Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Single-cell mechanogenetics using monovalent magnetoplasmonic nanoparticles

Abstract

Spatiotemporal interrogation of signal transduction at the single-cell level is necessary to answer a host of important biological questions. This protocol describes a nanotechnology-based single-cell and single-molecule perturbation tool, termed mechanogenetics, that enables precise spatial and mechanical control over genetically encoded cell-surface receptors in live cells. The key components of this tool are a magnetoplasmonic nanoparticle (MPN) actuator that delivers defined spatial and mechanical cues to receptors through target-specific one-to-one engagement and a micromagnetic tweezers (μMT) that remotely controls the magnitude of force exerted on a single MPN. In our approach, a SNAP-tagged cell-surface receptor of interest is conjugated with a single-stranded DNA oligonucleotide, which hybridizes to its complementary oligonucleotide on the MPN. This protocol consists of four major stages: (i) chemical synthesis of MPNs, (ii) conjugation with DNA and purification of monovalent MPNs, (iii) modular targeting of MPNs to cell-surface receptors, and (iv) control of spatial and mechanical properties of targeted mechanosensitive receptors in live cells by adjusting the μMT-to-MPN distance. Using benzylguanine (BG)-functionalized MPNs and model cell lines expressing either SNAP-tagged Notch or vascular endothelial cadherin (VE-cadherin), we provide stepwise instructions for mechanogenetic control of receptor clustering and for mechanical receptor activation. The ability of this method to differentially control spatial and mechanical inputs to targeted receptors makes it particularly useful for interrogating the differential contributions of each individual cue to cell signaling. The entire procedure takes up to 1 week.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of magnetoplasmonic nanoparticles (MPNs).
Figure 2: Schematic workflow of the protocol (left) and key design principles (right).
Figure 3: Growth kinetics of MPNs.
Figure 4: Controlled synthesis of MPNs.
Figure 5: Monovalent DNA conjugation of MPNs.
Figure 6: Dark-field microscope and micro-magnetic tweezer (μMT) setup.
Figure 7: Distance-dependent force generation of MPNs.
Figure 8
Figure 9: Mechanogenetic control.

Similar content being viewed by others

References

  1. Banghart, M., Borges, K., Isacoff, E., Trauner, D. & Kramer, R.H. Light-activated ion channels for remote control of neuronal firing. Nat. Neurosci. 7, 1381–1386 (2004).

    Article  CAS  Google Scholar 

  2. Deisseroth, K. Optogenetics. Nat. Methods 8, 26–29 (2011).

    Article  CAS  Google Scholar 

  3. Miesenbock, G. The optogenetic catechism. Science 326, 395–399 (2009).

    Article  Google Scholar 

  4. Toettcher, J.E., Voigt, C.A., Weiner, O.D. & Lim, W.A. The promise of optogenetics in cell biology: interrogating molecular circuits in space and time. Nat. Methods 8, 35–38 (2011).

    Article  CAS  Google Scholar 

  5. Wu, Y.I. et al. A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461, 104–108 (2009).

    Article  CAS  Google Scholar 

  6. Mannix, R.J. et al. Nanomagnetic actuation of receptor-mediated signal transduction. Nat. Nanotechnol. 3, 36–40 (2008).

    Article  CAS  Google Scholar 

  7. Lee, J.H. et al. Artificial control of cell signaling and growth by magnetic nanoparticles. Angew. Chem. Int. Ed. Engl. 49, 5698–5702 (2010).

    Article  CAS  Google Scholar 

  8. Cho, M.H. et al. A magnetic switch for the control of cell death signalling in in vitro and in vivo systems. Nat. Mater. 11, 1038–1043 (2012).

    Article  CAS  Google Scholar 

  9. Etoc, F. et al. Subcellular control of Rac-GTPase signalling by magnetogenetic manipulation inside living cells. Nat. Nanotechnol. 8, 193–198 (2013).

    Article  CAS  Google Scholar 

  10. Hoffmann, C. et al. Spatiotemporal control of microtubule nucleation and assembly using magnetic nanoparticles. Nat. Nanotechnol. 8, 199–205 (2013).

    Article  CAS  Google Scholar 

  11. Liu, Z. et al. Nanoscale optomechanical actuators for controlling mechanotransduction in living cells. Nat. Methods 13, 143–146 (2016).

    Article  Google Scholar 

  12. Seo, D. et al. A mechanogenetic toolkit for interrogating cell signaling in space and time. Cell 165, 1507–1518 (2016).

    Article  CAS  Google Scholar 

  13. Huang, H., Delikanli, S., Zeng, H., Ferkey, D.M. & Pralle, A. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat. Nanotechnol. 5, 602–606 (2010).

    Article  CAS  Google Scholar 

  14. Chen, R., Romero, G., Christiansen, M.G., Mohr, A. & Anikeeva, P. Wireless magnetothermal deep brain stimulation. Science 347, 1477–1480 (2015).

    Article  CAS  Google Scholar 

  15. Stanley, S.A. et al. Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice. Science 336, 604–608 (2012).

    Article  CAS  Google Scholar 

  16. Stanley, S.A., Sauer, J., Kane, R.S., Dordick, J.S. & Friedman, J.M. Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles. Nat. Med. 21, 92–98 (2015).

    Article  CAS  Google Scholar 

  17. Carvalho de Souza, J.L. et al. Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron 86, 207–217 (2015).

    Article  CAS  Google Scholar 

  18. Meister, M. Physical limits to magnetogenetics. Elife 5, e17210 (2016).

    Article  Google Scholar 

  19. Howarth, M. et al. Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nat. Methods 5, 397–399 (2008).

    Article  CAS  Google Scholar 

  20. Farlow, J. et al. Formation of targeted monovalent quantum dots by steric exclusion. Nat. Methods 10, 1203–1205 (2013).

    Article  CAS  Google Scholar 

  21. Banerjee, D., Liu, A.P., Voss, N.R., Schmid, S.L. & Finn, M.G. Multivalent display and receptor-mediated endocytosis of transferrin on virus-like particles. Chembiochem 11, 1273–1279 (2010).

    Article  CAS  Google Scholar 

  22. Dustin, M.L. & Zhu, C. T cells like a firm molecular handshake. Proc. Natl. Acad. Sci. USA 103, 4335–4336 (2006).

    Article  CAS  Google Scholar 

  23. Das, D.K. et al. Force-dependent transition in the T-cell receptor β-subunit allosterically regulates peptide discrimination and pMHC bond lifetime. Proc. Natl. Acad. Sci. USA 112, 1517–1522 (2015).

    Article  CAS  Google Scholar 

  24. Dufrene, Y.F. et al. Five challenges to bringing single-molecule force spectroscopy into living cells. Nat. Methods 8, 123–127 (2011).

    Article  CAS  Google Scholar 

  25. Neuman, K.C. & Nagy, A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5, 491–505 (2008).

    Article  CAS  Google Scholar 

  26. Jiang, W., Kim, B.Y., Rutka, J.T. & Chan, W.C. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 3, 145–150 (2008).

    Article  CAS  Google Scholar 

  27. Xu, S., Olenyuk, B.Z., Okamoto, C.T. & Hamm-Alvarez, S.F. Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances. Adv. Drug Deliv. Rev. 65, 121–138 (2013).

    Article  CAS  Google Scholar 

  28. Levskaya, A., Weiner, O.D., Lim, W.A. & Voigt, C.A. Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 461, 997–1001 (2009).

    Article  CAS  Google Scholar 

  29. Shete, H.K., Prabhu, R.H. & Patravale, V.B. Endosomal escape: a bottleneck in intracellular delivery. J. Nanosci. Nanotechnol. 14, 460–474 (2014).

    Article  CAS  Google Scholar 

  30. Martens, T.F., Remaut, K., Demeester, J., Smedt, S.C.D. & Braeckmans, K. Intracellular delivery of nanomaterials: how to catch endosomal escape in the act. Nano Today 9, 344–364 (2014).

    Article  CAS  Google Scholar 

  31. Tseng, P., Judy, J.W. & Di Carlo, D. Magnetic nanoparticle-mediated massively parallel mechanical modulation of single-cell behavior. Nat. Methods 9, 1113–1119 (2012).

    Article  CAS  Google Scholar 

  32. Wheeler, M.A. et al. Genetically targeted magnetic control of the nervous system. Nat. Neurosci. 19, 756–761 (2016).

    Article  CAS  Google Scholar 

  33. Tseng, P. et al. Flexible and stretchable micromagnet arrays for tunable biointerfacing. Adv. Mater. 27, 1083–1089 (2015).

    Article  CAS  Google Scholar 

  34. Farrell, D., Majetich, S.A. & Wilcoxon, J.P. Preparation and characterization of monodisperse Fe nanoparticles. J. Phys. Chem. B 107, 11022–11030 (2003).

    Article  CAS  Google Scholar 

  35. Zhang, S. et al. Halide ion-mediated growth of single crystalline Fe nanoparticles. Nanoscale 6, 4852–4856 (2014).

    Article  CAS  Google Scholar 

  36. Zalich, M.A., Baranauskas, V.V., Riffle, J.S., Saunders, M. & Pierre, T.G.S. Structural and magnetic properties of oxidatively stable cobalt nanoparticles encapsulated in graphite shells. Chem. Mater. 18, 2648–2655 (2006).

    Article  CAS  Google Scholar 

  37. Pankhurst, Q.A., Connolly, J., Jones, S.K. & Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D 36, 167–181 (2003).

    Article  Google Scholar 

  38. Matthews, B.D., LaVan, D.A., Overby, D.R., Karavitis, J. & Ingber, D.E. Electromagnetic needles with submicron pole tip radii for nanomanipulation of biomolecules and living cells. Appl. Phys. Lett. 85, 2968–2970 (2004).

    Article  CAS  Google Scholar 

  39. Yan, Z. et al. Drosophila NOMPC is a mechanotransduction channel subunit for gentle-touch sensation. Nature 493, 221–225 (2013).

    Article  CAS  Google Scholar 

  40. Coste, B. et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330, 55–60 (2010).

    Article  CAS  Google Scholar 

  41. Kim, S.E., Coste, B., Chadha, A., Cook, B. & Patapoutian, A. The role of Drosophila Piezo in mechanical nociception. Nature 483, 209–212 (2012).

    Article  CAS  Google Scholar 

  42. van der Merwe, P.A. The TCR triggering puzzle. Immunity 14, 665–668 (2001).

    Article  CAS  Google Scholar 

  43. Wichert, G.v. et al. RPTP-α acts as a transducer of mechanical force on αv/β3-integrin-cytoskeleton linkages. J. Cell Biol. 161, 143–153 (2003).

    Article  Google Scholar 

  44. Huang, R.B. & Eniola-Adefeso, O. PLoS One 7, e31874 (2012).

    Article  CAS  Google Scholar 

  45. Marshall, B.T. et al. Direct observation of catch bonds involving cell-adhesion molecules. Nature 423, 190–193 (2003).

    Article  CAS  Google Scholar 

  46. Tzima, E. et al. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437, 426–431 (2005).

    Article  CAS  Google Scholar 

  47. Chen, Y. et al. Fluorescence biomembrane force probe: concurrent quantitation of receptor-ligand kinetics and binding-induced intracellular signaling on a single cell. J. Vis. Exp. 102, e52975 (2015).

    Google Scholar 

  48. Luca, V.C. et al. Notch-Jagged complex structure implicates a catch bond in tuning ligand sensitivity. Science 355, 1320–1324 (2017).

    Article  CAS  Google Scholar 

  49. Jang, J.T. et al. Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew. Chem. Int. Ed. Engl. 48, 1234–1238 (2009).

    Article  CAS  Google Scholar 

  50. Prodan, E., Radloff, C., Halas, N.J. & Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003).

    Article  CAS  Google Scholar 

  51. Jain, P.K., Lee, K.S., El-Sayed, I.H. & El-Sayed, M.A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B 110, 7238–7248 (2006).

    Article  CAS  Google Scholar 

  52. Cullity, B.D. Introduction to Magnetic Materials (Addison-Wesley Pub., 1972).

  53. Bercoff, P.G. & Bertorello, H.R. Exchange constants and transfer integrals of spinel ferrites. J. Magn. Magn. Mater. 169, 314–322 (1997).

    Article  CAS  Google Scholar 

  54. Schiessl, W. et al. Magnetic properties of the ZnFe2O4 spinel. Phys. Rev. B Condens. Matter 53, 9143–9152 (1996).

    Article  CAS  Google Scholar 

  55. Yi, D.K., Lee, S.S., Papaefthymiou, G.C. & Ying, J.Y. Nanoparticle architectures templated by SiO2/Fe2O3 nanocomposites. Chem. Mater. 18, 614–619 (2006).

    Article  CAS  Google Scholar 

  56. Oldenburg, S.J., Averitt, R.D., Westcott, S.L. & Halas, N.J. Nanoengineering of optical resonances. Chem. Phys. Lett. 288, 243–247 (1998).

    Article  CAS  Google Scholar 

  57. Brinson, B.E. et al. Nanoshells made easy: improving Au layer growth on nanoparticle surfaces. Langmuir 24, 14166–14171 (2008).

    Article  CAS  Google Scholar 

  58. Sarah, L.W., Oldenburg, S.J., Lee, T.R. & Halas, N.J. Formation and adsorption of clusters of gold nanoparticles onto functionalized silica nanoparticle surfaces. Langmuir 14, 5396–5401 (1998).

    Article  Google Scholar 

  59. Claridge, S.A., Liang, H.W., Basu, S.R., Frechet, J.M. & Alivisatos, A.P. Isolation of discrete nanoparticle-DNA conjugates for plasmonic applications. Nano Lett. 8, 1202–1206 (2008).

    Article  CAS  Google Scholar 

  60. Seo, D., Lee, H., Lee, J.-u., Haas, T.J. & Jun, Y.-w. Monovalent plasmonic nanoparticles for biological applications. Proc. SPIE 9722, 97220I–97221 (2016).

    Article  Google Scholar 

  61. Batchelor, G.K. An Introduction to Fluid Dynamics (Cambridge University Press, 1967).

  62. Rogers, H.B., Anani, T., Choi, Y.S., Beyers, R.J. & David, A.E. Exploiting size-dependent drag and magnetic forces for size-specific separation of magnetic nanoparticles. Int. J. Mol. Sci. 16, 20001–20019 (2015).

    Article  CAS  Google Scholar 

  63. Wang, X. & Ha, T. Defining single molecular forces required to activate integrin and notch signaling. Science 340, 991–994 (2013).

    Article  CAS  Google Scholar 

  64. Ho, D. et al. Force-driven separation of short double-stranded DNA. Biophys. J. 97, 3158–3167 (2009).

    Article  CAS  Google Scholar 

  65. Kuhner, F., Morfill, J., Neher, R.A., Blank, K. & Gaub, H.E. Force-induced DNA slippage. Biophys. J. 92, 2491–2497 (2007).

    Article  Google Scholar 

  66. Cocco, S., Monasson, R. & Marko, J.F. Force and kinetic barriers to unzipping of the DNA double helix. Proc. Natl. Acad. Sci. USA 98, 8608–8613 (2001).

    Article  CAS  Google Scholar 

  67. Jain, P.K. & El-Sayed, M.A. Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells. Nano Lett. 7, 2854–2858 (2007).

    Article  CAS  Google Scholar 

  68. Wang, Y. et al. Visualizing the mechanical activation of Src. Nature 434, 1040–1045 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Blacklow (Harvard University) for the generous gift of Notch plasmids. This work was supported by IBS-R026-D1 from IBS (Y.J. and J.C.), HI08C2149 from Korea Healthcare Technology R&D Project (J.C.), 2017R1C1B2010945 from a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP, D.S.), 1R01GM112081-01 from the National Institute of General Medical Science (NIGMS) and the National Institute of Health (NIH) (Y.J.), the UCSF Program for Breakthrough Biomedical Research–Sandler Foundation (Y.J.), 1R21HL123329-01 from the National Heart, Lung, and Blood Institute and NIH (Y.J.), DP2 HD080351-01 from the NIH common fund (Z.J.G.) and P50 GM081879 from the NIGMS UCSF Center for Synthetic and Systems Biology (Z.J.G.).

Author information

Authors and Affiliations

Authors

Contributions

J.K., D.S., Y.J. and J.C. conceived and designed the project; D.S., J.K., J.L., Y.L., D.K., Y.J. and J.C. contributed to nanoparticle synthesis; D.S., K.M.S., Z.J.G. and Y.J. designed the biological experiments; J.K., D.S., J.L., K.M.S., Y.L. and D.K. performed experiments and analyzed the data; and J.K., D.S., J.L., Y.J. and J.C. wrote the manuscript. All authors discussed and commented on the manuscript.

Corresponding authors

Correspondence to Young-wook Jun or Jinwoo Cheon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Functional group-dependent chemical stability of M-SiO2(Au2nm)n.

Reaction of Au2nm seeds with 20 nm APTMS or AEAPTMS functionalized M-SiO2 yielded 161±11 and 165±10 Au seeds per M-SiO2, respectively. The chemical stability of the respective conjugates was examined by incubating them in 1 mM Tris-HCl buffer (pH 8.0) for 48 hr. Significant portion of Au seeds were detached from M-SiO2(Au2nm)n (Au seeds per M-SiO2 after 48hr incubation: 98.1±17) produced by the APTMS conjugation chemistry, whereas negligible changes were observed for the AEAPTMS case (n = 161±15). Scale bar, 10 nm.

Supplementary Figure 2 Synthesis of MPNs having a 30 nm iron oxide magnetic core.

(a) TEM images of 30 nm iron oxide magnetic nanoparticles, (b) silica-coated magnetic nanoparticles (silica thickness, 4 nm), and (c) MPNs (diameter, 55 ± 6.7 nm). 30 nm iron oxide nanoparticles are used in step 14. Scale bar, 50 nm.

Supplementary Figure 3 Time dependent changes in absorbance of the gold growth solution.

(a) UV-Vis absorption spectra and (b) changes in absorbance at 290 nm of the gold growth solution as a function of time.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 392 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Jw., Seo, D., Lee, Ju. et al. Single-cell mechanogenetics using monovalent magnetoplasmonic nanoparticles. Nat Protoc 12, 1871–1889 (2017). https://doi.org/10.1038/nprot.2017.071

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2017.071

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing