Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The genetics of malignant melanoma: lessons from mouse and man

Key Points

  • Melanoma pathogenesis is driven by both genetic and environmental risk factors. Its incidence is influenced by skin pigmentation, sun-exposure history and geographical location.

  • About 10% of all melanoma cases are familial. Genetic analysis in familial melanoma patients has identified germline mutations in CDKN2A, which encodes INK4A and ARF, and CDK4. Human and mouse data indicate that inactivation of INK4A–CDK4–RB and ARF–p53 are two near-obligate events in melanoma genesis.

  • The red-hair colour (RHC) phenotype has long been associated with an increased risk for melanoma and is linked to specific variants of MC1R. These also increase the penetrance of CDKN2A mutants among germline carriers and are believed to be low-penetrance melanoma-predisposition mutations.

  • With the discovery of high-frequency BRAF mutations in melanocytic neoplasms, activation of the RAS–RAF–ERK signalling pathway seems to be yet another near-obligate event in melanoma development.

  • Cell-based functional studies, coupled with genetic data in engineered mouse models, have identified MET-HGF activation and loss of the PTEN tumour-suppressor pathway as causal events in melanoma genesis and/or progression.

  • Mouse models of melanoma have served as an in vivo genetic platform on which the role and molecular targets of ultraviolet (UV) radiation can be examined. They have provided genetic evidence in support of the epidemiological link between increased melanoma risk and childhood sunburn and have facilitated the identification of components of the RB pathway as specific UV-light targets.

  • The search for rational targets for the development of melanoma therapeutics will benefit from the use of inducible onco-transgene models for identification of melanoma-maintenance targets.

Abstract

Therapeutic resistance and proclivity for metastasis are hallmarks of malignant melanoma. Genetic, epidemiological and genomic investigations are uncovering the spectrum of stereotypical mutations that are associated with melanoma and how these mutations relate to risk factors such as ultraviolet exposure. The ability to validate the pathogenetic relevance of these mutations in the mouse, coupled with advances in rational drug design, has generated optimism for the development of effective prevention programmes, diagnostic measures and targeted therapeutics in the near future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 9p21 locus.
Figure 2: Activation of the MAPK-signalling pathway.

Similar content being viewed by others

References

  1. Norris, W. A case of fungoid disease. Edinburgh Medicine and Surgery 16, 562–565 (1820).

    Google Scholar 

  2. Armstrong, B. K. & Kricker, A. The epidemiology of UV induced skin cancer. J. Photochem. Photobiol. B. 63, 8–18 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Gilchrest, B. A., Eller, M. S., Geller, A. C. & Yaar, M. The pathogenesis of melanoma induced by ultraviolet radiation. N. Engl. J. Med. 340, 1341–1348 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Marrett, L. D., Nguyen, H. L. & Armstrong, B. K. Trends in the incidence of cutaneous malignant melanoma in New South Wales, 1983–1996. Int. J. Cancer 92, 457–462 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Fountain, J. W., Bale, S. J., Housman, D. E. & Dracopoli, N. C. Genetics of melanoma. Cancer Surv. 9, 645–671 (1990).

    CAS  PubMed  Google Scholar 

  6. Nobori, T. et al. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature 368, 753–756 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Kamb, A. et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science 264, 436–440 (1994). References 6 and 7 identified CDKN2A as the tumour-suppressor gene deleted at the 9p21 cancer hot spot.

    Article  CAS  PubMed  Google Scholar 

  8. Hussussian, C. J. et al. Germline p16 mutations in familial melanoma. Nature Genet. 8, 15–21 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Kamb, A. et al. Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nature Genet. 8, 23–26 (1994). References 8 and 9 were the first to report germline mutation of CDKN2A in familial-melanoma kindred, linking cell-cycle dysregulation to hereditary cancer predisposition.

    Article  CAS  PubMed  Google Scholar 

  10. Kamb, A. Cell-cycle regulators and cancer. Trends Genet. 11, 136–140 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Quelle, D. E., Zindy, F., Ashmun, R. A. & Sherr, C. J. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83, 993–1000 (1995). This paper reports the discovery of an alternative product, ARF, at the CDKN2A locus, which negatively regulates the cell cycle with a mechanism that is distinct from that of the cyclin-dependent kinase inhibitor INK4A.

    Article  CAS  PubMed  Google Scholar 

  12. Serrano, M., Hannon, G. J. & Beach, D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366, 704–707 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Kamijo, T. et al. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc. Natl Acad. Sci. USA 95, 8292–8297 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pomerantz, J. et al. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell 92, 713–723 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Stott, F. J. et al. The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J. 17, 5001–5014 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, Y., Xiong, Y. & Yarbrough, W. G. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 92, 725–734 (1998). References 13 to 16 report the elucidation of the biochemical link between ARF and p53 via its interaction with MDM2.

    Article  CAS  PubMed  Google Scholar 

  17. Glendening, J. M. et al. Homozygous loss of the p15INK4B gene (and not the p16INK4 gene) during tumor progression in a sporadic melanoma patient. Cancer Res. 55, 5531–5535 (1995).

    CAS  PubMed  Google Scholar 

  18. Aitken, J. et al. CDKN2A variants in a population-based sample of Queensland families with melanoma. J. Natl Cancer Inst. 91, 446–452 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Tsao, H. et al. Low prevalence of germline CDKN2A and CDK4 mutations in patients with early-onset melanoma. Arch. Dermatol. 136, 1118–1122 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Liu, L. et al. Mutation of the CDKN2A 5' UTR creates an aberrant initiation codon and predisposes to melanoma. Nature Genet. 21, 128–132 (1999).

    Article  PubMed  CAS  Google Scholar 

  21. Kumar, R. et al. A single nucleotide polymorphism in the 3′ untranslated region of the CDKN2A gene is common in sporadic primary melanomas but mutations in the CDKN2B, CDKN2C, CDK4 and p53 genes are rare. Int. J. Cancer 95, 388–393 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Wolfel, T. et al. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 269, 1281–1284 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Zuo, L. et al. Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nature Genet. 12, 97–99 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Soufir, N. et al. Prevalence of p16 and CDK4 germline mutations in 48 melanoma-prone families in France. The French Familial Melanoma Study Group. Hum. Mol. Genet. 7, 209–216 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Tsao, H., Benoit, E., Sober, A. J., Thiele, C. & Haluska, F. G. Novel mutations in the p16/CDKN2A binding region of the cyclin-dependent kinase-4 gene. Cancer Res. 58, 109–113 (1998). References 22 to 25 report the finding of R24 mutations in familial and sporadic human melanomas that render CDK4 insensitive to regulation by INK4A.

    CAS  PubMed  Google Scholar 

  26. Russo, A. A., Tong, L., Lee, J. O., Jeffrey, P. D. & Pavletich, N. P. Structural basis for inhibition of the cyclin-dependent kinase Cdk6 by the tumour suppressor p16INK4a. Nature 395, 237–243 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Goldstein, A. M., Struewing, J. P., Chidambaram, A., Fraser, M. C. & Tucker, M. A. Genotype–phenotype relationships in U. S. melanoma-prone families with CDKN2A and CDK4 mutations. J. Natl Cancer Inst. 92, 1006–1010 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Sotillo, R. et al. Invasive melanoma in Cdk4-targeted mice. Proc. Natl Acad. Sci. USA 98, 13312–13317 (2001). This study recapitulates the melanoma-prone effect of the Cdk4 R24C mutation in a mouse model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ruas, M. & Peters, G. The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim. Biophys. Acta 1378, F115–F177 (1998).

    CAS  PubMed  Google Scholar 

  30. Piccinin, S. et al. p16/CDKN2 and CDK4 gene mutations in sporadic melanoma development and progression. Int. J. Cancer 74, 26–30 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Straume, O., Smeds, J., Kumar, R., Hemminki, K. & Akslen, L. A. Significant impact of promoter hypermethylation and the 540 C→T polymorphism of CDKN2A in cutaneous melanoma of the vertical growth phase. Am. J. Pathol. 161, 229–237 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kumar, R., Sauroja, I., Punnonen, K., Jansen, C. & Hemminki, K. Selective deletion of exon 1 beta of the p19ARF gene in metastatic melanoma cell lines. Genes Chromosomes Cancer 23, 273–277 (1998).

    Google Scholar 

  33. Randerson-Moor, J. A. et al. A germline deletion of p14(ARF) but not CDKN2A in a melanoma–neural system tumour syndrome family. Hum. Mol. Genet. 10, 55–62 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Rizos, H. et al. A melanoma-associated germline mutation in exon 1beta inactivates p14ARF. Oncogene 20, 5543–5547 (2001). References 33 and 34 identified germline ARF mutations in human melanoma patients.

    Article  CAS  PubMed  Google Scholar 

  35. Duro, D., Bernard, O., Della Valle, V., Berger, R. & Larsen, C. J. A new type of p16INK4/MTS1 gene transcript expressed in B-cell malignancies. Oncogene 11, 21–29 (1995).

    CAS  PubMed  Google Scholar 

  36. Mao, L. et al. A novel p16INK4a transcript. Cancer Res. 55, 2995–2997 (1995).

    CAS  PubMed  Google Scholar 

  37. Stone, S. et al. Complex structure and regulation of the p16(MTS1) locus. Cancer Res. 55, 2988–2994 (1995). References 35 to 37, as well as reference 11, describe the conserved genomic organization of the CDKN2A locus from opossum to man.

    CAS  PubMed  Google Scholar 

  38. Swafford, D. S. et al. Frequent aberrant methylation of p16INK4a in primary rat lung tumors. Mol. Cell Biol. 17, 1366–1374 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sherburn, T. E., Gale, J. M. & Ley, R. D. Cloning and characterization of the CDKN2A and p19ARF genes from Monodelphis domestica. DNA Cell Biol. 17, 975–981 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Serrano, M. et al. Role of the INK4a locus in tumor suppression and cell mortality. Cell 85, 27–37 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Chin, L. et al. Cooperative effects of INK4a and ras in melanoma susceptibility in vivo. Genes Dev. 11, 2822–2834 (1997). References 40 and 41 provide genetic proof in the mouse that the Cdkn2a locus functions as a bona fide tumour suppressor, specifically of melanoma, in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang, F. C., Merlino, G. & Chin, L. Genetic dissection of melanoma pathways in the mouse. Semin. Cancer Biol. 11, 261–268 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Bradl, M., Klein-Szanto, A., Porter, S. & Mintz, B. Malignant melanoma in transgenic mice. Proc. Natl Acad. Sci. USA 88, 164–168 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bardeesy, N. et al. Dual inactivation of RB and p53 pathways in RAS-induced melanomas. Mol. Cell Biol. 21, 2144–2153 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dang, C. V. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol. Cell Biol. 19, 1–11 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ross, D. A. & Wilson, G. D. Expression of c-myc oncoprotein represents a new prognostic marker in cutaneous melanoma. Br. J. Surg. 85, 46–51 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Kraehn, G. M. et al. Extra c-myc oncogene copies in high risk cutaneous malignant melanoma and melanoma metastases. Br. J. Cancer 84, 72–79 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schmitt, C. A., McCurrach, M. E., de Stanchina, E., Wallace-Brodeur, R. R. & Lowe, S. W. INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes Dev. 13, 2670–2677 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sharpless, N. E. et al. p16INK4a and p53 deficiency cooperate in tumorigenesis. Cancer Res. 62, 2761–2765 (2002).

    CAS  PubMed  Google Scholar 

  50. Krimpenfort, P., Quon, K. C., Mooi, W. J., Loonstra, A. & Berns, A. Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature 413, 83–86 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Sharpless, N. E. et al. Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 413, 86–91 (2001). References 50 and 51 show that Ink4a functions as a tumour suppressor in the mouse, as it does in humans.

    Article  CAS  PubMed  Google Scholar 

  52. Sharpless, N. E. et al. Both products of the mouse Ink4a/Arf locus suppress melanoma formation in vivo. Oncogene (in the press).

  53. Valverde, P., Healy, E., Jackson, I., Rees, J. L. & Thody, A. J. Variants of the melanocyte-stimulating hormone receptor gene are associated with red hair and fair skin in humans. Nature Genet. 11, 328–330 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Sturm, R. A. Skin colour and skin cancer: MC1R, the genetic link. Melanoma Res. 12, 405–416 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Box, N. F., Wyeth, J. R., O'Gorman, L. E., Martin, N. G. & Sturm, R. A. Characterization of melanocyte stimulating hormone receptor variant alleles in twins with red hair. Hum. Mol. Genet. 6, 1891–1897 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Smith, R. et al. Melanocortin 1 receptor variants in an Irish population. J. Invest. Dermatol. 111, 119–122 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Flanagan, N. et al. Pleiotropic effects of the melanocortin 1 receptor (MC1R) gene on human pigmentation. Hum. Mol. Genet. 9, 2531–2537 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Palmer, J. S. et al. Melanocortin-1 receptor polymorphisms and risk of melanoma: is the association explained solely by pigmentation phenotype? Am. J. Hum. Genet. 66, 176–186 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Bastiaens, M. et al. The melanocortin-1-receptor gene is the major freckle gene. Hum. Mol. Genet. 10, 1701–1708 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Box, N. F. et al. MC1R genotype modifies risk of melanoma in families segregating CDKN2A mutations. Am. J. Hum. Genet. 69, 765–773 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Healy, E. et al. Melanocortin-1-receptor gene and sun sensitivity in individuals without red hair. Lancet 355, 1072–1073 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Busca, R. & Ballotti, R. Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res. 13, 60–69 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Wildlund, H. R. & Fisher, D. E. Microphthalamia-associated transcription factor: a critical regulator of pigment cell development and survival. Oncogene 22, 3035–3041 (2003).

    Article  CAS  Google Scholar 

  64. Harsanyi, Z. P., Post, P. W., Brinkmann, J. P., Chedekel, M. R. & Deibel, R. M. Mutagenicity of melanin from human red hair. Experientia 36, 291–292 (1980).

    Article  CAS  PubMed  Google Scholar 

  65. Scott, M. C. et al. Human melanocortin 1 receptor variants, receptor function and melanocyte response to UV radiation. J. Cell Sci. 115, 2349–2355 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Kennedy, C. et al. Melanocortin 1 receptor (MC1R) gene variants are associated with an increased risk for cutaneous melanoma which is largely independent of skin type and hair color. J. Invest. Dermatol. 117, 294–300 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. van der Velden, P. A. et al. Melanocortin-1 receptor variant R151C modifies melanoma risk in Dutch families with melanoma. Am. J. Hum. Genet. 69, 774–779 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hayward, N. K. Genetics of melanoma predisposition. Oncogene 22, 3053–3062 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Johnson, G. L. & Lapadat, R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298, 1911–1912 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Yanase, H. et al. Possible involvement of ERK 1/2 in UVA-induced melanogenesis in cultured normal human epidermal melanocytes. Pigment Cell Res. 14, 103–109 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Busca, R. et al. Ras mediates the cAMP-dependent activation of extracellular signal-regulated kinases (ERKs) in melanocytes. EMBO J. 19, 2900–2910 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lowes, V. L., Ip, N. Y. & Wong, Y. H. Integration of signals from receptor tyrosine kinases and g protein-coupled receptors. Neurosignals 11, 5–19 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Imokawa, G., Yada, Y. & Miyagishi, M. Endothelins secreted from human keratinocytes are intrinsic mitogens for human melanocytes. J. Biochem. 267, 24675–24680 (1992).

    CAS  Google Scholar 

  74. Gilchrest, B. A., Park, H. Y., Eller, M. S. & Yaar, M. Mechanisms of ultraviolet light-induced pigmentation. Photochem. Photobiol. 63, 1–10 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Tada, A. et al. Endothelin-1 is a paracrine growth factor that modulates melanogenesis of human melanocytes and participates in their responses to ultraviolet radiation. Cell Growth Differ. 9, 575–584 (1998).

    CAS  PubMed  Google Scholar 

  76. Nesbit, M. et al. Basic fibroblast growth factor induces a transformed phenotype in normal human melanocytes. Oncogene 18, 6469–6476 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Dupin, E. & Le Douarin, N. M. Development of melanocyte precursors from the vertebrate neural crest. Oncogene 22, 3016–3023 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Jafari, M. et al. Analysis of ras mutations in human melanocytic lesions: activation of the ras gene seems to be associated with the nodular type of human malignant melanoma. J. Cancer Res. Clin. Oncol. 121, 23–30 (1995).

    Article  CAS  PubMed  Google Scholar 

  79. van Elsas, A. et al. Relevance of ultraviolet-induced N-ras oncogene point mutations in development of primary human cutaneous melanoma. Am. J. Pathol. 149, 883–893 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Papp, T. et al. Mutational analysis of the N-ras, p53, p16INK4a, CDK4, and MC1R genes in human congenital melanocytic naevi. J. Med. Genet. 36, 610–614 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Demunter, A., Stas, M., Degreef, H., De Wolf-Peeters, C. & van den Oord, J. J. Analysis of N- and K-ras mutations in the distinctive tumor progression phases of melanoma. J. Invest. Dermatol. 117, 1483–1489 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Albino, A. P. et al. Analysis of ras oncogenes in malignant melanoma and precursor lesions: correlation of point mutations with differentiation phenotype. Oncogene 4, 1363–1374 (1989).

    CAS  PubMed  Google Scholar 

  83. Papp, T. et al. Mutational analysis of N–ras, p53, CDKN2A (p16(INK4a)), p14(ARF), CDK4, and MC1R genes in human dysplastic melanocytic naevi. J. Med. Genet. 40, E14 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bastian, B. C. et al. Gene amplifications characterize acral melanoma and permit the detection of occult tumor cells in the surrounding skin. Cancer Res. 60, 1968–1973 (2000).

    CAS  PubMed  Google Scholar 

  85. Powell, M. B. et al. Hyperpigmentation and melanocytic hyperplasia in transgenic mice expressing the human T24 Ha-ras gene regulated by a mouse tyrosinase promoter. Mol. Carcinog. 12, 82–90 (1995).

    Article  CAS  PubMed  Google Scholar 

  86. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002). This is a seminal study that not only identifies BRAF as a frequently mutated gene in human cancers, particularly in melanoma, but also serves as the proof-of-principle demonstration of the power of genome sequencing as a gene-discovery platform.

    Article  CAS  PubMed  Google Scholar 

  87. Rajagopalan, H. et al. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature 418, 934 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Pollock, P. M. et al. High frequency of BRAF mutations in nevi. Nature Genet. 33, 19–20 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Cohen, C. et al. Mitogen-actived protein kinase activation is an early event in melanoma progression. Clin. Cancer Res. 8, 3728–3733 (2002).

    CAS  PubMed  Google Scholar 

  90. Bottaro, D. P. et al. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 251, 802–804 (1991).

    Article  CAS  PubMed  Google Scholar 

  91. Vande Woude, G. F. et al. Met-HGF/SF: tumorigenesis, invasion and metastasis. Ciba Found. Symp. 212, 119–130 (1997).

    CAS  PubMed  Google Scholar 

  92. Li, G. et al. Downregulation of E-cadherin and Desmoglein 1 by autocrine hepatocyte growth factor during melanoma development. Oncogene 20, 8125–8135 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Halaban, R. et al. Met and hepatocyte growth factor/scatter factor signal transduction in normal melanocytes and melanoma cells. Oncogene 7, 2195–2206 (1992).

    CAS  PubMed  Google Scholar 

  94. Natali, P. G. et al. Expression of the c-Met/HGF receptor in human melanocytic neoplasms: demonstration of the relationship to malignant melanoma tumour progression. Br. J. Cancer 68, 746–750 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wiltshire, R. N. et al. Direct visualization of the clonal progression of primary cutaneous melanoma: application of tissue microdissection and comparative genomic hybridization. Cancer Res. 55, 3954–3957 (1995).

    CAS  PubMed  Google Scholar 

  96. Bastian, B. C., LeBoit, P. E., Hamm, H., Brocker, E. B. & Pinkel, D. Chromosomal gains and losses in primary cutaneous melanomas detected by comparative genomic hybridization. Cancer Res. 58, 2170–2175 (1998).

    CAS  PubMed  Google Scholar 

  97. Rusciano, D., Lorenzoni, P. & Burger, M. M. Expression of constitutively activated hepatocyte growth factor/scatter factor receptor (c-met) in B16 melanoma cells selected for enhanced liver colonization. Oncogene 11, 1979–1987 (1995).

    CAS  PubMed  Google Scholar 

  98. Otsuka, T. et al. c-Met autocrine activation induces development of malignant melanoma and acquisition of the metastatic phenotype. Cancer Res. 58, 5157–5167 (1998).

    CAS  PubMed  Google Scholar 

  99. Wu, H., Goel, V. & Haluska, F. G. PTEN signaling pathways in melanoma. Oncogene 22, 3113–3122 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Stambolic, V. et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95, 29–39 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Li, J. et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275, 1943–1947 (1997).

    Article  CAS  PubMed  Google Scholar 

  102. Steck, P. A. et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nature Genet. 15, 356–362 (1997).

    Article  CAS  PubMed  Google Scholar 

  103. Li, D. M. & Sun, H. TEP1, encoded by a candidate tumor suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor beta. Cancer Res. 57, 2124–2129 (1997).

    CAS  PubMed  Google Scholar 

  104. Guldberg, P. et al. Disruption of the MMAC1/PTEN gene by deletion or mutation is a frequent event in malignant melanoma. Cancer Res. 57, 3660–3663 (1997).

    CAS  PubMed  Google Scholar 

  105. Teng, D. H. et al. MMAC1/PTEN mutations in primary tumor specimens and tumor cell lines. Cancer Res. 57, 5221–5225 (1997).

    CAS  PubMed  Google Scholar 

  106. Robertson, G. P. et al. In vitro loss of heterozygosity targets the PTEN/MMAC1 gene in melanoma. Proc. Natl Acad. Sci. USA 95, 9418–9423 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hwang, P. H. et al. Suppression of tumorigenicity and metastasis in B16F10 cells by PTEN/MMAC1/TEP1 gene. Cancer Lett. 172, 83–91 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Liaw, D. et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nature Genet. 16, 64–67 (1997).

    Article  CAS  PubMed  Google Scholar 

  109. Marsh, D. J. et al. Germline mutations in PTEN are present in Bannayan–Zonana syndrome. Nature Genet. 16, 333–334 (1997).

    Article  CAS  PubMed  Google Scholar 

  110. Nelen, M. R. et al. Germline mutations in the PTEN/MMAC1 gene in patients with Cowden disease. Hum. Mol. Genet. 6, 1383–1387 (1997).

    Article  CAS  PubMed  Google Scholar 

  111. Di Cristofano, A., Pesce, B., Cordon-Cardo, C. & Pandolfi, P. P. Pten is essential for embryonic development and tumour suppression. Nature Genet. 19, 348–355 (1998).

    Article  CAS  PubMed  Google Scholar 

  112. Podsypanina, K. et al. Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc. Natl Acad. Sci. USA 96, 1563–1568 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Suzuki, A. et al. High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr. Biol. 8, 1169–1178 (1998).

    Article  CAS  PubMed  Google Scholar 

  114. You, M. J. et al. Genetic analysis of Pten and Ink4a/Arf interactions in the suppression of tumorigenesis in mice. Proc. Natl Acad. Sci. USA 99, 1455–1460 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Schreiber-Agus, N. et al. Role of Mxi1 in ageing organ systems and the regulation of normal and neoplastic growth. Nature 393, 483–487 (1998).

    Article  CAS  PubMed  Google Scholar 

  116. Holman, C. D. & Armstrong, B. K. Cutaneous malignant melanoma and indicators of total accumulated exposure to the sun: an analysis separating histogenetic types. J. Natl Cancer Inst. 73, 75–82 (1984).

    CAS  PubMed  Google Scholar 

  117. Autier, P. & Dore, J. F. Influence of sun exposures during childhood and during adulthood on melanoma risk. EPIMEL and EORTC Melanoma Cooperative Group. European Organisation for Research and Treatment of Cancer. Int. J. Cancer 77, 533–537 (1998).

    Article  CAS  PubMed  Google Scholar 

  118. Whiteman, D. C., Whiteman, C. A. & Green, A. C. Childhood sun exposure as a risk factor for melanoma: a systematic review of epidemiologic studies. Cancer Causes Control 12, 69–82 (2001).

    Google Scholar 

  119. Atillasoy, E. S. et al. UVB induces atypical melanocytic lesions and melanoma in human skin. Am. J. Pathol. 152, 1179–1186 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Berking, C. et al. Photocarcinogenesis in human adult skin grafts. Carcinogenesis 23, 181–187 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Jamal, S. & Schneider, R. J. UV-induction of keratinocyte endothelin-1 downregulates E-cadherin in melanocytes and melanoma cells. J. Clin. Invest. 110, 443–452 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Donawho, C. K. & Kripke, M. L. Evidence that the local effect of ultraviolet radiation on the growth of murine melanomas is immunologically mediated. Cancer Res. 51, 4176–4181 (1991).

    CAS  PubMed  Google Scholar 

  123. Pollock, P. M., Pearson, J. V. & Hayward, N. K. Compilation of somatic mutations of the CDKN2 gene in human cancers: non-random distribution of base substitutions. Genes Chromosomes Cancer 15, 77–88 (1996).

    Google Scholar 

  124. Peris, K. et al. UV fingerprint CDKN2a but no p14ARF mutations in sporadic melanomas. J. Invest. Dermatol. 112, 825–826 (1999).

    Article  CAS  PubMed  Google Scholar 

  125. Kyritsis, A. P. et al. Mutations of the p16 gene in gliomas. Oncogene 12, 63–67 (1996).

    CAS  PubMed  Google Scholar 

  126. de Gruijl, F. R., van Kranen, H. J. & Mullenders, L. H. UV-induced DNA damage, repair, mutations and oncogenic pathways in skin cancer. J. Photochem. Photobiol. B. 63, 19–27 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. Horiguchi, M. et al. Molecular nature of ultraviolet B light-induced deletions in the murine epidermis. Cancer Res. 61, 3913–3918 (2001).

    CAS  PubMed  Google Scholar 

  128. Jones, P. A. & Baylin, S. B. The fundamental role of epigenetic events in cancer. Nature Rev. Genet. 3, 415–428 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Noonan, F. P. et al. Neonatal sunburn and melanoma in mice. Nature 413, 271–272 (2001). This report provides the first experimental support for the long-held epidemiological observation that childhood sunburn confers a higher risk for melanoma development.

    Article  CAS  PubMed  Google Scholar 

  130. Noonan, F. P., Otsuka, T., Bang, S., Anver, M. R. & Merlino, G. Accelerated ultraviolet radiation-induced carcinogenesis in hepatocyte growth factor/scatter factor transgenic mice. Cancer Res. 60, 3738–3743 (2000).

    CAS  PubMed  Google Scholar 

  131. Recio, J. A. et al. Ink4a/arf deficiency promotes ultraviolet radiation-induced melanomagenesis. Cancer Res. 62, 6724–6730 (2002).

    CAS  PubMed  Google Scholar 

  132. Kannan, K. et al. Components of the Rb pathway are critical targets of UV mutagenesis in a murine melanoma model. Pro. Natl Acad. Sci. USA 100, 1221–1225 (2003). This paper reports genetic studies in the mouse that identify the Rb-pathway components (Ink4a and Cdk6) as key targets of the melanoma-promoting effect of UV light.

    Article  CAS  Google Scholar 

  133. Bishop, D. T. et al. Geographical variation in the penetrance of CDKN2A mutations for melanoma. J. Natl Cancer Inst. 94, 894–903 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Druker, B. J. et al. Efficacy and safety of a specific inhibitor of the BCR–ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344, 1031–1037 (2001).

    Article  CAS  PubMed  Google Scholar 

  135. Demetri, G. D. et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N. Engl. J. Med. 347, 472–480 (2002).

    Article  CAS  PubMed  Google Scholar 

  136. Gorre, M. E. et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293, 876–880 (2001).

    Article  CAS  PubMed  Google Scholar 

  137. Felsher, D. W. Cancer revoked: oncogenes as therapeutic targets. Nature Rev. Cancer 3, 375–380 (2003).

    Article  CAS  Google Scholar 

  138. Chin, L. et al. Essential role for oncogenic Ras in tumour maintenance. Nature 400, 468–472 (1999). This study is the first to show the use of an inducible onco-transgene model to study tumour maintenance.

    Article  CAS  PubMed  Google Scholar 

  139. Streit, M. & Detmar, M. Angiogenesis, lymphangiogenesis and melanoma metastasis. Oncogene 22, 3172–3179 (2003).

    Article  CAS  PubMed  Google Scholar 

  140. Hsu, M. Y., Wheelock, M. J., Johnson, K. R. & Herlyn, M. Shifts in cadherin profiles between human normal melanocytes and melanomas. J. Investig. Dermatol. Symp. Proc. 1, 188–194 (1996).

    CAS  PubMed  Google Scholar 

  141. Hsu, M. Y. et al. E-cadherin expression in melanoma cells restores keratinocyte-mediated growth control and down-regulates expression of invasion-related adhesion receptors. Am. J. Pathol. 156, 1515–1525 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512 (1999).

    Article  CAS  PubMed  Google Scholar 

  143. DePinho, R. A. Transcriptional repression: The cancer-chromatin connection. Nature 391, 533–536 (1998).

    Article  CAS  PubMed  Google Scholar 

  144. Quelle, D. E., Cheng, M., Ashmun, R. A. & Sherr, C. J. Cancer-associated mutations at the INK4a locus cancel cell cycle arrest by p16INK4a but not by the alternative reading frame protein p19ARF. Proc. Natl Acad. Sci. USA 94, 669–673 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. de Stanchina, E. et al. E1A signaling to p53 involves the p19(ARF) tumor suppressor. Genes Dev. 12, 2434–2442 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zindy, F. et al. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev. 12, 2424–2433 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Radfar, A., Unnikrishnan, I., Lee, H. W., DePinho, R. A. & Rosenberg, N. p19(Arf) induces p53-dependent apoptosis during abelson virus-mediated pre-B cell transformation. Proc. Natl Acad. Sci. USA 95, 13194–13199 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Chang, L. & Karin, M. Mammalian MAP kinase signalling cascades. Nature 410, 37–40 (2001).

    Article  CAS  PubMed  Google Scholar 

  149. Bennett, D. C. Genetics, development, and malignancy of melanocytes. Int. Rev. Cytol. 146, 191–260 (1993).

    Article  CAS  PubMed  Google Scholar 

  150. Jimbow, K., Quevedo W. C. Jr, Fitzpatrick, T. & Szabo, G. in Dermatology in General Medicine (eds. Fitzpatrick, T. B. et al.) 261–289 (McGraw-Hill, Inc, New York, 1993).

    Google Scholar 

  151. Hsu, M. Y., Meier, F. & Herlyn, M. Melanoma development and progression: a conspiracy between tumor and host. Differentiation 70, 522–536 (2002).

    Article  CAS  PubMed  Google Scholar 

  152. Balch, C. M. et al. Prognostic factors analysis of 17,600 melanoma patients: validation of the American Joint Committee on Cancer melanoma staging system. J. Clin. Oncol. 19, 3622–3634 (2001).

    Article  CAS  PubMed  Google Scholar 

  153. Latres, E. et al. Limited overlapping roles of P15(INK4b) and P18(INK4c) cell cycle inhibitors in proliferation and tumorigenesis. EMBO J. 19, 3496–3506 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Walker, G. J. et al. Virtually 100% of melanoma cell lines harbor alterations at the DNA level within CDKN2A, CDKN2B, or one of their downstream targets. Genes Chromosomes Cancer 22, 157–163 (1998).

    Google Scholar 

  155. Flores, J. F. et al. Loss of the p16INK4a and p15INK4b genes, as well as neighboring 9p21 markers, in sporadic melanoma. Cancer Res. 56, 5023–5032 (1996).

    CAS  PubMed  Google Scholar 

  156. Fujimoto, A., Morita, R., Hatta, N., Takehara, K. & Takata, M. p16INK4a inactivation is not frequent in uncultured sporadic primary cutaneous melanoma. Oncogene 18, 2527–2532 (1999).

    Article  CAS  PubMed  Google Scholar 

  157. Sherr, C. J. & DePinho, R. A. Cellular senescence: mitotic clock or culture shock? Cell 102, 407–410 (2000).

    Article  CAS  PubMed  Google Scholar 

  158. Blackwell, T. K. & Weintraub, H. Differences and similarities in DNA-binding preferences of MyoD and E2A protein complexes revealed by binding site selection. Science 250, 1104–1110 (1990).

    Article  CAS  PubMed  Google Scholar 

  159. Bertolotto, C. et al. Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J. Cell Biol. 142, 827–835 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Price, E. R. et al. α-Melanocyte-stimulating hormone signaling regulates expression of microphthalmia, a gene deficient in Waardenburg syndrome. J. Biol. Chem. 273, 33042–33047 (1998).

    Article  CAS  PubMed  Google Scholar 

  161. Brose, M. S. et al. BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res. 62, 6997–7000 (2002).

    CAS  PubMed  Google Scholar 

  162. Naoki, K., Chen, T. H., Richards, W. G., Sugarbaker, D. J. & Meyerson, M. Missense mutations of the BRAF gene in human lung adenocarcinoma. Cancer Res. 62, 7001–7003 (2002).

    CAS  PubMed  Google Scholar 

  163. Hamad, N. M. et al. Distinct requirements for Ras oncogenesis in human versus mouse cells. Genes Dev. 16, 2045–2057 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author would like to thank R. A. DePinho, D. E. Fisher, M. Herlyn, G. Merlino and N. E. Sharpless for critical comments on the manuscript, and to extend her sincere apologies to those colleagues whose studies were not cited in this review because of space constraints. The author is a Charles E. Culpeper Medical Scholar.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Cancer.gov

chronic myelogenous leukaemia

melanoma

LocusLink

AKT

ARAF

bFGF

BRAF

CDK4

CDK6

CDKN2A

CDKN2B

ERK1

ERK2

HGF/SF

Hras

HRAS

INK4B

KRAS

MAPK

MC1R

MDM2

MEK

MET

Myc

MYC

NRAS

p53

PI3K

PTEN

RAF1

RB

FURTHER INFORMATION

NCI Mouse Models of Human Cancers Consortium

Glossary

GENOMICS

Denotes a systematic, comprehensive, large-scale analysis of biological systems on the genetic level (DNA and RNA) in an automated high-throughput manner. It can be any molecular biological or genetic experiment taken to the whole-genome level.

EPISTATIC

An interaction between non-allelic genes, such that the effect of one gene masks, interferes with or enhances the phenotype of the other gene. Epistasis is not dominance.

LOSS OF HETEROZYGOSITY

(LOH). Occurs when loss of a particular segment of the genome can be shown by the analysis of a polymorphic marker in that region. If an individual is somatically heterozygous for this marker, but homozygous in the tumour, then there has been 'loss of heterozygosity' in that region. Recurrent LOH of a region indicates the presence of a classical tumour-suppressor gene, although recurrent regional loss is also seen for other reasons (for example, because of the presence of fragile sites).

SV40 T ANTIGEN

Simian virus 40 (SV40) is a DNA-transforming virus of the polyomavirus family. SV40 encodes for two 'tumour', or T, antigens — 94 kDa (large T) and 17 kDa (small T). SV40 large T antigen binds to and inactivates the p53 and RB tumour-suppressor proteins.

PENETRANCE

The fraction of individuals of a given genotype that show a particular phenotype, which is usually expressed as a percentage. The penetrance is 'low' when most individuals of a certain genotype do not show the corresponding phenotype. Low penetrance implies that other genes or environmental exposures contribute to the phenotype of interest.

HAPLOINSUFFICIENCY

A phenotypic state that results from loss of one functional allele of any given gene in diploid cells. Sometimes also called allelic insufficiency.

SKIN PHOTOTYPES

Facultative skin colour reflects the genetically-predetermined capacity of the skin to darken in response to ultraviolet radiation, the so-called tanning response. The variation in the tanning response is the basis for division of four skin phototypes, from type I, in which no tanning can occur, to type IV, in which marked tanning occurs.

MELANIN

Melanin is a pigment that is synthesized in melanocytes within specialized cytoplasmic organelles called melanosomes. Melanosomes are transferred to neighbouring keratinocytes within the epidermal melanin unit. The presence of melanized melanosomes within keratinocytes imparts skin and hair colour, which is determined by the number, melanin content and location of the melanosomes.

PHEOMELANIN AND EUMELANIN

These are the two main types of melanin in mammalian skin and hair. Eumelanin is the black-brown pigment. Pheomelanin is the reddish-yellow pigment produced by a shunt in the eumelanin pathway. The relative amounts of pheomelanin and eumelanin determines the skin and hair colour of an individual. Pheomelanin is the predominant pigment found in individuals with red hair and fair complexion, and eumelanin is the predominant pigment found in individuals with black hair and olive complexion.

PARACRINE

A mode of regulation by hormones or growth factors in which their localized release exerts a regional effect on neighbouring cells other than ones that secrete proteins.

AUTOCRINE

A mode of regulation by hormones or growth factors in which release of the protein exerts a positive feedback on the cell(s) producing it.

COWDEN DISEASE, LHERMITTE–DUCLOS DISEASE AND BANNAYAN–ZONANA SYNDROME

Three overlapping autosomal-dominant hamartomatous neoplasm syndromes that are observed in patients with germline PTEN mutations. These patients present with many hamartomas (benign tumours) of the skin and mucosa, gastrointestinal tract, bone, central nervous system, genito-urinary tract, endocrine and exocrine system, with an increased propensity for malignancy (for example, occurring in the breast and thyroid).

EPIGENETIC

Any mode of information transmission from a cell to its descendants without that information being encoded in the nucleotide sequence of the genes.

ERYTHROGENIC

A dose of ultraviolet radiation that is sufficient to elicit skin erythema and subsequent peeling, due to direct and indirect damage to specific cellular targets from photochemical reactions and the generation of reactive oxygen species, leading to activation of inflammatory pathways.

THREE-DIMENSIONAL SKIN RECONSTRUCT SYSTEM

A system of reconstructing aspects of normal skin in culture. Fibroblasts are embedded in collagen type I to represent the dermis; this is overlaid with progressively differentiated layers of keratinocytes with melanocytes scattered along the basal layer to represent the epidermis. The dermis and epidermis are separated by a basement membrane composed, primarily, of collagen type IV and laminin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chin, L. The genetics of malignant melanoma: lessons from mouse and man. Nat Rev Cancer 3, 559–570 (2003). https://doi.org/10.1038/nrc1145

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1145

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing