Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Using pancreas tissue slices for in situ studies of islet of Langerhans and acinar cell biology

Abstract

Studies on the cellular function of the pancreas are typically performed in vitro on its isolated functional units, the endocrine islets of Langerhans and the exocrine acini. However, these approaches are hampered by preparation-induced changes of cell physiology and the lack of an intact surrounding. We present here a detailed protocol for the preparation of pancreas tissue slices. This procedure is less damaging to the tissue and faster than alternative approaches, and it enables the in situ study of pancreatic endocrine and exocrine cell physiology in a conserved environment. Pancreas tissue slices facilitate the investigation of cellular mechanisms underlying the function, pathology and interaction of the endocrine and exocrine components of the pancreas. We provide examples for several experimental applications of pancreas tissue slices to study various aspects of pancreas cell biology. Furthermore, we describe the preparation of human and porcine pancreas tissue slices for the validation and translation of research findings obtained in the mouse model. Preparation of pancreas tissue slices according to the protocol described here takes less than 45 min from tissue preparation to receipt of the first slices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mouse tissue preparation and vibratome slicing.
Figure 2: Live-cell morphology of in situ pancreas tissue.
Figure 3: 3D morphology of mouse pancreas tissue after antibody staining.
Figure 4: Antibody staining of exocrine tissue in mouse pancreas slices.
Figure 5: Calcium imaging of beta cells within a mouse pancreas tissue slice, using a genetically encoded calcium indicator.
Figure 6: Human pancreas tissue slices.
Figure 7: Porcine pancreas tissue slices.
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Williams, J.A., Korc, M. & Dormer, R.L. Action of secretagogues on a new preparation of functionally intact, isolated pancreatic acini. Am. J. Physiol. 235, 517–524 (1978).

    CAS  PubMed  Google Scholar 

  2. Peikin, S.R., Rottman, A.J., Batzri, S. & Gardner, J.D. Kinetics of amylase release by dispersed acini prepared from guinea pig pancreas. Am. J. Physiol. 235, E743–749 (1978).

    CAS  PubMed  Google Scholar 

  3. Park, M.K., Lee, M. & Petersen, O.H. Morphological and functional changes of dissociated single pancreatic acinar cells: testing the suitability of the single cell as a model for exocytosis and calcium signaling. Cell Calcium 35, 367–379 (2004).

    Article  CAS  Google Scholar 

  4. Meda, P., Bruzzone, R., Chanson, M., Bosco, D. & Orci, L. Gap junctional coupling modulates secretion of exocrine pancreas. Proc. Natl. Acad. Sci. USA 84, 4901–4904 (1987).

    Article  CAS  Google Scholar 

  5. Logsdon, C.D. & Williams, J.A. Pancreatic acini in short-term culture: regulation by EGF, carbachol, insulin, and corticosterone. Am. J. Physiol. 244, G675–682 (1983).

    CAS  PubMed  Google Scholar 

  6. Halban, P.A. et al. The possible importance of contact between pancreatic islet cells for the control of insulin release. Endocrinology 111, 86–94 (1982).

    Article  CAS  Google Scholar 

  7. Jonkers, F.C., Jonas, J.C., Gilon, P. & Henquin, J.C. Influence of cell number on the characteristics and synchrony of Ca2+ oscillations in clusters of mouse pancreatic islet cells. J. Physiol. 520 Part 3: 839–849 (1999).

    Article  CAS  Google Scholar 

  8. Zhang, M., Goforth, P., Bertram, R., Sherman, A. & Satin, L. The Ca2+ dynamics of isolated mouse beta cells and islets: implications for mathematical models. Biophys. J. 84, 2852–2870 (2003).

    Article  CAS  Google Scholar 

  9. Schuit, F.C., In't Veld, P.A. & Pipeleers, D.G. Glucose stimulates proinsulin biosynthesis by a dose-dependent recruitment of pancreatic beta cells. Proc. Natl. Acad. Sci. USA 85, 3865–3869 (1988).

    Article  CAS  Google Scholar 

  10. Ahn, Y.B. et al. Changes in gene expression in beta cells after islet isolation and transplantation using laser-capture microdissection. Diabetologia 50, 334–342 (2007).

    Article  CAS  Google Scholar 

  11. Bhagat, L. et al. Heat shock protein 70 prevents secretagogue-induced cell injury in the pancreas by preventing intracellular trypsinogen activation. J. Clin. Invest. 106, 81–89 (2000).

    Article  CAS  Google Scholar 

  12. Blinman, T.A. et al. Activation of pancreatic acinar cells on isolation from tissue: cytokine upregulation via p38 MAP kinase. Am. J. Physiol. Cell Physiol. 279, C1993–2003 (2000).

    Article  CAS  Google Scholar 

  13. Irving-Rodgers, H.F. et al. Pancreatic islet basement membrane loss and remodeling after mouse islet isolation and transplantation: impact for allograft rejection. Cell Transplant. 23, 59–72 (2012).

    Article  Google Scholar 

  14. Negi, S. et al. Analysis of beta cell gene expression reveals inflammatory signaling and evidence of dedifferentiation following human islet isolation and culture. PLoS ONE 7, e30415 (2012).

    Article  CAS  Google Scholar 

  15. Paraskevas, S. et al. Activation and expression of ERK, JNK, and p38 MAP-kinases in isolated islets of Langerhans: implications for cultured islet survival. FEBS Lett. 455, 203–208 (1999).

    Article  CAS  Google Scholar 

  16. Raposo do Amaral, A.S. et al. Glutathione ethyl ester supplementation during pancreatic islet isolation improves viability and transplant outcomes in a murine marginal islet mass model. PLoS ONE 8, e55288 (2013).

    Article  CAS  Google Scholar 

  17. Speier, S. & Rupnik, M. A novel approach to in situ characterization of pancreatic beta-cells. Pflugers Arch. 446, 553–558 (2003).

    Article  CAS  Google Scholar 

  18. Castaneda-Castellanos, D.R., Flint, A.C. & Kriegstein, A.R. Blind patch-clamp recordings in embryonic and adult mammalian brain slices. Nat. Protoc. 1, 532–542 (2006).

    Article  CAS  Google Scholar 

  19. de Graaf, I.A. et al. Preparation and incubation of precision-cut liver and intestinal slices for application in drug metabolism and toxicity studies. Nat. Protoc. 5, 1540–1551 (2010).

    Article  CAS  Google Scholar 

  20. Edwards, F.A., Konnerth, A., Sakmann, B. & Takahashi, T. A thin slice preparation for patch-clamp recordings from neurones of the mammalian central nervous system. Pflugers Arch. 414, 600–612 (1989).

    Article  CAS  Google Scholar 

  21. Lacy, P.E. & Kostianovsky, M. Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes 16, 35–39 (1967).

    Article  CAS  Google Scholar 

  22. Li, D.S., Yuan, Y.H., Tu, H.J., Liang, Q.L. & Dai, L.J. A protocol for islet isolation from mouse pancreas. Nat. Protoc. 4, 1649–1652 (2009).

    Article  CAS  Google Scholar 

  23. Ivanova, A. et al. Age-dependent labeling and imaging of insulin secretory granules. Diabetes 62, 3687–3696 (2013).

    Article  CAS  Google Scholar 

  24. Rodriguez-Diaz, R. et al. Noninvasive in vivo model demonstrating the effects of autonomic innervation on pancreatic islet function. Proc. Natl. Acad. Sci. USA 109, 21456–21461 (2012).

    Article  CAS  Google Scholar 

  25. Marciniak, A., Selck, C., Friedrich, B. & Speier, S. Mouse pancreas tissue slice culture facilitates long-term studies of exocrine and endocrine cell physiology in situ. PLoS ONE 8, e78706 (2013).

    Article  CAS  Google Scholar 

  26. Speier, S., Yang, S.B., Sroka, K., Rose, T. & Rupnik, M. KATP-channels in beta cells in tissue slices are directly modulated by millimolar ATP. Mol. Cell. Endocrinol. 230, 51–58 (2005).

    Article  CAS  Google Scholar 

  27. Speier, S., Gjinovci, A., Charollais, A., Meda, P. & Rupnik, M. Cx36-mediated coupling reduces beta cell heterogeneity, confines the stimulating glucose concentration range, and affects insulin release kinetics. Diabetes 56, 1078–1086 (2007).

    Article  CAS  Google Scholar 

  28. Dolensek, J., Stozer, A., Skelin Klemen, M., Miller, E.W. & Slak Rupnik, M. The relationship between membrane potential and calcium dynamics in glucose-stimulated beta cell syncytium in acute mouse pancreas tissue slices. PLoS ONE 8, e82374 (2013).

    Article  Google Scholar 

  29. Stozer, A. et al. Functional connectivity in islets of Langerhans from mouse pancreas tissue slices. PLoS Comput. Biol. 9, e1002923 (2013).

    Article  CAS  Google Scholar 

  30. Huang, Y.C. et al. In situ electrophysiological examination of pancreatic alpha cells in the streptozotocin-induced diabetes model, revealing the cellular basis of glucagon hypersecretion. Diabetes 62, 519–530 (2013).

    Article  CAS  Google Scholar 

  31. Rose, T., Efendic, S. & Rupnik, M. Ca2+-secretion coupling is impaired in diabetic Goto Kakizaki rats. J. Gen. Physiol. 129, 493–508 (2007).

    Article  CAS  Google Scholar 

  32. Meneghel-Rozzo, T., Rozzo, A., Poppi, L. & Rupnik, M. In vivo and in vitro development of mouse pancreatic beta cells in organotypic slices. Cell Tissue Res. 316, 295–303 (2004).

    Article  Google Scholar 

  33. Borg, D.J. et al. Mesenchymal stromal cells improve transplanted islet survival and islet function in a syngeneic mouse model. Diabetologia 57, 522–531 (2014).

    Article  Google Scholar 

  34. Karimian, N. et al. Somatostatin receptor type 2 antagonism improves glucagon counterregulation in biobreeding diabetic rats. Diabetes 62, 2968–2977 (2013).

    Article  CAS  Google Scholar 

  35. Huang, Y.C., Rupnik, M. & Gaisano, H.Y. Unperturbed islet alpha cell function examined in mouse pancreas tissue slices. J. Physiol. 589, 395–408 (2011).

    Article  CAS  Google Scholar 

  36. van der Windt, D.J. et al. Clinical islet xenotransplantation: how close are we? Diabetes 61, 3046–3055 (2012).

    Article  CAS  Google Scholar 

  37. Kilkenny, C., Browne, W.J., Cuthill, I.C., Emerson, M. & Altman, D.G. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 8, e1000412 (2010).

    Article  Google Scholar 

  38. Gu, G., Dubauskaite, J. & Melton, D.A. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129, 2447–2457 (2002).

    CAS  Google Scholar 

  39. Muzumdar, M.D., Tasic, B., Miyamichi, K., Li, L. & Luo, L. A global double-fluorescent Cre reporter mouse. Genesis 45, 593–605 (2007).

    Article  CAS  Google Scholar 

  40. Zariwala, H.A. et al. A Cre-dependent GCaMP3 reporter mouse for neuronal imaging in vivo. J. Neurosci. 32, 3131–3141 (2012).

    Article  CAS  Google Scholar 

  41. Conget, J.I. et al. Deleterious effect of dithizone-DMSO staining on insulin secretion in rat and human pancreatic islets. Pancreas 9, 157–160 (1994).

    Article  CAS  Google Scholar 

  42. Botticher, G. et al. Isolation of human islets from partially pancreatectomized patients. J. Vis. Exp. 53, e2962 (2011).

    Google Scholar 

  43. Sturm, D. et al. Improved protocol for laser microdissection of human pancreatic islets from surgical specimens. J. Vis. Exp. 71, e50231 (2013).

    Google Scholar 

Download references

Acknowledgements

This work was supported with funds from the Emmy Noether Program of the German Research Foundation (DFG), the CRTD—DFG Research Center for Regenerative Therapies Dresden, Cluster of Excellence, the DFG-SFB/Transregio 127 and the German Ministry for Education and Research (BMBF) to the German Centre for Diabetes Research (DZD) and to the Network of Competence for Diabetes (KKNDm). The work leading to this publication has received support from the Innovative Medicines Initiative Joint Undertaking under grant agreement no. 155005 ('improving beta cell function and identification of diagnostic biomarkers for treatment monitoring in diabetes'; IMIDIA), resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and the European Federation of Pharmaceutical Industries and Associations (EFPIA) companies' in-kind contributions. We thank K. Hüttner, C. Kühn, A. Gröbe and K. Pfützner for their excellent technical assistance, and D. Richter, M. Roessler, M. Distler, R. Grutzmann and G. Baretton for providing human pancreatic tissues.

Author information

Authors and Affiliations

Authors

Contributions

M.S.R. and S.S. developed the original tissue slice preparation for mouse pancreas; A.M., C.M.C., V.T., J.A.C., C.S., J.S., S.R. and S.S. developed the organotypic culture of adult mouse pancreas slices, the perifusion of slices for calcium imaging, the secretion assays and immunohistochemistry protocols for slices, and the slicing procedure for human and porcine pancreas; T.R. and M.S.R. adapted the tissue slice preparation for rat pancreas; F.E., J.W. and M.S. provided living human pancreas tissue; and A.M., C.M.C., M.S.R. and S.S. wrote the manuscript.

Corresponding author

Correspondence to Stephan Speier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marciniak, A., Cohrs, C., Tsata, V. et al. Using pancreas tissue slices for in situ studies of islet of Langerhans and acinar cell biology. Nat Protoc 9, 2809–2822 (2014). https://doi.org/10.1038/nprot.2014.195

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.195

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing