scholar 

  8. Preston, D. S. & Stern, R. S. Nonmelanoma cancers of the skin. N. Engl. J. Med. 327, 1649–1662 (1992).

    CAS  PubMed  Google Scholar 

  9. Kwa, R. E., Campana, K. & Moy, R. L. Biology of cutaneous squamous cell carcinoma. J. Am. Acad. Dermatol. 26, 1–26 (1992).

    CAS  PubMed  Google Scholar 

  10. Baade, P. D., Balanda, K. P. & Lowe, J. B. Changes in skin protection behaviors, attitudes, and sunburn: in a population with the highest incidence of skin cancer in the world. Cancer Detect. Prev. 20, 566–575 (1996).

    CAS  PubMed  Google Scholar 

  11. Naylor, M. F. et al. High sun protection factor sunscreens in the suppression of actinic neoplasia. Arch. Dermatol. 131, 170–175 (1995).

    CAS  PubMed  Google Scholar 

  12. Harvey, I., Frankel, S., Marks, R., Shalom, D. & Nolan-Farrell, M. Non-melanoma skin cancer and solar keratoses II analytical results of the South Wales Skin Cancer Study. Br. J. Cancer 74, 1308–1312 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Graham, S. et al. An inquiry into the epidemiology of melanoma. Am. J. Epidemiol. 122, 606–619 (1985).

    CAS  PubMed  Google Scholar 

  14. Wolf, P., Donawho, C. K. & Kripke, M. L. Effect of sunscreens on UV radiation-induced enhancement of melanoma growth in mice. J. Natl Cancer Inst. 86, 99–105 (1994).

    CAS  PubMed  Google Scholar 

  15. Tornaletti, S., Rozek, D. & Pfeifer, G. P. The distribution of UV photoproducts along the human p53 gene and its relation to mutations in skin cancer. Oncogene 8, 2051–2057 (1993).

    CAS  PubMed  Google Scholar 

  16. Brash, D. E. et al. A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc. Natl Acad. Sci. USA 88, 10124–10128 (1991). This is one of the first reports of TP53 tumour-suppressor gene mutations found in skin tumours that are induced by UV light.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Matsui, M. S. & DeLeo, V. A. Photocarcinogenesis by ultraviolet A and B. in Skin Cancer: Mechanisms and Human Relevance (ed. Mukhtar, H.) 21–30 (CRC Press, Boca Raton, 1995).

    Google Scholar 

  18. DiGiovanni, J. Multistage carcinogenesis in mouse skin. Pharmacol. Ther. 54, 63–128 (1992). This review focuses on the mechanisms that are involved in multistage carcinogenesis using the mouse skin model and the relevance of this mouse model to human cancer.

    CAS  PubMed  Google Scholar 

  19. Finch, J. S., Albino, H. E. & Bowden, G. T. Quantitation of early clonal expansion of two mutant 61st codon c-Ha- ras alleles in DMBA/TPA treated mouse skin by nested PCR/RFLP. Carcinogenesis 17, 2551–2557 (1996).

    CAS  PubMed  Google Scholar 

  20. Domann, F. E. Jr, Levy, J. P., Finch, J. S. & Bowden, G. T. Constitutive AP-1 DNA binding and transactivating ability of malignant but not benign mouse epidermal cells. Mol. Carcinog. 9, 61–66 (1994).

    CAS  PubMed  Google Scholar 

  21. Willis, I., Menter, J. M. & Whyte, H. J. The rapid induction of cancers in the hairless mouse utilizing the principle of photoaugmentation. J. Invest. Dermatol. 76, 404–408 (1981).

    CAS  PubMed  Google Scholar 

  22. Strickland, P. T. Photocarcinogenesis by near-ultraviolet (UVA) radiation in Sencar mice. J. Invest. Dermatol. 87, 272–275 (1986).

    CAS  PubMed  Google Scholar 

  23. Ananthaswamy, H. N. & Pierceall, W. E. Molecular mechanisms of ultraviolet radiation carcinogenesis. Photochem. Photobiol. 52, 1119–1136 (1990).

    CAS  PubMed  Google Scholar 

  24. Elmets, C. A. Cutaneous Photocarcinogenesis. in Pharmacology of the Skin (ed. Mukhtar, H.) (CRC Press, Boca Raton, 1992).

    Google Scholar 

  25. Ziegler, A. et al. Mutation hotspots due to sunlight in the p53 gene of nonmelanoma skin cancers. Proc. Natl Acad. Sci. USA 90, 4216–4220 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kanjilal, S. et al. p53 mutations in nonmelanoma skin cancer of the head and neck: molecular evidence for field cancerization. Cancer Res. 55, 3604–3609 (1995).

    CAS  PubMed  Google Scholar 

  27. Campbell, C., Quinn, A. G., Ro, Y. S., Angus, B. & Rees, J. L. p53 mutations are common and early events that precede tumor invasion in squamous cell neoplasia of the skin. J. Invest. Dermatol. 100, 746–748 (1993).

    CAS  PubMed  Google Scholar 

  28. Nelson, M. A. et al. Analysis of the p53 gene in human precancerous actinic keratosis lesions and squamous cell cancers. Cancer Lett. 85, 23–29 (1994).

    CAS  PubMed  Google Scholar 

  29. Ziegler, A. et al. Sunburn and p53 in the onset of skin cancer. Nature 372, 773–776 (1994).

    CAS  PubMed  Google Scholar 

  30. Yuspa, S. H. The pathogenesis of squamous cell cancer: lessons learned from studies of skin carcinogenesis: thirty-third G. H. A. Clowes Memorial Award Lecture. Cancer Res. 54, 1178–1189 (1994).

    CAS  PubMed  Google Scholar 

  31. Zhang, W., Remenyik, E., Zelterman, D., Brash, D. E. & Wikonkal, N. M. Escaping the stem cell compartment: sustained UVB exposure allows p53-mutant keratinocytes to colonize adjacent epidermal proliferating units without incurring additional mutations. Proc. Natl Acad. Sci. USA 98, 13948–13953 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Bode, A. M. & Dong, Z. Mitogen-activated protein kinase activation in UV-induced signal transduction. Sci. STKE 28 Jan 2003 (doi: 10.1126/stke.2003.167.re2) This is an excellent review that focuses on the mechanistic data supporting a role for the MAPKs in UV-light-induced skin carcinogenesis.

  33. Grether-Beck, S., Buettner, R. & Krutmann, J. Ultraviolet A radiation-induced expression of human genes: molecular and photobiological mechanisms. Biol. Chem. 378, 1231–1236 (1997).

    CAS  PubMed  Google Scholar 

  34. Tyrrell, R. M. Activation of mammalian gene expression by the UV component of sunlight: from models to reality. Bioessays 18, 139–148 (1996).

    CAS  PubMed  Google Scholar 

  35. Krutmann, J. Ultraviolet A radiation-induced immunomodulation: molecular and photobiological mechanims. Eur. J. Dermatol. 8, 200–202 (1998).

    CAS  PubMed  Google Scholar 

  36. Bender, K. et al. UV-induced signal transduction. J. Photochem. Photobiol. B 37, 1–17 (1997).

    CAS  PubMed  Google Scholar 

  37. Gallagher, T. F. et al. Regulation of stress-induced cytokine production by pyridinylimidazoles; inhibition of CSBP kinase. Bioorg. Med. Chem. 5, 49–64 (1997).

    CAS  PubMed  Google Scholar 

  38. Iordanov, M. et al. CREB is activated by UVC through a p38/HOG-1-dependent protein kinase. EMBO J. 16, 1009–1022 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wan, Y. S., Wang, Z. Q., Shao, Y., Voorhees, J. J. & Fisher, G. J. Ultraviolet irradiation activates PI 3-kinase/AKT survival pathway via EGF receptors in human skin in vivo. Int. J. Oncol. 18, 461–466 (2001). In this paper the authors demonstrate in human skin that UV activation of the EGF receptor mediates signalling through the PI3K/AKT survival pathway.

    CAS  PubMed  Google Scholar 

  40. Chen, W., Tang, Q., Gonzales, M. S. & Bowden, G. T. Role of p38 MAP kinases and ERK in mediating ultraviolet-B induced cyclooxygenase-2 gene expression in human keratinocytes. Oncogene 20, 3921–3926 (2001).

    CAS  PubMed  Google Scholar 

  41. Kabuyama, Y., Hamaya, M. & Homma, Y. Wavelength specific activation of PI 3-kinase by UVB irradiation. FEBS Lett. 441, 297–301 (1998).

    CAS  PubMed  Google Scholar 

  42. Slaga, T. J., Budunova, I. V., Gimenez-Conti, I. B. & Aldaz, C. M. The mouse skin carcinogenesis model. J. Investig. Dermatol. Symp. Proc. 1, 151–156 (1996).

    CAS  PubMed  Google Scholar 

  43. Tennenbaum, T., Belanger, A. J., Quaranta, V. & Yuspa, S. H. Differential regulation of integrins and extracellular matrix binding in epidermal differentiation and squamous tumor progression. J. Investig. Dermatol. Symp. Proc. 1, 157–161 (1996).

    CAS  PubMed  Google Scholar 

  44. Fusenig, N. E. & Boukamp, P. Multiple stages and genetic alterations in immortalization, malignant transformation, and tumor progression of human skin keratinocytes. Mol. Carcinog. 23, 144–158 (1998).

    CAS  PubMed  Google Scholar 

  45. Zoumpourlis, V., Solakidi, S., Papathoma, A. & Papaevangeliou, D. Alterations in signal transduction pathways implicated in tumour progression during multistage mouse skin carcinogenesis. Carcinogenesis 24, 1159–1165 (2003).

    CAS  PubMed  Google Scholar 

  46. Bernstein, L. R. & Colburn, N. H. AP1/jun function is differentially induced in promotion-sensitive and resistant JB6 cells. Science 244, 566–569 (1989).

    CAS  PubMed  Google Scholar 

  47. Shaulian, E. & Karin, M. AP-1 as a regulator of cell life and death. Nature Cell Biol. 4, E131–E136 (2002).

    CAS  PubMed  Google Scholar 

  48. Chen, W., Borchers, A. H., Dong, Z., Powell, M. B. & Bowden, G. T. UVB irradiation-induced activator protein-1 activation correlates with increased c-fos gene expression in a human keratinocyte cell line. J. Biol. Chem. 273, 32176–32181 (1998).

    CAS  PubMed  Google Scholar 

  49. Coso, O. A. et al. Transforming G protein-coupled receptors potently activate JNK (SAPK). Evidence for a divergence from the tyrosine kinase signaling pathway. J. Biol. Chem. 270, 5620–5624 (1995).

    CAS  PubMed  Google Scholar 

  50. Domann, F. E., Levy, J. P., Birrer, M. J. & Bowden, G. T. Stable expression of a c-JUN deletion mutant in two malignant mouse epidermal cell lines blocks tumor formation in nude mice. Cell Growth Differ. 5, 9–16 (1994).

    CAS  PubMed  Google Scholar 

  51. Bair, W. B. et al. Inhibitory effects of sodium salicylate and acteylsalicylic acid in UVB-induced mouse skin carcinogenesis. Cancer Epidemiol. Biomarkers Prev. 11, 1645–1652 (2002).

    CAS  PubMed  Google Scholar 

  52. Liu, G., Ma, W. Y., Bode, A. M., Zhang, Y. & Dong, Z. NS-398 and piroxicam suppress UVB-induced activator protein 1 activity by mechanisms independent of cyclooxygenase-2. J. Biol. Chem. 278, 2124–2130 (2003).

    CAS  PubMed  Google Scholar 

  53. Barthelman, M. et al. Inhibitory effects of perillyl alcohol on UVB-induced murine skin cancer and AP-1 transactivation. Cancer Res. 58, 711–716 (1998).

    CAS  PubMed  Google Scholar 

  54. Young, M. R. et al. Transgenic mice demonstrate AP-1 (activator protein-1) transactivation is required for tumor promotion. Proc. Natl Acad. Sci. USA 96, 9827–9832 (1999). In this paper it is shown for the first time that there is a functional role in transgenic mice for AP-1 activation in skin tumour promotion.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Thompson, E. J., MacGowan, J., Young, M. R., Colburn, N. & Bowden, G. T. A Dominant negative c-jun specifically blocks okadaic acid-induced skin tumor promotion. Cancer Res. 62, 3044–3047 (2002).

    CAS  PubMed  Google Scholar 

  56. Cooper, S. J. et al. Expression of dominant negative c-jun inhibits ultraviolet b-induced squamous cell carcinoma number and size in an skh-1 hairless mouse model. Mol. Cancer Res. 1, 848–854 (2003). Data presented in this article support the idea that activation of the transcription factor complex, activator protein-1 (AP-1) has a functional role in UVB-light-induced mouse-skin carcinogenesis.

    CAS  PubMed  Google Scholar 

  57. Ruther, U., Garber, C., Komitowski, D., Muller, R. & Wagner, E. F. Deregulated c-fos expression interferes with normal bone development in transgenic mice. Nature 325, 412–416 (1987).

    CAS  PubMed  Google Scholar 

  58. Ruther, U., Komitowski, D., Schubert, F. R. & Wagner, E. F. c-fos expression induces bone tumors in transgenic mice. Oncogene 4, 861–865 (1989).

    CAS  PubMed  Google Scholar 

  59. Saez, E. et al. c-fos is required for malignant progression of skin tumors. Cell 82, 721–732 (1995).

    CAS  PubMed  Google Scholar 

  60. Robertson, L. M. et al. Regulation of c-fos expression in transgenic mice requires multiple interdependent transcription control elements. Neuron 14, 241–252 (1995).

    CAS  PubMed  Google Scholar 

  61. Wang, Y. & Prywes, R. Activation of the c-fos enhancer by the erk MAP kinase pathway through two sequence elements: the c-fos AP-1 and p62TCF sites. Oncogene 19, 1379–1385 (2000).

    CAS  PubMed  Google Scholar 

  62. Gonzales, M. & Bowden, G. T. Ultraviolet B (UVB) induction of the c-fos promoter is mediated by phospho-cAMP response element binding protein (CREB) binding to CRE and c-fos activator protein 1 site (FAP1) cis elements. Gene 293, 169–179 (2002).

    CAS  PubMed  Google Scholar 

  63. Buscher, M., Rahmsdorf, H. J., Litfin, M., Karin, M. & Herrlich, P. Activation of the c-fos gene by UV and phorbol ester: different signal transduction pathways converge to the same enhancer element. Oncogene 3, 301–311 (1988).

    CAS  PubMed  Google Scholar 

  64. Chen, W. & Bowden, G. T. Activation of p38 MAP kinase and ERK are required for ultraviolet-B induced c-fos gene expression in human keratinocytes. Oncogene 18, 7469–7476 (1999).

    CAS  PubMed  Google Scholar 

  65. Chen, W. & Bowden, G. T. Role of p38 mitogen-activated protein kinases in ultraviolet-B irradiation-induced activator protein 1 activation in human keratinocytes. Mol. Carcinog. 28, 196–202 (2000). This article contains data that support the role of p38 in UVB-light-induced AP-1 activation in human keratinocytes.

    CAS  PubMed  Google Scholar 

  66. Fischer, S. M. et al. Chemopreventive activity of celecoxib, a specific cyclooxygenase-2 inhibitor, and indomethacin against ultraviolet light-induced skin carcinogenesis. Mol. Carcinog. 25, 231–240 (1999).

    CAS  PubMed  Google Scholar 

  67. Pentland, A. P., Schoggins, J. W., Scott, G. A., Khan, K. N. & Han, R. Reduction of UV-induced skin tumors in hairless mice by selective COX-2 inhibition. Carcinogenesis 20, 1939–1944 (1999).

    CAS  PubMed  Google Scholar 

  68. Buckman, S. Y. et al. COX-2 expression is induced by UVB exposure in human skin: implications for the development of skin cancer. Carcinogenesis 19, 723–729 (1998).

    CAS  PubMed  Google Scholar 

  69. An, K. P. et al. Cyclooxygenase-2 expression in murine and human nonmelanoma skin cancers: implications for therapeutic approaches. Photochem. Photobiol. 76, 73–80 (2002). This article describes upregulated expression of COX2 in UVB-irradiated mouse and human skin and constitutive overexpression of COX2 in mouse and human skin squamous-cell carcinomas.

    CAS  PubMed  Google Scholar 

  70. Higashi, Y., Kanekura, T. & Kanzaki, T. Enhanced expression of cyclooxygenase (COX)-2 in human skin epidermal cancer cells: evidence for growth suppression by inhibiting COX-2 expression. Int. J. Cancer 86, 667–671 (2000).

    CAS  PubMed  Google Scholar 

  71. Lozano, Y., Taitz, A., Petruzzelli, G. J., Djordjevic, A. & Young, M. R. Prostaglandin E2-protein kinase A signaling and protein phosphatases-1 and-2A regulate human head and neck squamous cell carcinoma motility, adherence, and cytoskeletal organization. Prostaglandins 51, 35–48 (1996).

    CAS  PubMed  Google Scholar 

  72. Smith, W. L., Garavito, R. M. & DeWitt, D. L. Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and-2. J. Biol. Chem. 271, 33157–33160 (1996).

    CAS  PubMed  Google Scholar 

  73. Grewe, M. et al. Analysis of the mechanism of ultraviolet (UV) B radiation-induced prostaglandin E2 synthesis by human epidermoid carcinoma cells. J. Invest. Dermatol. 101, 528–531 (1993).

    CAS  PubMed  Google Scholar 

  74. Vane, J. R., Bakhle, Y. S. & Botting, R. M. Cyclooxygenases 1 and 2. Annu. Rev. Pharmacol. Toxicol. 38, 97–120 (1998).

    CAS  PubMed  Google Scholar 

  75. Gresham, A., Masferrer, J., Chen, X., Leal-Khouri, S. & Pentland, A. P. Increased synthesis of high-molecular-weight cPLA2 mediates early UV-induced PGE2 in human skin. Am. J. Physiol. 270, C1037–C1050 (1996).

    CAS  PubMed  Google Scholar 

  76. Kang-Rotondo, C. H., Miller, C. C., Morrison, A. R. & Pentland, A. P. Enhanced keratinocyte prostaglandin synthesis after UV injury is due to increased phospholipase activity. Am. J. Physiol. 264, C396–C401 (1993).

    CAS  PubMed  Google Scholar 

  77. Bennett, A., Carroll, M. A., Stamford, I. F., Whimster, W. F. & Williams, F. Prostaglandins and human lung carcinomas. Br. J. Cancer 46, 888–893 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Rigas, B., Goldman, I. S. & Levine, L. Altered eicosanoid levels in human colon cancer. J. Lab. Clin. Med. 122, 518–523 (1993).

    CAS  PubMed  Google Scholar 

  79. Tsujii, M. et al. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 93, 705–716 (1998).

    CAS  PubMed  Google Scholar 

  80. Sheng, H., Shao, J., Morrow, J. D., Beauchamp, R. D. & DuBois, R. N. Modulation of apoptosis and Bcl-2 expression by prostaglandin E2 in human colon cancer cells. Cancer Res. 58, 362–366 (1998).

    CAS  PubMed  Google Scholar 

  81. Marks, F. & Furstenberger, G. Cancer chemoprevention through interruption of multistage carcinogenesis. The lessons learnt by comparing mouse skin carcinogenesis and human large bowel cancer. Eur. J. Cancer 36, 314–329 (2000).

    CAS  PubMed  Google Scholar 

  82. Tang, Q. et al. Role of cyclic AMP responsive element in the UVB induction of cyclooxygenase-2 transcription in human keratinocytes. Oncogene 20, 5164–5172 (2001).

    CAS  PubMed  Google Scholar 

  83. Xie, W. & Herschman, H. R. v-src induces prostaglandin synthase 2 gene expression by activation of the c-Jun N-terminal kinase and the c-Jun transcription factor. J. Biol. Chem. 270, 27622–27628 (1995).

    CAS  PubMed  Google Scholar 

  84. Xie, W. & Herschman, H. R. Transcriptional regulation of prostaglandin synthase 2 gene expression by platelet-derived growth factor and serum. J. Biol. Chem. 271, 31742–31748 (1996).

    CAS  PubMed  Google Scholar 

  85. Zhang, F., Subbaramaiah, K., Altorki, N. & Dannenberg, A. J. Dihydroxy bile acids activate the transcription of cyclooxygenase-2. J. Biol. Chem. 273, 2424–2428 (1998).

    CAS  PubMed  Google Scholar 

  86. Inoue, H., Yokoyama, C., Hara, S., Tone, Y. & Tanabe, T. Transcriptional regulation of human prostaglandin-endoperoxide synthase-2 gene by lipopolysaccharide and phorbol ester in vascular endothelial cells. Involvement of both nuclear factor for interleukin-6 expression site and cAMP response element. J. Biol. Chem. 270, 24965–24971 (1995).

    CAS  PubMed  Google Scholar 

  87. Subbaramaiah, K., Hart, J. C., Norton, L. & Dannenberg, A. J. Microtubule-interfering agents stimulate the transcription of cyclooxygenase-2. Evidence for involvement of ERK1/2 AND p38 mitogen-activated protein kinase pathways. J. Biol. Chem. 275, 14838–14845 (2000).

    CAS  PubMed  Google Scholar 

  88. Inoue, H. & Tanabe, T. Transcriptional role of the nuclear factor κ B site in the induction by lipopolysaccharide and suppression by dexamethasone of cyclooxygenase-2 in U937 cells. Biochem. Biophys. Res. Commun. 244, 143–148 (1998).

    CAS  PubMed  Google Scholar 

  89. Carpenter, C. L. et al. Purification and characterization of phosphoinositide 3-kinase from rat liver. J. Biol. Chem. 265, 19704–19711 (1990).

    CAS  PubMed  Google Scholar 

  90. Roymans, D. & Slegers, H. Phosphatidylinositol 3-kinases in tumor progression. Eur. J. Biochem. 268, 487–498 (2001).

    CAS  PubMed  Google Scholar 

  91. Gonzales, M. & Bowden, G. T. The role of PI 3-kinase in the UVB-induced expression of c-fos. Oncogene 21, 2721–2728 (2002).

    CAS  PubMed  Google Scholar 

  92. Nomura, M. et al. Inhibitory mechanisms of tea polyphenols on the ultraviolet B-activated phosphatidylinositol 3-kinase-dependent pathway. J. Biol. Chem. 276, 46624–46631 (2001).

    CAS  PubMed  Google Scholar 

  93. Huang, C., Ma, W. Y. & Dong, Z. Requirement for phosphatidylinositol 3-kinase in epidermal growth factor-induced AP-1 transactivation and transformation in JB6 P+ cells. Mol. Cell. Biol. 16, 6427–6435 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Jhun, B. H. et al. Microinjection of the SH2 domain of the 85-kilodalton subunit of phosphatidylinositol 3-kinase inhibits insulin-induced DNA synthesis and c-fos expression. Mol. Cell. Biol. 14, 7466–7475 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Tang, Q., Gonzales, M., Inoue, H. & Bowden, G. T. Roles of Akt and glycogen synthase kinase 3β in the ultraviolet B induction of cyclooxygenase-2 transcription in human keratinocytes. Cancer Res. 61, 4329–4332 (2001).

    CAS  PubMed  Google Scholar 

  96. Zhang, Q. S. et al. Cytokine-induced p38 activation feedback regulates the prolonged activation of AKT cell survival pathway initiated by reactive oxygen species in response to UV irradiation in human keratinocytes. Int. J. Oncol. 19, 1057–1061 (2001).

    CAS  PubMed  Google Scholar 

  97. Fisher, G. J. et al. Retinoic acid inhibits induction of c-Jun protein by ultraviolet radiation that occurs subsequent to activation of mitogen-activated protein kinase pathways in human skin in vivo. J. Clin. Invest. 101, 1432–1440 (1998). There is a clear demonstration in this paper that UV irradiation of human skin results in increased epidermal AP-1 DNA binding.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Mukhtar, H., Wang, Z. Y., Katiyar, S. K. & Agarwal, R. Tea components: antimutagenic and anticarcinogenic effects. Prev. Med. 21, 351–360 (1992).

    CAS  PubMed  Google Scholar 

  99. Yang, C. S., Lee, M. J., Chen, L. & Yang, G. Y. Polyphenols as inhibitors of carcinogenesis. Environ. Health Perspect. 105 (Suppl 4), 971–976 (1997). This review article summarises current knowledge of various molecular chemopreventive mechanisms of polyphenols that prevent carcinogenesis in animal models.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Huang, M. T., Wang, Z. Y., Georgiadis, C. A., Laskin, J. D. & Conney, A. H. Inhibitory effects of curcumin on tumor initiation by benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene. Carcinogenesis 13, 2183–2186 (1992).

    CAS  PubMed  Google Scholar 

  101. Conney, A. H., Wang, Z. Y., Huang, M. T., Ho, C. T. & Yang, C. S. Inhibitory effect of green tea on tumorigenesis by chemicals and ultraviolet light. Prev. Med. 21, 361–369 (1992).

    CAS  PubMed  Google Scholar 

  102. Wang, Z. Y. et al. Inhibitory effect of green tea in the drinking water on tumorigenesis by ultraviolet light and 12-O-tetradecanoylphorbol-13-acetate in the skin of SKH-1 mice. Cancer Res. 52, 1162–1170 (1992).

    CAS  PubMed  Google Scholar 

  103. Gensler, H. L. et al. Prevention of photocarcinogenesis by topical administration of pure epigallocatechin gallate isolated from green tea. Nutr. Cancer 26, 325–335 (1996).

    CAS  PubMed  Google Scholar 

  104. Katiyar, S. K., Elmets, C. A., Agarwal, R. & Mukhtar, H. Protection against ultraviolet-B radiation-induced local and systemic suppression of contact hypersensitivity and edema responses in C3H/HeN mice by green tea polyphenols. Photochem. Photobiol. 62, 855–861 (1995).

    CAS  PubMed  Google Scholar 

  105. Katiyar, S. K., Rupp, C. O., Korman, N. J., Agarwal, R. & Mukhtar, H. Inhibition of 12-O-tetradecanoylphorbol-13-acetate and other skin tumor-promoter-caused induction of epidermal interleukin-1 α mRNA and protein expression in SENCAR mice by green tea polyphenols. J. Invest. Dermatol. 105, 394–398 (1995).

    CAS  PubMed  Google Scholar 

  106. Perchellet, J. P. & Perchellet, E. M. Antioxidants and multistage carcinogenesis in mouse skin. Free Radic. Biol. Med. 7, 377–408 (1989).

    CAS  PubMed  Google Scholar 

  107. Goldstein, B. D. & Witz, G. Free radicals and carcinogenesis. Free Radic. Res. Commun. 11, 3–10 (1990).

    CAS  PubMed  Google Scholar 

  108. Trush, M. A. & Kensler, T. W. An overview of the relationship between oxidative stress and chemical carcinogenesis. Free Radic. Biol. Med. 10, 201–209 (1991).

    CAS  PubMed  Google Scholar 

  109. Fischer, S. M., Cameron, G. S., Baldwin, J. K., Jasheway, D. W. & Patrick, K. E. Reactive oxygen in the tumor promotion stage of skin carcinogenesis. Lipids 23, 592–597 (1988).

    CAS  PubMed  Google Scholar 

  110. Perchellet, J. in Skin Cancer: Mechanisms and Human Relevance (ed. Mukhtar, H.) 145 (CRC Press, Florida, 1995).

    Google Scholar 

  111. Dong, Z., Ma, W., Huang, C. & Yang, C. S. Inhibition of tumor promoter-induced activator protein 1 activation and cell transformation by tea polyphenols, (–)-epigallocatechin gallate, and theaflavins. Cancer Res. 57, 4414–4419 (1997).

    CAS  PubMed  Google Scholar 

  112. Kitano, K., Nam, K. Y., Kimura, S., Fujiki, H. & Imanishi, Y. Sealing effects of (−)-epigallocatechin gallate on protein kinase C and protein phosphatase 2A. Biophys. Chem. 65, 157–164 (1997).

    CAS  PubMed  Google Scholar 

  113. Suganuma, M. et al. A new process of cancer prevention mediated through inhibition of tumor necrosis factor α expression. Cancer Res. 56, 3711–3715 (1996).

    CAS  PubMed  Google Scholar 

  114. Barthelman, M. et al. (−)-Epigallocatechin-3-gallate inhibition of ultraviolet B-induced AP-1 activity. Carcinogenesis 19, 2201–2204 (1998).

    CAS  PubMed  Google Scholar 

  115. Agarwal, R., Katiyar, S. K., Khan, S. G. & Mukhtar, H. Protection against ultraviolet B radiation-induced effects in the skin of SKH-1 hairless mice by a polyphenolic fraction isolated from green tea. Photochem. Photobiol. 58, 695–700 (1993).

    CAS  PubMed  Google Scholar 

  116. Huang, C., Ma, W., Bowden, G. T. & Dong, Z. Ultraviolet B-induced activated protein-1 activation does not require epidermal growth factor receptor but is blocked by a dominant negative PKCλ/ι. J. Biol. Chem. 271, 31262–31268 (1996).

    CAS  PubMed  Google Scholar 

  117. Assefa, Z. et al. Differential stimulation of ERK and JNK activities by ultraviolet B irradiation and epidermal growth factor in human keratinocytes. J. Invest. Dermatol. 108, 886–891 (1997).

    CAS  PubMed  Google Scholar 

  118. Radler-Pohl, A. et al. UV-induced activation of AP-1 involves obligatory extranuclear steps including Raf-1 kinase. EMBO J. 12, 1005–1012 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Huang, C. et al. Inhibition of atypical PKC blocks ultraviolet-induced AP-1 activation by specifically inhibiting ERKs activation. Mol. Carcinog. 27, 65–75 (2000).

    CAS  PubMed  Google Scholar 

  120. Yu, R. et al. Activation of mitogen-activated protein kinases by green tea polyphenols: potential signaling pathways in the regulation of antioxidant-responsive element-mediated phase II enzyme gene expression. Carcinogenesis 18, 451–456 (1997).

    CAS  PubMed  Google Scholar 

  121. Chen, W., Dong, Z., Valcic, S., Timmermann, B. N. & Bowden, G. T. Inhibition of ultraviolet B: induced c-fos gene expression and p38 mitogen-activated protein kinase activation by (−)-epigallocatechin gallate in a human keratinocyte cell line. Mol. Carcinog. 24, 79–84 (1999).

    CAS  PubMed  Google Scholar 

  122. Numazawa, S. et al. Cooperative induction of c-fos and heme oxygenase gene products under oxidative stress in human fibroblastic cells. Exp. Cell. Res. 237, 434–444 (1997).

    CAS  PubMed  Google Scholar 

  123. Tao, J., Sanghera, J. S., Pelech, S. L., Wong, G. & Levy, J. G. Stimulation of stress-activated protein kinase and p38 HOG1 kinase in murine keratinocytes following photodynamic therapy with benzoporphyrin derivative. J. Biol. Chem. 271, 27107–27115 (1996).

    CAS  PubMed  Google Scholar 

  124. Yang, C. S. & Wang, Z. Y. Tea and cancer. J. Natl Cancer Inst. 85, 1038–1049 (1993).

    CAS  PubMed  Google Scholar 

  125. Hsu, T. C., Young, M. R., Cmarik, J. & Colburn, N. H. Activator protein 1 (AP-1)- and nuclear factor κB (NF-κB)-dependent transcriptional events in carcinogenesis. Free Radic. Biol. Med. 28, 1338–1348 (2000).

    CAS  PubMed  Google Scholar 

  126. McCormick, D. L. & Spicer, A. M. Nordihydroguaiaretic acid suppression of rat mammary carcinogenesis induced by N-methyl-N-nitrosourea. Cancer Lett. 37, 139–146 (1987).

    CAS  PubMed  Google Scholar 

  127. Nakadate, T., Yamamoto, S., Aizu, E. & Kato, R. Inhibition of 12-O-tetradecanoylphorbol-13-acetate-induced increase in vascular permeability in mouse skin by lipoxygenase inhibitors. Jpn J. Pharmacol. 38, 161–168 (1985).

    CAS  PubMed  Google Scholar 

  128. Birkenfeld, S. et al. Antitumor effects of inhibitors of arachidonic acid cascade on experimentally induced intestinal tumors. Dis. Colon Rectum. 30, 43–46 (1987).

    CAS  PubMed  Google Scholar 

  129. Olsen, E. A. et al. A double-blind, vehicle-controlled study evaluating masoprocol cream in the treatment of actinic keratoses on the head and neck. J. Am. Acad. Dermatol. 24, 738–743 (1991).

    CAS  PubMed  Google Scholar 

  130. Odom, R. Managing actinic keratoses with retinoids. J. Am. Acad. Dermatol. 39, 74–78 (1998).

    Google Scholar 

  131. Nakadate, T. et al. Inhibition of 12-O-tetradecanoyl-phorbol-13-acetate-induced tumor promotion by nordihydroguaiaretic acid, a lipoxygenase inhibitor, and p-bromophenacyl bromide, a phospholipase A2 inhibitor. Gann 73, 841–843 (1982).

    CAS  PubMed  Google Scholar 

  132. Park, S., Lee, D. K. & Yang, C. H. Inhibition of fos–jun–DNA complex formation by dihydroguaiaretic acid and in vitro cytotoxic effects on cancer cells. Cancer Lett. 127, 23–28 (1998).

    CAS  PubMed  Google Scholar 

  133. Kemal, C., Louis-Flamberg, P., Krupinski-Olsen, R. & Shorter, A. L. Reductive inactivation of soybean lipoxygenase 1 by catechols: a possible mechanism for regulation of lipoxygenase activity. Biochemistry 26, 7064–7072 (1987).

    CAS  PubMed  Google Scholar 

  134. Rao, G. N., Glasgow, W. C., Eling, T. E. & Runge, M. S. Role of hydroperoxyeicosatetraenoic acids in oxidative stress-induced activating protein 1 (AP-1) activity. J. Biol. Chem. 271, 27760–27764 (1996).

    CAS  PubMed  Google Scholar 

  135. Glasgow, W. C., Afshari, C. A., Barrett, J. C. & Eling, T. E. Modulation of the epidermal growth factor mitogenic response by metabolites of linoleic and arachidonic acid in Syrian hamster embryo fibroblasts. Differential effects in tumor suppressor gene (+) and (−) phenotypes. J. Biol. Chem. 267, 10771–10779 (1992).

    CAS  PubMed  Google Scholar 

  136. Gonzales, M. & Bowden, G. T. Nordihydroguaiaretic acid-mediated inhibition of ultraviolet B-induced activator protein-1 activation in human keratinocytes. Mol. Carcinog. 34, 102–111 (2002).

    CAS  PubMed  Google Scholar 

  137. Einspahr, J. G., Stratton, S. P., Bowden, G. T. & Alberts, D. S. Chemoprevention of human skin cancer. Crit. Rev. Oncol. Hematol. 41, 269–285 (2002). This review describes the translation of laboratory findings concerning UV signal-transduction pathways and pre-clinical studies of chemoprevention agents that target these pathways in patients at high risk for skin cancer.

    PubMed  Google Scholar 

  138. Lippman, S. M. et al. Biomarkers as intermediate end points in chemoprevention trials. J. Natl Cancer Inst. 82, 555–560 (1990).

    CAS  PubMed  Google Scholar 

  139. Mehta, K. Retinoids as regulators of gene transcription. J. Biol. Regul. Homeost. Agents 17, 1–12 (2003).

    CAS  PubMed  Google Scholar 

  140. Suzukawa, K. & Colburn, N. H. AP-1 transrepressing retinoic acid does not deplete coactivators or AP-1 monomers but may target specific Jun or Fos containing dimers. Oncogene 21, 2181–2190 (2002).

    CAS  PubMed  Google Scholar 

  141. Benkoussa, M., Brand, C., Delmotte, M. H., Formstecher, P. & Lefebvre, P. Retinoic acid receptors inhibit AP1 activation by regulating extracellular signal-regulated kinase and CBP recruitment to an AP1-responsive promoter. Mol. Cell. Biol. 22, 4522–4534 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Przybyszewski, J. et al. Inhibition of phorbol ester-induced AP-1-DNA binding, c-Jun protein and c-jun mRNA by dietary energy restriction is reversed by adrenalectomy in SENCAR mouse epidermis. Carcinogenesis 22, 1421–1427 (2001).

    CAS  PubMed  Google Scholar 

  143. Liu, Y. et al. Dietary energy restriction inhibits ERK but not JNK or p38 activity in the epidermis of SENCAR mice. Carcinogenesis 22, 607–612 (2001).

    CAS  PubMed  Google Scholar 

  144. Moon, T. E. et al. Effect of retinol in preventing squamous cell skin cancer in moderate-risk subjects: a randomized, double-blind, controlled trial. Southwest Skin Cancer Prevention Study Group. Cancer Epidemiol. Biomarkers Prev. 6, 949–956 (1997). This paper deals with one positive Phase III clinical trial showing that oral retinol can lower the incidence of SCC, but not BCC.

    CAS  PubMed  Google Scholar 

  145. Tangrea, J. A. et al. Long-term therapy with low-dose isotretinoin for prevention of basal cell carcinoma: a multicenter clinical trial. Isotretinoin-Basal Cell Carcinoma Study Group. J. Natl Cancer Inst. 84, 328–332 (1992).

    CAS  PubMed  Google Scholar 

  146. Levine, N. et al. Trial of retinol and isotretinoin in skin cancer prevention: a randomized, double-blind, controlled trial. Southwest Skin Cancer Prevention Study Group. Cancer Epidemiol. Biomarkers Prev. 6, 957–961 (1997).

    CAS  PubMed  Google Scholar 

  147. Greenberg, E. R. et al. A clinical trial of β carotene to prevent basal-cell and squamous-cell cancers of the skin. The Skin Cancer Prevention Study Group. N. Engl. J. Med. 323, 789–795 (1990).

    CAS  PubMed  Google Scholar 

  148. Clark, L. C. et al. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional Prevention of Cancer Study Group. JAMA 276, 1957–1963 (1996).

    CAS  PubMed  Google Scholar 

  149. Misiewicz, J. et al. Topical treatment of multiple actinic keratoses of the face with arotinoid methyl sulfone (Ro 14-9706) cream versus tretinoin cream: a double-blind, comparative study. J. Am. Acad. Dermatol. 24, 448–451 (1991).

    CAS  PubMed  Google Scholar 

  150. Black, H. S. et al. Effect of a low-fat diet on the incidence of actinic keratosis. N. Engl. J. Med. 330, 1272–1275 (1994).

    CAS  PubMed  Google Scholar 

  151. Alberts, D. S. et al. Chemoprevention of human actinic keratoses by topical 2-(difluoromethyl)-dl–ornithine. Cancer Epidemiol. Biomarkers Prev. 9, 1281–1286 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by grants from the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Cancer.gov

basal-cell skin cancer

melanoma

squamous-cell skin cancer

LocusLink

ATF1

ATF2

COX1

COX2

CREB

c-FOS

FOSB

FRA1

FRA2

Gsk-3β

c-JUN

JUNB

JUND

ODC

p38α

p38β2

p38γ

p42

p44

SAPK4

TP53

Glossary

LUCIFERASE REPORTER

Firefly luciferase is used as a non-mammalian foreign gene to report on the activity of a gene promoter which drives the expression of the foreign gene.

GLYCOGEN SYNTHASE KINASE-3β

(GSK-3β). A crucial downstream element of the phosphatidylinositol-3-kinase–AKT cell-survival pathway and its activity can be inhibited by AKT-mediated phosphorylation at serine 9 of GSK-3β.

LIGNAN

A class of dibenzylbutane derivatives that occurs in higher plants and in fluids in man and other animals. These compounds have a potential anticancer role.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowden, G. Prevention of non-melanoma skin cancer by targeting ultraviolet-B-light signalling. Nat Rev Cancer 4, 23–35 (2004). https://doi.org/10.1038/nrc1253

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1253

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing